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Abstract 
 

Optimization of multi response surface (MRS) in robust designs is applied to determine optimum characteristics of 
a process in a satisfactory region and reduce variation of responses. In this paper, a methodology is proposed for 
optimizing multi response surface in robust designs, which optimizes mean and variance simultaneously by applying 
fuzzy set theory. At first, a method is proposed to constitute a regression model based on replicates of a response and 
aggregate regression models so that a fuzzy regression model expresses each response. The obtained regression model 
includes fuzzy coefficients which consider uncertainty in the collected data. Then a multi objective decision making 
(MODM) problem is used. After introducing deviation function based on robustness concept and using desirability 
function, a two objective problem is constituted. At last, a fuzzy programming method is expressed to solve the 
problem by applying degree of satisfaction from each objective. Then the problem is converted to a single objective 
model with the goals of increasing desirability and robustness simultaneously. The obtained model has the capability 
of assigning importance weight for each goal based on decision making preferences. Solving the model, the obtained 
optimum factor levels are fuzzy numbers so that a bigger satisfactory region could be provided. Finally, a numerical 
example is expressed to illustrate the proposed methodology. 

 © 2009 World Academic Press, UK. All rights reserved. 
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1 Introduction 
 
Response surface methodology (RSM) is a collection of tools for fitting a surface to special set of data, and 
determining optimum factor levels is also part of methodology and uses a regression model for optimization of a 
problem [12, 14]. 

Kim and Lin [9] proposed a fuzzy modeling approach to optimize the dual response system. The proposed 
method identifies a set of process parameter conditions to simultaneously maximize the degree of satisfaction with 
respect to the mean and the standard deviation responses. Venter and Haftka [16] used fuzzy concepts for modeling 
uncertainty typical of aircraft industry. It is shown that, for the example problem considered, the fuzzy set based 
design is superior. Akpan et al. [1] proposed a practical approach for analyzing the response of structures with fuzzy 
parameters. RSM is used to approximate the fuzzy element response quantity at the normal point. De Munck et al. [5] 
considered a response surface based optimization techniques for the calculation of envelope frequency response 
function (FRFs) of imprecisely structures using the interval and fuzzy finite element method. 

In practice, multiple responses and different types of scenarios are usually applied [2, 4, 17]. Derringer and 
Suich [6] defined a desirability function to transform several response variables into a single response. Khuri and 
Conlon [8] proposed an algorithm for the simultaneous optimization of several response functions that depend on the 
same set of controllable variables and are adequately represented by polynomial regression models. They firstly 
defined a distance function by considering the ideal solution, and then determined the optimal condition by 
minimizing this function. Tong and Hsieh [15] applied artificial neural network (ANN) to find the optimal solution to 
the multi response type of problem. Antony [3] utilized principle component analysis (PCA) to analyze multi 
response problems. Kazemzadeh et al. [7] proposed a general framework in MRS problems according to some 
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existing works and some types of related decision makers and attempts to aggregate all of characteristics in one 
approach. 

Lai and Chang [10] proposed a fuzzy multi response optimization procedure to search an appropriate 
combination of process parameter setting. At first, fuzzy regression models are used to model the relations between 
process parameters and responses, and then the possibility distributions of prediction responses are obtained. They 
proposed a strategy of optimizing the most possible response values and minimizing the deviation from the most 
possible values. 

Optimization of multi response surface (MRS) in robust designs is applied to determine optimum characteristics 
of a process in a satisfactory region and reduce variation of responses. This paper proposes a methodology for 
optimizing multi response surface in robust designs which optimizes mean and variance simultaneously by applying 
fuzzy set theory. Since in such a problem some of data are usually neglected, we cover it by applying fuzzy set theory. 
At first, a method is proposed to constitute a regression model based on replicates of a response and aggregate 
regression models so that a fuzzy regression model expresses each response. Triangular fuzzy number (TFN) is 
applied for considering mean and variance of data simultaneously. The obtained regression model includes fuzzy 
coefficients which consider uncertainty in the collected data. After introducing deviation function based on robustness 
concept and using desirability function, a two objective problem is constituted. At last, a fuzzy programming is 
expressed to solve the problem which applies degree of satisfaction from each objective. The problem is converted to 
a single objective model with the goals of increasing desirability and robustness simultaneously and capability of 
assigning importance weight for each one based on decision making preferences. After solving the model, obtained 
optimum factor levels are fuzzy numbers so that a bigger satisfactory region could be provided.   

The paper is organized as follows. Section 2 reviews the fuzzy set theory. Section 3 introduces the proposed 
methodology. In Section 4, a numerical example is given to illustrate the proposed methodology. Then based on the 
numerical example and comparison by other works, some usability of the proposed methodology are represented. 
Finally, Section 5 draws the conclusions. 
 
2    Fuzzy Set Theory 

A fuzzy set A~  in a universe of discourse X is characterized by a membership function ( )xA~µ  which associates with 
each element x in X a real number in the interval [0,1]. The function value ( )xA~µ  is termed the grade of membership 

of x in A~  [18]. 
 A triangular fuzzy number A~  can be defined by a triplet (l, m, u) shown in Fig.1. The membership function 

( )xA~µ  is defined as:  
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Figure1: A triangular fuzzy number  A~  

 
Let ( )cbaA ,,~

=  and ( )fedB ,,~
=  be two triangular fuzzy numbers. The operations are expressed as follows: 
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3    Proposed Methodology 
 
In this section, steps of proposed methodology are introduced. When the experiments are done with replicates, mean 
and variance of collected data are considered to obtain optimum factor levels. Since in such a problem some of data 
are usually neglected, we cover it by applying Triangular Fuzzy Number (TFN) for considering mean and variance of 
data simultaneously. In robust designs optimum characteristics of a process in a satisfactory region are determined so 
as to reduce variation of responses, this concept is investigated for introducing deviation function. Then using 
desirability function, a two objective problem is constituted. Applying degree of satisfaction from each objective, the 
problem is converted to a single objective model. The algorithm of the proposed methodology is shown in Fig.2, steps 
of the approach are as following: 
 

 
 

Figure 1: The algorithm of the proposed methodology 
 

Step 1: Designing a multi response experiment. 
A multi response experiment is designed which related to a process including more than one response with 

replicates shown in Table 1, where xij is the jth factor level value and yikr is kth response value for the rth replicates in 
ith experiment respectively. 
Step 2: Modeling fuzzy response surface. 

For kth response following steps are done, 
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2.1: Obtain response surface regression for rth replicates. 
 The regression model is 
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where k
rY  expresses rth response surface regression model for kth response which is obtained based on experimental 

data and ε  represents the noise or error observed in the response value. 
 

Table 1: Results of experiments for a multi response process 
Factor levels Responses 

Y1 … Ym Run order X1 … XK yi11 … yi1R … Yim1 … YimR

1 x11 ... x1K y111 … y11R … y1m1 … Y1mR

… … … … … … … … … … … 
n xn1 … xnK yn11 … yn1R … ynm1 … ynmR

 
2.2: Optimize response for each surface regression. 
 Let *

rjx  represent the optimum jth factor level for rth surface regression. 
2.3: Obtain fuzzy response surface regression based on mean and variance of coefficient of the obtained 

surface regressions. 
 Then  
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where kY~  expresses fuzzy response surface regression model for kth response. 
For obtaining fuzzy coefficients a procedure is applied as follows: 
If Rββ ,...,1  are crisp values, then 
2.3.1. Calculate mean of Rββ ,...,1 , so ),...(Mean 1 R

m βββ = . 
2.3.2. Calculate standard deviation of Rββ ,...,1 . 
2.3.3. ),...(Deviation Standard),...(Mean 11 RR

l βββββ −= . 
2.3.4. ),...(Deviation Standard),...(Mean 11 RR

u βββββ += . 
2.3.5. Let ),,(~ uml ββββ = . 

 2.4: Determine optimum fuzzy factor levels.  
Based on results of Step 2.2, the optimum factor levels for kth response are **

1 ,..., Rjkjk xx , we apply the procedure 

mentioned in Section 2.3 to obtain *~
jkx , *~ kY , which are optimum fuzzy jth factor level and optimum fuzzy kth response 

value, respectively. 
Step 3: Constituting pay-off matrix for response values. 

Let mkX k ,...,1,~ )( =  be the optimum fuzzy factor levels of the kth response surface and )(~ XYij
 be jth response 

value by replacing the optimum fuzzy factor levels of  the ith response surface. Then the pay-off matrix for response 
values is constituted in Table 2. 

 
Table 2: Pay-off matrix for response values 

 )(~
1 XY  K  )(~ XYm  

)1(~X  )(~
11 XY  K  )(~

1 XY m  

M  M  O  M  
)(~ mX  )(~

1 XYm  K  )(~ XYmm  
 
Step 4: Constituting pay-off matrix for desirability values of responses.  

Derringer and Suich [6] introduced desirability function for optimization of multi responses. For the Nominal-
The-Best (NTB), Larger-The-Best (LTB), Smaller-The-Best (STB) responses, the desirability functions are  
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where iŷ , id , ymin, ymax and T are predicted value, desirability value, lower limit, upper limit and target of ith response, 
respectively. Meanwhile s, t and r are weights specified by the decision maker. 

After calculating desirability values of each response using (8)-(10), if mkX k ,...,1,~ )( =  are the optimum fuzzy 
factor levels of kth response surface and )(~ Xdij

 is desirability value of jth response value by replacing the optimum 
fuzzy factor levels of ith response surface, then pay-off matrix for desirability values is constituted in Table 3. Thus 
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Table 3: Pay-off matrix for desirability values 

 )(~
1 Xd K  )(~ Xdm  

)1(~X  )(~
11 Xd K  )(~

1 Xd m  

M  M  O  M  
)(~ mX  )(~

1 Xdm K  )(~ Xdmm  
 
Step 5: Defining Deviation function and constituting pay-off matrix for values of deviation.  

In this step, we introduce deviation function. If ),,(~ u
k

m
k

l
kk YYYY = , then let  

.,...,1 mkYYD m
k

u
kk =−=                                                                  (11) 

For the deviation function of the kth response, it is desirable to decrease it so as to robust the experiments. So pay-off 
matrix for deviation values is constituted in Table 4. Thus 
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Table 4: Pay-off matrix for deviation values 

 )(1 XD  K  )(XDm  
)1(~X  )(~

11 XD K  )(~
1 XD m  

M  M  O  M  
)(~ mX  )(~

1 XDm K  )(~ XDmm  
 
Step 6: Defining two objective model for the multi response surface problem. 

 The MRS problem deals with a multi objective decision making (MODM), so we consider a fuzzy MODM 
problem in this paper. Solving these problems is attended by Lai and Hwang [11]. Final model is a two objective 
model expressed as 
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The first objective is introduced from Step 4 and the last one is from Step 5, and 
)( LevelsFactorR  denotes acceptable 

region of experiments. For example, it could be [-1,1].  
Step 7: Converting the two objective models to single objective one. 

For converting the model to single objective, we introduce two functions ))(),(),(()(~ XSXSXSXS uml=  and 

))(),(),(()(~ XTXTXTXT uml= , which indicate the degrees of satisfaction from desirability and robustness, 
respectively.  
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Finally we apply Zimmerman Max-Min operator to convert m objectives to one, which maximizes the 
minimum degree of satisfaction from m objectives.  
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1 is the lower bound for the degree of satisfaction from kth desirability function. By doing the 

same calculation, umlV ,,
2  is the lower bound for the degree of satisfaction from kth deviation function. 

Finally, if w1 and w2 indicate importance weights for desirability and robustness expressed by user, the final 
model with one objective is introduced as follows: 
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The final model is categorized to 3 types of models l, m and u and these models are solved separately. 
Step 8: Determining optimum fuzzy factor levels by solving the single objective model.  

After solving the model for l, m, and u separately, the optimum factor levels are obtained as 
),,...,( **
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4   Numerical Example 
 
Step1: Pignatiello [13] investigated a process, in which there are two response variables Y1, Y2 and three control 
factors x1, x2 and x3. It is assumed that the targets of the responses are 103 and 73 and that the specification regions 
are (97,109), (70, 76) for Y1, Y2, respectively. It was agreed that a simultaneous maximization of Y1 and Y2 would be 
desirable. The experimental data are given in Table 5. 
Step2: For modeling the fuzzy response surface, we apply the following steps for two responses as mentioned before. 

2.1: For the first response, 4 response surface regressions based on 4 replicates are obtained by using 
MINITAB14 as follows: 

.090.0754.2355.1852.0647.2671.103

,743.0393.1282.0174.1719.3494.105

,341.0390.2329.0320.0082.3288.105

,227.0980.2055.0567.0142.3016.105

3121321
1
4

3121321
1

3

3121321
1
2

3121321
1

1

xxxxxxxY

xxxxxxxY

xxxxxxxY

xxxxxxxY

−+−+−=

−++−−=

−+++−=

−+−−−=

 

The R-Sq of these regression models are 93.0%, 99.9%, 92.1% and 91.7%, respectively. 
 

Table 5: The experimental data of  example 
Factor 
levels Responses 

Y1 Y2 
Run 
order x1 x2 x3 

Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 1 Rep. 2 Rep. 3 Rep. 4 
1 -1 -1 -1 109.895 109.759 110.704 109.773 67.6974 67.2374 67.9620 66.9268
2 1 -1 -1 100.192 99.634 100.269 100.600 67.0264 66.1779 66.5758 67.9431
3 -1 1 -1 106.078 105.642 105.670 105.393 72.9353 72.8508 72.5768 72.3754
4 1 1 -1 104.120 104.802 104.203 104.335 72.9878 74.2487 73.9371 73.2824
5 -1 -1 1 113.515 111.121 112.854 106.666 68.2934 68.4693 68.9576 64.7051
6 1 -1 1 98.732 99.357 102.842 94.235 67.0955 63.6112 68.6470 62.4188
7 -1 1 1 103.145 106.959 107.620 103.440 71.6818 76.2657 77.4958 76.3739
8 1 1 1 104.454 105.029 99.786 104.923 76.9003 77.0322 67.9890 75.7691
 
2.2: For each response surface regression, we obtain optimum factor levels:  

* * * * * *
111 121 131 211 221 2310.914, 0.275, 1, 0.319, 1, 1,x x x x x x= = = − = = − = −  
* * * * * *
311 321 331 411 421 4310.656, 1, 1, 0, 0, 0.495.x x x x x x= = = − = = =  

2.3: Applying the proposed procedure, we obtained fuzzy response surface: 

.)069.0,350.0,631.0()080.3,379.2,687.1()589.0,2.0,988.0(
)761.0,142.0,045.1()708.2,148.3,587.3()688.105,867.104,046.104(~

31213

21
1

xxxxx
xxY

−−−++−−+
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For example, to obtain
0

~β ,  
2.3.1. )671.103,494.105,288.105,016.105(Mean0 =mβ . 
2.3.2. 821.0)671.103,494.105,288.105,016.105(Deviation Standard = . 
2.3.3 104.046.)671.103,494.105,288.105,016.105Deviation( Standard)671.103,494.105,288.105,016.105Mean( =−=lβ  
2.3.4. 105.688)671.103,494.105,288.105,016.105Deviation( Standard)671.103,494.105,288.105,016.105Mean( =+=uβ . 
2.3.5. )688.105,867.104,046.104(~

0 =β . 
2.4: Applying the proposed procedure, optimum fuzzy factor levels are as follows 

).121.0,063.0,1(~),897.0,0689.0,7592.0(~),871.0,472.0,0743.0(~ *
31

*
21

*
11 −−=−== xxx  

By substituting the fuzzy factor levels in the fuzzy response surface regression, the value of optimum fuzzy 
response is )482.106,513.105,676.103(~ *1 =Y . 

After similar computations of Step 2 for the second response, we have 

,)301.0,450.0,2012.1()158.1,323.0,511.0()606.0,280.0,046.0(
)576.4,592.3,609.2()345.0,349.0,042.1()783.70,452.70,120.70(~

31213

21
2

xxxxx
xxY

−−+−+−+
+−−+=  

),1,5.0,5.0(~),856.0,644.0,432.0(~),0005.0,0005.0,0001.0(~ *
32

*
22

*
12 −==−−= xxx )305.75,906.72,272.71(~ *2 =Y . 
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Step 3: Pay-off matrix for response values is shown in Table 6.  
 

Table 6: Pay-off matrix for response values 
 )(~

1 XY  )(~
2 XY  

)1(~X  (103.676,105.513,106.482) (68.226,70.502,76.196)  
)2(~X  (104.092,104.676,106.929) (71.272,72.906,75.305)  

 
Step 4: Since the responses are Nominal-The-Best (NTB), the desirability functions are calculated by (8). So  
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After calculating desirability values of each response, pay-off matrix for desirability values is given in Table 7. 
 

Table 7: Pay-off matrix for desirability values 
 

 
Table 8: Pay-off matrix for deviation values 
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Step 5: 
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So pay-off matrix for deviation values is shown in Table 8. Then, we have 
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Step 6: The final model is a two objective model expressed as 
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Step 7: Based on results of Steps 4 and 5, we have 
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Then, the problem is formulated as follows: 
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Finally, if w1=w2=0.5, using (17) the final model is categorized to 3 types: model l, model m and model u. Model l 
consists of variables and constants shown by index l and so on. 
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Step 8: Using microsoft excel solver, which is shown in Fig. 3, the optimum factor levels of model l, m and u are 
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Thus, the optimum fuzzy factor levels are 
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Figure 3: Output of microsoft excel solver 

 
       Based on the above numerical example and comparison the proposed methodology by other works, some 
usability of it is expressed as follows: 
1. In dual response, as a MRS optimization method, based on type of response, set mean a distinct value or range 

and then minimize variation. But in the proposed methodology, we optimize mean and variance simultaneously 
and not set mean a distinct value or range. 

2. Since each replicates could be considered as a separate response, the proposed approach constitutes a regression 
model for them and aggregates regression models for each response by applying fuzzy concepts as a tool for 
considering mean and variance. 

3. The proposed model by showing factor levels as a fuzzy number has a capability to change them at an acceptable 
range based on experimental conditions. 

4. The proposed methodology by using fuzzy response surface regression model considers uncertainty of data 
collected and statistical errors of prediction, so it lead to a bigger decision making region for optimization 
problem. 

5. The proposed approach considers decision making preferences for optimizing mean (desirability function) or 
variance (deviation function) by assigning importance weight to them in final model. 

 
6   Conclusion 
 
Optimization of multi response surface (MRS) in robust designs is applied to determine optimum characteristics of a 
process in a satisfactory region and reduce variation of responses. In this paper, a methodology was proposed for 
optimizing multi response surface in robust designs as a MODM problem by introducing deviation function based on 
robustness concept and using desirability function. The proposed approach optimizes mean and variance 
simultaneously by applying fuzzy set theory. At first, we constituted a regression model based on replicates of a 
response and aggregate regression models so that a fuzzy regression model expresses each response. Triangular fuzzy 
number (TFN) was applied to consider mean and variance of data simultaneously. The obtained regression model 
included fuzzy coefficients which consider uncertainty in the collected data. Then a fuzzy programming was 
expressed to solve the problem which applying degree of satisfaction from each objective, so the problem was 
converted to a single objective model with the goals of increasing desirability and robustness simultaneously. The 
proposed methodology has some capability such as optimizing mean and variance simultaneously without setting 
mean in a distinct value or range, applying fuzzy concepts as a tool for considering mean and variance considering 
uncertainty of data collected and statistical errors of prediction, showing factor levels as a fuzzy number with a 
capability to change them at an acceptable range based on experimental conditions and taking into consideration 
decision making preferences for optimizing mean (desirability function) or variance (deviation function) by assigning 
importance weight to them. In future, other approaches such as loss function could be considered simultaneously with 
desirability function to optimize multi response surface and other fuzzy techniques such as fuzzy inference system 
(FIS) and fuzzy multi criteria decision making (MCDM) could be used. 
 
References 
 
[1]    Akpan, U.O., T.S. Koko, et al., Practical fuzzy finite element analysis of structures, Finite Element in Analysis and Design, 

vol.38, pp.93-111, 2001. 



Journal of Uncertain Systems, Vol.3, No.3, pp.163-173, 2009                                                                                                          173 

[2] Ames, A., N. Mattucci, et al., Quality loss function for optimization across multiple response surfaces, Journal of 
Technology, vol.29, pp.339-346, 1997. 

[3] Antony, J., Multi response optimization in industrial experiments using Taguchi's quality loss function and principal 
component analysis, Quality and Reliability Engineering International, vol.16, pp.3-8, 2000. 

[4] Boyle, C., and W. Shin, An interactive multiple-response simulation optimization method, IIE Transaction, vol.28, pp.453-
462, 1996. 

[5] De Munck, M., D. Moenens, et al., A response surface based optimization algorithm for the calculation of fuzzy envelope 
FRFs of models with uncertain properties, Computers and Structures, in Press. 

[6] Derringer, G., and R. Suich, Simultaneous optimization of several response variables, Journal of Quality Technology, vol.12, 
pp.214-219, 1980. 

[7] Kazemzadeh, R.B., M. Bashiri, et al., A general framework for multi response optimization problems based on goal 
programming, European Journal of Operational Research, vol.189, no.2, pp.421-429, 2008. 

[8] Khuri, A., and M. Conlon, Simultaneous optimization of multiple responses represented by polynomial regression functions, 
Technometrics, vol.23, pp.363–375, 1981. 

[9] Kim, K.J., and D.K.J. Lin, Dual response Surface Optimization: A fuzzy modeling approach, Journal of Quality Technology, 
vol.30, pp.1-10, 1998. 

[10] Lai, Y.J., and S.I. Chang, A fuzzy approach for multi response optimization: An off-line quality engineering problem, Fuzzy 
Sets and Systems, vol.63, pp.117-129, 1994. 

[11] Lai, Y.J., and C.L. Hwang, Fuzzy Multiple Objective Decision Making, Springer-Verlag, 1992 
[12] Montgomery, D.C., Design and Analysis of Experiments, 6th ed., Wiley, 2005. 
[13] Pignatiello, J., Strategies for robust multi response quality engineering, IIE Transaction, vol.25, pp.5-12, 1993. 
[14] Ryan, T.P., Modern Experimental Design, Wiley & Sons, 2007. 
[15] Tong, L.I., and K.L. Hsieh, A novel means of applying artificial neural networks to optimize multi response problem, 

Quality Engineering, vol.13, pp.11-18, 2000. 
[16] Venter G., and Haftka R.T., Using response surface approximations in fuzzy set based design optimization, Structural 

Optimization, vol.18, pp.218-227, 1999. 
[17] Vining, G., A compromise approach to multi response optimization, Journal of Quality Technology, vol.30, pp.309-313, 

1998. 
[18] Zadeh, L.A., Fuzzy sets, Information and Control, vol.8, pp.338-353, 1965. 
[19] Zimmermann, H.J., Fuzzy Sets, Decision Making and Expert Systems, Kluwer Academic Publishing, Boston, 1987. 

  


