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Abstract

Optimization of multi response surface (MRS) in robust designs is applied to determine optimum characteristics of
a process in a satisfactory region and reduce variation of responses. In this paper, a methodology is proposed for
optimizing multi response surface in robust designs, which optimizes mean and variance simultaneously by applying
fuzzy set theory. At first, a method is proposed to constitute a regression model based on replicates of a response and
aggregate regression models so that a fuzzy regression model expresses each response. The obtained regression model
includes fuzzy coefficients which consider uncertainty in the collected data. Then a multi objective decision making
(MODM) problem is used. After introducing deviation function based on robustness concept and using desirability
function, a two objective problem is constituted. At last, a fuzzy programming method is expressed to solve the
problem by applying degree of satisfaction from each objective. Then the problem is converted to a single objective
model with the goals of increasing desirability and robustness simultaneously. The obtained model has the capability
of assigning importance weight for each goal based on decision making preferences. Solving the model, the obtained
optimum factor levels are fuzzy numbers so that a bigger satisfactory region could be provided. Finally, a numerical
example is expressed to illustrate the proposed methodology.
© 2009 World Academic Press, UK. All rights reserved.
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1 Introduction

Response surface methodology (RSM) is a collection of tools for fitting a surface to special set of data, and
determining optimum factor levels is also part of methodology and uses a regression model for optimization of a
problem [12, 14].

Kim and Lin [9] proposed a fuzzy modeling approach to optimize the dual response system. The proposed
method identifies a set of process parameter conditions to simultaneously maximize the degree of satisfaction with
respect to the mean and the standard deviation responses. Venter and Haftka [16] used fuzzy concepts for modeling
uncertainty typical of aircraft industry. It is shown that, for the example problem considered, the fuzzy set based
design is superior. Akpan et al. [1] proposed a practical approach for analyzing the response of structures with fuzzy
parameters. RSM is used to approximate the fuzzy element response quantity at the normal point. De Munck et al. [5]
considered a response surface based optimization techniques for the calculation of envelope frequency response
function (FRFs) of imprecisely structures using the interval and fuzzy finite element method.

In practice, multiple responses and different types of scenarios are usually applied [2, 4, 17]. Derringer and
Suich [6] defined a desirability function to transform several response variables into a single response. Khuri and
Conlon [8] proposed an algorithm for the simultaneous optimization of several response functions that depend on the
same set of controllable variables and are adequately represented by polynomial regression models. They firstly
defined a distance function by considering the ideal solution, and then determined the optimal condition by
minimizing this function. Tong and Hsieh [15] applied artificial neural network (ANN) to find the optimal solution to
the multi response type of problem. Antony [3] utilized principle component analysis (PCA) to analyze multi
response problems. Kazemzadeh et al. [7] proposed a general framework in MRS problems according to some
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existing works and some types of related decision makers and attempts to aggregate all of characteristics in one
approach.

Lai and Chang [10] proposed a fuzzy multi response optimization procedure to search an appropriate
combination of process parameter setting. At first, fuzzy regression models are used to model the relations between
process parameters and responses, and then the possibility distributions of prediction responses are obtained. They
proposed a strategy of optimizing the most possible response values and minimizing the deviation from the most
possible values.

Optimization of multi response surface (MRS) in robust designs is applied to determine optimum characteristics
of a process in a satisfactory region and reduce variation of responses. This paper proposes a methodology for
optimizing multi response surface in robust designs which optimizes mean and variance simultaneously by applying
fuzzy set theory. Since in such a problem some of data are usually neglected, we cover it by applying fuzzy set theory.
At first, a method is proposed to constitute a regression model based on replicates of a response and aggregate
regression models so that a fuzzy regression model expresses each response. Triangular fuzzy number (TFN) is
applied for considering mean and variance of data simultaneously. The obtained regression model includes fuzzy
coefficients which consider uncertainty in the collected data. After introducing deviation function based on robustness
concept and using desirability function, a two objective problem is constituted. At last, a fuzzy programming is
expressed to solve the problem which applies degree of satisfaction from each objective. The problem is converted to
a single objective model with the goals of increasing desirability and robustness simultaneously and capability of
assigning importance weight for each one based on decision making preferences. After solving the model, obtained
optimum factor levels are fuzzy numbers so that a bigger satisfactory region could be provided.

The paper is organized as follows. Section 2 reviews the fuzzy set theory. Section 3 introduces the proposed
methodology. In Section 4, a humerical example is given to illustrate the proposed methodology. Then based on the
numerical example and comparison by other works, some usability of the proposed methodology are represented.
Finally, Section 5 draws the conclusions.

2 Fuzzy Set Theory

A fuzzy set A in a universe of discourse X is characterized by a membership function y;(x) which associates with
each element x in X a real number in the interval [0,1]. The function value #;(x) is termed the grade of membership
of xin A [18].

A triangular fuzzy number A can be defined by a triplet (I, m, u) shown in Fig.1. The membership function
u;(x) is defined as:

0, x<|
x=1
P I<x<m 1)
m_
#5(x)= U—X
, mM<x<u
u-m
0, X > U.

—_—
Figurel: A triangular fuzzy number A

Let A= (a, b, C) and B = (d e f ) be two triangular fuzzy numbers. The operations are expressed as follows:
A®B=(a,b,c)®(d,e, f)=(a+d,b+ec+f), ()
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A-B=(ab,c)-(d,e f)=(a—f,b—ec—d), 3)
A®B=(a,b,c)(d,e f)=(ad,bec.f), (4)
A’/é:(a,b,c)/(d,e,f)=(3,g,§]. (5)

3 Proposed Methodology

In this section, steps of proposed methodology are introduced. When the experiments are done with replicates, mean
and variance of collected data are considered to obtain optimum factor levels. Since in such a problem some of data
are usually neglected, we cover it by applying Triangular Fuzzy Number (TFN) for considering mean and variance of
data simultaneously. In robust designs optimum characteristics of a process in a satisfactory region are determined so
as to reduce variation of responses, this concept is investigated for introducing deviation function. Then using
desirability function, a two objective problem is constituted. Applying degree of satisfaction from each objective, the
problem is converted to a single objective model. The algorithm of the proposed methodology is shown in Fig.2, steps
of the approach are as following:

Designing a multi response experiment

!

Modeling fuzzy Response Surface

‘ Obtaining Response Surface Regression for each replicates ‘

v

Response optimization for each surface regression

v

‘ Obtaining fuzzy Response Surface Regression based on Mean and variance of data ‘

v

‘ Determination Optimum fuzzy factor levels ‘

v

Constituting pay-off matrix for response values

v

Constituting pay-off matrix for desirability values of responses

v

Defining Deviation function and constituting pay-off matrix for values of deviation

v

Defining two objective model for the Multi Response Surface problem

v

Converting the two objective model to single objective one

'

Determining optimum fuzzy factor levels by solving the single objective model

Figure 1: The algorithm of the proposed methodology

Step 1: Designing a multi response experiment.

A multi response experiment is designed which related to a process including more than one response with
replicates shown in Table 1, where x; is the jth factor level value and yj is kth response value for the rth replicates in
ith experiment respectively.

Step 2: Modeling fuzzy response surface.

For kth response following steps are done,
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2.1: Obtain response surface regression for rth replicates.
The regression model is

m m

Y = Bt D B+ 2 B BIxxX 6T =12,R, (6)
i=1 i=1 i<j

where Y expresses rth response surface regression model for kth response which is obtained based on experimental

data and & represents the noise or error observed in the response value.

Table 1: Results of experiments for a multi response process

Factor levels Responses
Run order Y Y
X4 .. Xk L i
Yisr | . | ViR Yim. | o | Yimr
1 X11 X1k Vi1 o Y11r e Yim1 v | Y
n Xn1 E XnK ynll res yan s ynml s ynmR

2.2: Optimize response for each surface regression.
Let x:j represent the optimum jth factor level for rth surface regression.
2.3: Obtain fuzzy response surface regression based on mean and variance of coefficient of the obtained

surface regressions.
Then

fk :EO_FZBiXi+zﬁiixi2+zzﬁijxixj+g’ (7)
i=1 i=1 i<j
where Y* expresses fuzzy response surface regression model for kth response.
For obtaining fuzzy coefficients a procedure is applied as follows:
If B,,..., B are crisp values, then

2.3.1. Calculate mean of g,,..., 5., S0 " = Mean(f,.,... ;) -

2.3.2. Calculate standard deviation of 3,,..., B -

2.3.3. p' = Mean(p,,...5;) — Standard Deviation(,,...3,) -

2.3.4. p* = Mean(B,,...;) + Standard Deviation(,,...3;) -

2.35. Let g=(8', 5", p")-

2.4: Determine optimum fuzzy factor levels.

Based on results of Step 2.2, the optimum factor levels for kth response are X jeseees X+ WE apply the procedure
mentioned in Section 2.3 to obtain Koo v*", which are optimum fuzzy jth factor level and optimum fuzzy kth response

value, respectively.
Step 3: Constituting pay-off matrix for response values.
Let X® k =1,.,m be the optimum fuzzy factor levels of the kth response surface and \'fij(X) be jth response

value by replacing the optimum fuzzy factor levels of the ith response surface. Then the pay-off matrix for response
values is constituted in Table 2.

Table 2: Pay-off matrix for response values
Y1(X) Y (X)
X® Yu(X) Yin (X)
XO ] VL0 | | ()

Step 4: Constituting pay-off matrix for desirability values of responses.
Derringer and Suich [6] introduced desirability function for optimization of multi responses. For the Nominal-
The-Best (NTB), Larger-The-Best (LTB), Smaller-The-Best (STB) responses, the desirability functions are



Journal of Uncertain Systems, Vol.3, No.3, pp.163-173, 2009 167

(yl yminJ' ymmgylsTyszo
T- ymin
R t
di: [yi_ymaxj’ Tsyigymax'tzo (8)
T- ymax
Oa yl ymin or y| > ymax'
O! y| < ymin
di = (MJ ' ymin < yi < ymax’ r= O (9)
Ymax ~ Ymin
11 yi 2 ymax'
1’ yi < ymin
di = MJ ’ ymin Syi Symax’rzo (10)
Ymin = Ymax
01 9i 2 ymax'

where §.,d,, Ymin, Ymax @nd T are predicted value, desirability value, lower limit, upper limit and target of ith response,
respectively. Meanwhile s, t and r are weights specified by the decision maker.

After calculating desirability values of each response using (8)-(10), if X ® k =1,...,m are the optimum fuzzy
factor levels of kth response surface and g L(X) is desirability value of jth response value by replacing the optimum
fuzzy factor levels of ith response surface, then pay-off matrix for desirability values is constituted in Table 3. Thus
v] «=ULU0 U = dkk’ L = (L, L. L) = Mln(dlk' o mk)

Table 3: Pay-off matrix for desirability values

d,(X) d_(X)
X0 | d,x) | ... d,,, (X)
xo [ d,x) | .. d,,(X)

Step 5: Defining Deviation function and constituting pay-off matrix for values of deviation.
In this step, we introduce deviation function. If y_= (v, v, v2), then let

D =Y -Y" k=1,. (11)
For the deviation function of the kth response, it is desirable to decrease it so as to robust the experiments. So pay -off
matrix for deviation values is constituted in Table 4. Thus p = (P! ,P",P")=D,.» Q, =(Q!,Q"",Q") = Max(D,,...., D, ) -

Table 4: Pay-off matrix for deviation values

D,(X) D, (X)
X | Dy(X) D, (X)
X™ | D, (X) D, (X)

Step 6: Defining two objective model for the multi response surface problem.

The MRS problem deals with a multi objective decision making (MODM), so we consider a fuzzy MODM
problem in this paper. Solving these problems is attended by Lai and Hwang [11]. Final model is a two objective
model expressed as
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Max {Fuzzy DesirabilityFunction}
Min {DeviationFunction}
st X € R(Factor Levels) *
The first objective is introduced from Step 4 and the last one is from Step 5, and R

(12)

denotes acceptable

(Factor Levels)
region of experiments. For example, it could be [-1,1].
Step 7: Converting the two objective models to single objective one.

For converting the model to single objective, we introduce two functions §(x) =(S'(X),s™(X),s"(X)) and
T(X)=(T'(X),T"(X),T"(X)) , which indicate the degrees of satisfaction from desirability and robustness,
respectively.

If d,(X)=(d,,d",d?), then for the kth response, we have

0, dime(x) < Ly

simex) = SOOI e cgpme ) <upee 3
1, k k d,™(X)=Uum,
1 DI (X) < P

T () = BT B0 g < ppes ) < i a9
o Dmx)=Qne

So, it is desirable to maximize these two functions S;,T,', then S, T,", and finally S’ T, separately to obtain
S, =(S!,S",S"),T, =(T!,T,",T.) . For this purpose, we solve
Max §k(X) k=1..,m
Max ﬂ(x) k=1,..,m (15)
st. X € Riractor Levels)-

Finally we apply Zimmerman Max-Min operator to convert m objectives to one, which maximizes the
minimum degree of satisfaction from m objectives.

Let Min S, (X)=V, =(V,,V,",V),Min T,(X)=V, =(V,,V,",v,"). Then our problem is formulated as follows:

Max V,
e (16)
sit. x € R(Factor Levels)*
So,
mu glmuexy - hmu mu mu mu mu mu mu mu mu m,u mu
vpme < QOO =L g ma gy e s s g ma _imey y gime ) yme g ime _ Lmo) s o

Ul|<,m,u _ le,m,u
which guarantees v,'™" is the lower bound for the degree of satisfaction from kth desirability function. By doing the
same calculation,v,"™* is the lower bound for the degree of satisfaction from kth deviation function.

Finally, if w; and w, indicate importance weights for desirability and robustness expressed by user, the final
model with one objective is introduced as follows:

Max  wV,"™ +w,V, ™

st. dM™(X) =V MUl - ey s e k=1 m
D;mu(x) +V2I,m,u (Qil(‘m,u _ Pkl,m‘u) < Qii,m,u ,k =l,..., m
w,+w, =1
O Svll‘m,u’vzl,m.u Sl, X € R(Factor Levels)*

The final model is categorized to 3 types of models I, m and u and these models are solved separately.
Step 8: Determining optimum fuzzy factor levels by solving the single objective model.
After solving the model for I, m, and u separately, the optimum factor levels are obtained as
X, = (% e X )y Xo = (™ XY, X = (X ..., x4) » Where K is the number of factor levels.

A7)

So the optimum fuzzy factor levels are X" = (X,,...., %, ) :((xl'*,xlm*,xf* pee (X X XY )

K1 7K 1 K
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4 Numerical Example

Stepl: Pignatiello [13] investigated a process, in which there are two response variables Y;, Y, and three control
factors x4, X, and xs. It is assumed that the targets of the responses are 103 and 73 and that the specification regions
are (97,109), (70, 76) for Y4, Y,, respectively. It was agreed that a simultaneous maximization of Y; and Y, would be
desirable. The experimental data are given in Table 5.

Step2: For modeling the fuzzy response surface, we apply the following steps for two responses as mentioned before.

2.1: For the first response, 4 response surface regressions based on 4 replicates are obtained by using

MINITAB14 as follows:

Y,! =105.016 — 3.142x, — 0.567x, — 0.055X, + 2.980x,X, — 0.227X,X,,
Y, =105.288 — 3.082x, + 0.320X, + 0.329X, + 2.390%,X, — 0.341x,X,,
Y, =105.494 — 3.719x, —1.174x, + 0.282x, +1.393x,X, — 0.743X,X,,

Y} =103.671— 2.647x, + 0.852x, —1.355x, + 2.754X,X, — 0.090x,X,.
The R-Sq of these regression models are 93.0%, 99.9%, 92.1% and 91.7%, respectively.

Table 5: The experimental data of example

Factor
Responses
RuUN levels
order Y1 Y,
Xp | X2 | X3

Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 1 Rep. 2 Rep. 3 Rep. 4

-1]-1]-1]109.895 | 109.759 | 110.704 | 109.773 | 67.6974 | 67.2374 | 67.9620 | 66.9268

1 |-1]-1]100.192 | 99.634 100.269 | 100.600 | 67.0264 | 66.1779 | 66.5758 | 67.9431

-1 |1 |-1]106.078 | 105.642 | 105.670 | 105.393 | 72.9353 | 72.8508 | 72.5768 | 72.3754

104.120 | 104.802 | 104.203 | 104.335 | 72.9878 | 74.2487 | 73.9371 | 73.2824

113,515 | 111.121 | 112.854 | 106.666 | 68.2934 | 68.4693 | 68.9576 | 64.7051

98.732 99.357 102.842 | 94.235 67.0955 | 63.6112 | 68.6470 | 62.4188

103.145 | 106.959 | 107.620 | 103.440 | 71.6818 | 76.2657 | 77.4958 | 76.3739

0N WIN P
[ERN
[ERN
1
=

104.454 | 105.029 | 99.786 | 104.923 | 76.9003 | 77.0322 | 67.9890 | 75.7691

2.2: For each response surface regression, we obtain optimum factor levels:
Xy, =0.914, %, = 0.275, X5, = -1, %, =0.319, X, = -1, X5, =1,
Xy, = 0.656, Xgp =1, Xa5, = —1, X3, =0, X, = 0, X5, = 0.495.
2.3: Applying the proposed procedure, we obtained fuzzy response surface:
Y = (104.046,104.867,105.688) + (~3.587,~3.148,—2.708) X, + (~1.045,-0.142,0.761)x,
+(—0.988,-0.2,0.589)x, + (1.687,2.379,3.080) x, X, + (—0.631,—0.350,—0.069) X, X.
For example, to obtain g,
2.3.1. B = Mean(105.016,105.288,105.494,103.671) .
2.3.2. Standard Deviation(105.016,105.288,105.494,103.671) = 0.821 .
233 ' = Mean(105.016,105.288,105.494,103.671) — Standard Deviation(105.016,105.288,105.494,103.671) = 104.046.
2.3.4. B* = Mean(105.016,105.288,105.494,103.671) + Standard Deviation(105.016,105.288,105.494,103.671) =105.688 .
2.3.5. j3, =(104.046,104.867,105.688) .
2.4: Applying the proposed procedure, optimum fuzzy factor levels are as follows
X,, = (0.0743,0.472,0.871), X,, = (-0.7592,0.0689,0.897), X;, = (-1,-0.063,0.121).
By substituting the fuzzy factor levels in the fuzzy response surface regression, the value of optimum fuzzy

response is Y = (103.676,105.513,106.482) .

After similar computations of Step 2 for the second response, we have
Y ? =(70.120,70.452,70.783) + (—1.042,—0.349,0.345)x, + (2.609,3.592,4.576)x,
+(~0.046,0.280,0.606)x, + (—0.511,0.3231.158)x,X, + (~1.2012,-0.450,0.301) X, X,

%, = (~0.0001,-0.0005,0.0005), X;, = (0.432,0.644,0.856), X;, = (~0.5,0.51), Y 2 = (71.272,72.906,75.305) .
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Step 3: Pay-off matrix for response values is shown in Table 6.

Table 6: Pay-off matrix for response values

Y.(X) Y,(X)
X @ | (103.676,105.513,106.482) | (68.226,70.502,76.196)
X @ | (104.092,104.676,106.929) | (71.272,72.906,75.305)

Step 4: Since the responses are Nominal-The-Best (NTB), the desirability functions are calculated by (8). So

(y1_97j, 97 <9, <103,520 (3’2_70) 70<9,<73,520
103-97 73-70
~ t o t
d, = ¥, -109 , 103<§,<109,t>0 d,= ¥, =76 , 73<9,<76,t>0
103-109 73-76
0, §,<103 or §,>109, |0, §,<73 or §,>T6.

After calculating desirability values of each response, pay-off matrix for desirability values is given in Table 7.

Table 7: Pay-off matrix for desirability values
d,(X) d,(X)

X @ (0.420,0.581,0.887) (0,0,0.167)

X @ | (0.345,0.721,0.818) (0.232,0.424,0.969)

Table 8: Pay-off matrix for deviation values
D, (X) D, (X)

X® | (-0.681,0.537,2.687) (0.450,0.523,1.701)

X @ (0.817,1.797,2.383) (0.593.1.127,1.500)

Then,
= (UlI Umuh) = Jll =(0.420,0.581,0.887), I:1 =(0.0.345,0.581,0.818),

U,
U, =(0.232,0.424,0.969), L, =(0,0,0.167).

Step 5:
P D, =0.821+0.440x, +0.903x, +0.789x, + 0.701x, X, + 0.281x,X,,
D, =0.331+0.694x, +0.984x, +0.326x, + 0.834x,X, + 0.751x,X,.
So pay-off matrix for deviation values is shown in Table 8. Then, we have
I5l =(-0.681,0.537,2.687), 61 =(0.817,1.797,2.383), |52 =(0.450,0.5231.500), 62 =(0.5931.127,1.701) .
Step 6: The final model is a two objective model expressed as
Max  {d,(X),d,(X)}
Min  {D,(X),D,(X)}
st X ={X,X,, X}e[-11].
Step 7: Based on results of Steps 4 and 5, we have
U, = (0.420,0.581,0.887), L, =(0.0.345,0.581,0.818),U, = (0.232,0.424,0.969), L, =(0,0,0.167).
Applying (13),
0, d; ™ (X) < (0.345,0.581,0.818)
d; ™" (X)—(0.345,0.581,0.818)

SI™(X) = , (0.345,0.581,0.818) < d,™"(X) < (0.420,0.721,0.887)
(0.420,0.721,0.887) — (0.345,0.581,0.818)

L d; ™ (X) > (0.420,0.721,0.887),
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0, di™(X) < (0,0,0.167)

S1m () = d™(X)-(0,0,0.167) |
(0.232,0.424,0.969) — (0,0,0.167)

1 di™ (X) > (0.232,0.424,0.969),

(0,0,0.167) < d)™ (X) < (0.232,0.424,0.969)

and
P, =(-0.681,0.537,2.687), Q, =(0.817,1.797,2.383), P, = (0.450,0.5231.500), Q, =(0.5931.127,1.701).
Applying (14),
1, D™ (X) < (-0.681,0.537,2.687)
(0.817,0.1797,2.383) — D, ™" (X)

T = . (~0.681,0.537,2.687) < D™ (X) < (0.817,0.1797,2.383)
(0.817,0.1797,2.383) - (—0.681,0.537,2.687)
0 D™ (X) > (0.817,0.1797,2.383),
L DJ™(X) < (0.450,0.5231.500)
_p!mu
T,™(X)= (0.5931.1271.701) = B, " (X) (0.450,0.523,1.500) < D)™ (X) < (0.593,1.127,1.701)

(0.593,1.127,1.701) — (0.450,0.523,1.500) '
0, Dy™ (X)>(0.5931.127,1.701).
So

Max {S,(X),S,(X)}

Max {T,(X), T,(X)}

st. X ={X,X,, %, }e[-11].
Then, the problem is formulated as follows:

Max \71

Max \72

st. X ={X,X,, %} e[-11].
Finally, if w;=w,=0.5, using (17) the final model is categorized to 3 types: model I, model m and model u. Model |
consists of variables and constants shown by index | and so on.

Model I: Model m:
Max 0.5xV,' +0.5xV, Max 0.5xV," +0.5xV,"
st d}(X)-V,'(0.420-0.345) > 0.345 st. d"(X)-V,"(0.581-0.721) > 0.721
dy(X)-V, (0.232-0)>0 d"(X)-V,"(0.424-0)>0
D/ (X)+V, (0.817-0.681) < 0.817 D"(X)+V,"(1.797 - 0.534) <1.797
D;(X)+V, (0.593-0.450) < 0.593 DY'(X)+V,"(1.127 -0.523) <1.127
w, +w, =1 w, +w, =1
0<V,)\V, <1, X ={x, X}, xi}e[-11]. 0<V,™ V" <L X ={x",x]", x"}e[-1,1].
Model u:

Max 0.5xV," +0.5xV,’
st.  d;(X)-V,"(0.887-0.818) > 0.818
d, (X)-V, (0.967 —0.167) > 0.167
D, (X)+V,'(2.383-2.687) < 2.383
D, (X)+V,' (1.701-1.450) <1.450
W, +w, =1
0V, V) <L X ={x/, %5, x; } e [-11].
Step 8: Using microsoft excel solver, which is shown in Fig. 3, the optimum factor levels of model |, m and u are
X =(x", %, X)) = (-0.645,0.215,-1), X = (X, xJ", xI") = (-0.578,1,-0.843), X = (X", 3", x§") = (-11,-1).
Thus, the optimum fuzzy factor levels are

~% o~

X" =(X%,%),% =(-1-0.645-0578),%; = (0.21511), %, = (-1,—1-0.843).
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A B © [} E F G H J K L ] M
1
2
3
4 Factor Level in Max Target 1 0.7635 Target 2 1.0000 Target 3 0.5001
5 x1 -1 1 x1 0.6448 x1 0.5784 x1 -1.0000
B x2 -1 1 x2 0.2148 x2 1.0000 x2 1.0000
7 %3 -1 1 X3 -1.0000 X3 £0.8433 x3 -1.0000
8 vl 1.0000 vl 1.0000 vl 0.0001
9 Deg. of Sat. Min Max V2 0.5270 V2 1.0000 v 1.0000
10 vi 0 1
11 v2 0 1 Model / RHS Model m RHS Model RHS
12 0.3453 | Constraintl 0.7781 | Constraintl 0.5968 | Constraintl
13 [ w1 | 05 ] 0.0000 |Constrainz 0.7770 | Constrainz 0.8159 | Constrainz
14 0.8165 | Constraint3 1.7968 | Constraint3 0.2266 | Constraint3
15 0.2139 | Constraintd 1.1268 | Constraintd 0.4136 | Constraintd
16
17

Figure 3: Output of microsoft excel solver

Based on the above numerical example and comparison the proposed methodology by other works, some
usability of it is expressed as follows:

1. In dual response, as a MRS optimization method, based on type of response, set mean a distinct value or range
and then minimize variation. But in the proposed methodology, we optimize mean and variance simultaneously
and not set mean a distinct value or range.

2. Since each replicates could be considered as a separate response, the proposed approach constitutes a regression
model for them and aggregates regression models for each response by applying fuzzy concepts as a tool for
considering mean and variance.

3. The proposed model by showing factor levels as a fuzzy number has a capability to change them at an acceptable
range based on experimental conditions.

4. The proposed methodology by using fuzzy response surface regression model considers uncertainty of data
collected and statistical errors of prediction, so it lead to a bigger decision making region for optimization
problem.

5. The proposed approach considers decision making preferences for optimizing mean (desirability function) or
variance (deviation function) by assigning importance weight to them in final model.

6 Conclusion

Optimization of multi response surface (MRS) in robust designs is applied to determine optimum characteristics of a
process in a satisfactory region and reduce variation of responses. In this paper, a methodology was proposed for
optimizing multi response surface in robust designs as a MODM problem by introducing deviation function based on
robustness concept and using desirability function. The proposed approach optimizes mean and variance
simultaneously by applying fuzzy set theory. At first, we constituted a regression model based on replicates of a
response and aggregate regression models so that a fuzzy regression model expresses each response. Triangular fuzzy
number (TFN) was applied to consider mean and variance of data simultaneously. The obtained regression model
included fuzzy coefficients which consider uncertainty in the collected data. Then a fuzzy programming was
expressed to solve the problem which applying degree of satisfaction from each objective, so the problem was
converted to a single objective model with the goals of increasing desirability and robustness simultaneously. The
proposed methodology has some capability such as optimizing mean and variance simultaneously without setting
mean in a distinct value or range, applying fuzzy concepts as a tool for considering mean and variance considering
uncertainty of data collected and statistical errors of prediction, showing factor levels as a fuzzy number with a
capability to change them at an acceptable range based on experimental conditions and taking into consideration
decision making preferences for optimizing mean (desirability function) or variance (deviation function) by assigning
importance weight to them. In future, other approaches such as loss function could be considered simultaneously with
desirability function to optimize multi response surface and other fuzzy techniques such as fuzzy inference system
(FIS) and fuzzy multi criteria decision making (MCDM) could be used.
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