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Abstract 
 

Production scheduling, with the objective of minimizing the makespan, is an important task in manufacturing 
systems. In the past, the processing time for each job was usually assumed to be exactly known, but in many real-
world applications, processing times may vary dynamically due to human factors or operating faults. Fuzzy 
programming theory has been developed for flow shop scheduling problems with uncertain processing times. In this 
article, the processing times are described by triangular fuzzy numbers. A new heuristic algorithm is also developed 
and presented which draws upon Johnson’s algorithm, the interval numbers concept, and an improved version of 
McCahon & Lee’s algorithm. Numerical examples will be presented to show the effectiveness of the proposed 
algorithm as compared with McCahon and Lee’s algorithm. 

 © 2009 World Academic Press, UK. All rights reserved. 
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1 Introduction 
 
Flow-shop scheduling problems frequently occur in real-world application environments [1]. In a flow shop, jobs are 
processed by a series of machines in a predefined order. Most of the literature on flow-shop problems deals with the 
makespan criterion: completing the last job as soon as possible. 

The flow-shop problem has been proved to be NP-hard [2], which has prompted the development of many 
heuristics to provide a valuable and quick solution [3, 4, 5, 6, 7]. 

Here, the flow-shop problem with two machines is illustrated (Recall that the problem is strongly NP-hard for 
3≥m ) [2]: 
A set of jobs {1,2,..., }n , available at time zero has to be processed in a shop with m= 2 machines, A and B. Each 

job is processed first on A and next on B. No machine can process more than one job at a time, no job preemption is 
allowed, all setup times are included in the job processing times, and there is unlimited intermediate storage between 
the machines. The problem is to determine a job sequence (permutation) that minimizes the completion time of the 
last job, also known as the makespan. Assume that ka  and kb  denote the deterministic processing times of job k on 
machines A and B, respectively. In a breakthrough paper on scheduling theory, Johnson [8] proposed to apply the rule: 

                                 job i precedes job j if: ),min(),min( jiij baba >                                                                     (1) 
He showed that it yields a transitive ordering among the jobs, and every job sequence satisfying (1) has the 

minimum makespan. 
This problem has held the attention of many researchers and has been extensively studied in literatures [9, 10]. A 

survey paper about the flow-shop problem was presented by Dudek et al. [11]. Morton and Pentico published a book 
on this problem [1]. 

Most of the methods proposed in the literature assume that all of the time parameters and relevant data are 
already exactly known. 

A large number of deterministic scheduling algorithms have been proposed over the last decades to deal with 
flow shop scheduling problems with various objectives and constraints [12]. However, it is often difficult to apply 
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those algorithms to real-life flow shop problems. For example, in practice the processing times of jobs could be 
uncertain due to incomplete knowledge or uncertain environment, which implies that there exist various external 
sources and types of uncertainty. Several theories such as fuzzy-set theory [13, 14], probability theory, D-S theory 
[15], and approaches based on certainty factors [16], have been developed to account for uncertainty. Among them, 
fuzzy-set theory is more and more frequently used in intelligent control because of its simplicity and similarity to 
human reasoning [17]. This theory has been applied to many fields such as manufacturing, engineering, diagnosis, 
economics, among others [14, 18]. Although fuzzy set concepts are used mainly in linguistic domains, they can also 
be used in numerical domains by assigning each number a membership value. Examples are Gazdik's fuzzy network 
planning [19], Klein's fuzzy shortest path [20], Nasution's fuzzy critical path [21], and Hong et al.'s fuzzy LPT 
scheduling [22]. 

A number of fuzzy flow-shop models with heuristics have been proposed in the literature over the past few years 
[23, 24, 25]. Ishii et al. [26] investigate scheduling problems with fuzzy due-dates, that is, a generalized two machine 
open shop scheduling problem with fuzzy due-dates and an identical machine scheduling problem with fuzzy due-
dates. Ishibuchi et al. [27] examined two fuzzy flow shop problems with fuzzy due dates. One fuzzy flowshop 
scheduling problem is to maximize the minimum grade of satisfaction over given jobs, and the other is to maximize 
the total grade of satisfaction. McCahon and Lee [28] proposed an algorithm to obtain the job sequence with 
minimum makespan for a two-machine flow shop problem with triangular fuzzy processing times. Yao and Lin [29] 
have proposed a fuzzy flow shop sequencing model based on statistical data. 

Temiz and Erol [30] presented the branch-and-bound algorithm for a three-machine flow shop problem with 
fuzzy processing time. 

In this paper, we consider a two-machine flow shop with triangular fuzzy processing time. The objective is to 
find a job sequence with minimum makespan. McCahon and Lee [28] proposed an algorithm for this problem, but 
their algorithm failed to find the optimal solution in some situations. Therefore, we intend to improve McCahon & 
Lee’s work by applying the nearest interval approximation of the fuzzy processing times. This will expectedly lead to 
improved performance of the scheduling procedure. 

The paper is organized as follows. In Section 2, we outline the fuzzy flow shop problem and the related fuzzy set 
operations. McCahon and Lee’s algorithm is described in Section 3. In Section 4, we give our proposed algorithm. In 
Section 5, an extension numerical study will be carried out to illustrate the effectiveness of the proposed algorithm. 
More examples are discussed in Section 6.  Finally, in Section 7, we conclude and discuss future research. 

 
2  Problem Definition 

 
2.1  Review of Related Fuzzy Set Operations 

 
In this section, fuzzy set operations used in this paper are reviewed. Triangular membership functions are used here to 
represent the fuzzy processing time of tasks. A triangular fuzzy membership function can be denoted by ( )cbaP ,,~

=  

(Fig. 1). The membership value of x  represents how likely x  is to occur given P~ . It is denoted by ( )p xµ %
, and is 

calculated according to (2). 

0,

( ) ,

, .

p
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x ax a x b
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c x b x c
c b
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⎧
⎪ ≤ ≥
⎪ −⎪= < ≤⎨ −⎪

−⎪ < <⎪ −⎩

%
                                                          (2) 

Let us introduce the notion of all λ -cuts of a fuzzy set P~ , because it will be used in our algorithm. Theλ -cuts 
of P~ , denoted by λP~ , is a crisp set consisting of those elements in P~  whose membership values exceed levelλ : 

( ){ }λµλ ≥= xxP P~|~ .                                                                               (3)  

It means that λP~ consists of elements in P~ with a degree of at leastλ . 
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Fig. 1: Membership function of the fuzzy set P~  describing the processing time of a job on a machine. 

 
2.2  Fuzzy Flow Shop and Computation of Fuzzy Makespan 

 
One kind of scheduling problem that frequently occurs in real world applications is the flow shop problem. Consider 
n different jobs that must pass through m processing machines. A machine can process one job at a time and we 
assume that the order of the jobs cannot be changed once the processing has begun. Given the time required for 
processing of each job on each machine, the question is in what order the jobs should be fed into the first machine in 
order to minimize the makespan (the total time required to process all the jobs). 
  Suppose we have a simple flow shop problem with jobs and only two machines. The objective is to find a job 
sequence which will achieve the minimum makespan. A solution sequence of jobs is a “permutation” of n,...,2,1 , and 
we use an n-dimensional vector ( )nxxx ,...,, 21  to represent the job sequence, where ix  represents the ith job, 

ni ,...,1= . 

Let jxi
P ,
~  and jxi

C ,
~  be the fuzzy processing time and fuzzy completion time of job ix  on machine j, j=1,2, 

respectively, and that all fuzzy times have the triangular membership function. To calculate the completion time for 
each job, two basic fuzzy arithmetic operations are involved: fuzzy addition, denoted by +~ , and fuzzy max, denoted 
by xa~m . Let C~  be the minimum makespan. If ( )1111 ,,~ cbaP = and ( )2222 ,,~ cbaP = , then:  

( )21212121 ,,~~~ ccbbaaPP +++=+  ,                                                               (4) 

( ) ( ) ( ) ( )( )21212121 ,max,,max,,max~,~xa~m ccbbaaPP = .                                                (5) 
The mathematical formulation of the problem is as follows: 
Find a sequence of jobs to achieve minimum makespan C~ , such that: 

1 1,1 ,1,x xC P=% %                                                                                 (6) 

niforPCC
iii xxx ,...,3,2,~~~~

1,1,1, 1
=+=

−
,                                                          (7) 

mjforPCC jxjxjx ,...,3,2~~~~
,1,, 111

=+= − ,                                                           (8) 

( ) mjniforPCCC jxjxjxjx iiii
,...,3,2,,...,3,2~~~,~xa~m ,1,,, 1

==+= −−
.                                       (9) 

The representation theorem in the fuzzy set theory states that any fuzzy set P~  can be decomposed into a series 
of its λ -cuts, i.e., 

[0,1]
P Pλ

λ
λ

∈
=% U . Conversely, any fuzzy set can be derived from a family of nested sets, providing 

that if 21 λλ f , then 21 λλ pP ⊂ . This theorem implies that problems formulated in the framework of fuzzy sets can 
be solved by transforming these fuzzy sets into their corresponding families ofλ -cuts. The partial results derived 
from all λ -cuts can be merged to obtain a solution to the original problem formulated with fuzzy sets. 

Fuzzy makespan C~  can be calculated by considering all of its λ -cuts, i.e., λC , 10 ≤≤ λ . To calculate a 
makespan atλ -cuts, for simplicity, we use a triplet ( )uml ,,  to represent it, where l and u, respectively, represent the 

lower and upper bounds of the membership function of C~ , and m represent its modal point. 
Yager index is used to evaluate fuzzy makespan C~  obtained in McCahon and Lee’s algorithm as presented here: 

( ) ( )∫ +=
1

02
1~ λdCCCY ul

.                                                                            (10) 
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3  McCahon and Lee’s Algorithm 
 

For a two-machine flow shop problem, Johnson’s algorithm (see equation 1) gives an optimal job sequence with 
minimum makespan. In Johnson’s algorithm, each processing time was considered to be a deterministic value.  

To deal with the same problem with fuzzy job processing times, McCahon and Lee proposed to rank the fuzzy 
processing times using their corresponding Generalized Mean Values (GMVs), and then applied the modified 
Johnson’s algorithm to account for the fuzzy processing time to get the optimal job sequence [13]. Given a triangular 
fuzzy processing time, i.e., ( )cbaP ,,~

= , its GMV, denoted by 
PG ~ , is equal to:  

( )
3

~
cbaGP

++
= .                                                                                    (11) 

However, the single GMV is not able to fully represent the uncertainties of fuzzy processing times and it might 
entail negative effects for obtaining an optimal sequence. We shall illustrate this point more clearly by presenting a 
simple example. Suppose we consider a simple 2-machine flow shop problem with only two jobs. Table 1 lists 
processing times of two jobs on two machines. A and B represent machines 1 and 2, respectively. The GMV of fuzzy 
processing times are calculated and shown in Table 2. According to McCahon and Lee’s algorithm, the job sequence 
should be 2x , 1x  as shown in Table 3, and the achieved makespan is (35, 45, 87), which is obtained through the 
formulae (7)-(10) with 0.1 as the incremental step of λ . The calculated Yager’s value of the makespan is 53. 
However, if we change the job sequence to 1x , 2x  as shown in Table (4), the achieved makespan is (31, 39, 80) with 
the Yager’s value being 47.25, meaning that this job sequence is optimal.  

This example shows that McCahon and Lee’s algorithm fails to find the optimal solution because a single GMV 
is not able to fully reflect the uncertainties of fuzzy processing times. Especially, GMV has a limitation in fully 
describing the relationship between fuzzy processing times.  

 
Table 1: Problem (2 jobs, 2 machines with processing times described by triangular fuzzy sets) 

 1x  
 

2x  

A 
B 

(1,2,36) 
(21,25,28) 

(5,8,23) 
(9,12,16) 

 
Table 2: GMVs of jobs 

 1x  
 

2x  

A 
B 

13 
24.7 

12 
12.3 

 
Table 3: McCahon and Lee’s solution: sequence 2x , 1x  

 2x  
 

1x  

A 
B 

(5,8,23) 
(14,20,39) 

(6,10,59) 
(35,45,87) 

 
Table 4: Optimal solution: Sequence 1x , 2x  

 
1x  
 

2x  

A 
B 

(1,2,36) 
(22,27,64) 

(6,10,59) 
(31,39,80) 

 

Job 
Machine 

Job 
Machine 

Job 
Machine 

Job 
Machine 
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4   Our Proposed Algorithm 
 

For an illustration of our algorithm, we first describe the basic interval arithmetics in Section 4.1. Also, we need to 
define the nearest interval approximation of fuzzy numbers to be described in Section 4.2. The description of our 
proposed algorithm will then follow. 

 
4.1 The Basic Interval Arithmetic 

  
Throughout this paper, closed intervals are denoted by upper case letters A, B, while real numbers are denoted by 
lower case letters. The set of all real numbers is denoted by R. An interval number is defined by an ordered pair of 
brackets as: 

                                                      [ ] }{ RaaaaaaaA ∈≤≤== ,:, 2121 ,                                                               (12) 
where 1a , 2a  are, respectively, the left and right limits of A.  
Definition 1: Consider two interval numbers [ ]21, aaA =  and [ ]21,bbB = , then: 

                                                       [ ]1 1 2 2, ,A B a b a b+ = + +                                                                    (13) 

                                            ( ) ( ) ( )1 1 2 2max , max , ,max , ,A B a b a b= ⎡ ⎤⎣ ⎦                                                      (14) 

                                            ( ) ( ) ( )1 1 2 2min , min , , min , .A B a b a b= ⎡ ⎤⎣ ⎦                                                        (15) 

Definition 2: The interval number [ ]21, aaA =  is preferred to [ ]21,bbB =  if and only if 

1 1 2 2, .a b a b≥ ≥                                                                                       (16) 
It should be noted that there are four types of interval preference relations of which Definition 2 is the most 

popular. Definition 2 is depicted in Fig. 2 as an example. 
Since the final preference is obtained by interval arithmetic, we might have many partial order relations between 

alternatives in some cases. The following definition must be considered in addition to Definition 2 if a decision maker 
wants to have as many linear order relations as possible. 

 

B A

 
Fig. 2. An example of BA ≥  

 
Definition 3: In the case where BA ⊇  or BA ⊆ , the interval number [ ]21, aaA =  is preferred to [ ]21,bbB =  if and 
only if 
                                                        1 2 1 2 2 1 2 1,a a b b a a b b+ ≥ + − ≤ − ,                                                              (17) 
in which the center of A is larger than that of B and the width of A is narrower than that of B [31]. 

 
4.2  The Nearest Interval Approximation 

 
Here, we want to approximate a fuzzy number by a crisp number. Suppose A~  and B~  are two fuzzy numbers withλ -
cuts ( ) ( )[ ]λλλ ul AAA ,~

=  and ( ) ( )[ ]λλλ ul BBB ,~
= , respectively. Then, the distance between A~  and B~  is: 

( ) ( ) ( )( ) ( ) ( )( )∫ ∫ −+−=
1

0

1

0

22~,~ λλλλλλ dBAdBABAd uull
                                                 (18) 

 
We have to find a closed interval ( )ACd

~  that is nearest to A~  with respect to metric d. This is possible because 

each interval is also a fuzzy number with constant λ -cuts for all ]1,0[∈λ . Hence, ( )( ) [ ]uld CCAC ,~
=λ

.                                     
Now we have to minimize 
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( )( ) ( )( ) ( )( )∫ ∫ −+−=
1

0

1

0

22,~ λλλλ dCAdCAACAd uulld
                                                    (19) 

with respect to lC and uC . 

In order to minimize ( )( )ACAd d,~ , it is sufficient to minimize the function ( ) ( )( )( )ACAdCCD dul ,~, 2= . The first 
partial derivatives are: 

 
( ) ( )( ) ( )∫ ∫ +−=−−=
∂

∂ 1

0

1

0

222,
llll

l

ul CdAdCA
C

CCD
λλλλ  

and 
( ) ( )( ) ( )∫ ∫ +−=−−=
∂

∂ 1

0

1

0

222,
uuuu

u

ul CdAdCA
C

CCD
λλλλ . 

                              

Solving  
( ),

0l u

l

D C C
C

∂
=

∂
 and 

( ),
0l u

u

D C C
C

∂
=

∂
, we get: 

( )∫=∗ 1

0
λλ dAC lL , ( )∫=∗ 1

0
λλ dAC uu .                                                             (20)                 

Since   

( ) ( ) ( ) ( ) 04,
.

,.,,
2

**
2

**
2

2
**

2

2
** >=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂∂

∂
−

∂
∂

∂
∂

= UL
UL

UL
U

UL
L

UL CCD
CC

CCD
C

CCD
C

CCH , 

so ( )ul CCD ,  , i.e., ( )( )ACAd d,~   is the global minimum. 
Therefore, the interval 

( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
=== ∫∫

1

0

1

0

,~ λλλλ dACdACAC uulld
                                                (21)        

is the nearest interval approximation of the fuzzy number A~  with respect to the metric d. Let ( )321 ,,~ aaaA = be a 

fuzzy number. The λ -level interval of A~  is defined as ( ) ( ) ( )[ ]λλλ ul AAA ,~
= . When A~  is a TFN then: 

( ) ( )121 aaaAl −+= λλ  and ( ) ( )233 aaaAu −−= λλ . 
By the nearest interval approximation method, the lower limit of the interval is: 

( ) ( )[ ] ( )∫∫ +=−+==
1

0 12121

1

0 2
1 aadaaadAC ll λλλλ                                              (22) 

and the upper limit of the interval is: 

( ) ( )[ ] ( )∫∫ +=−+==
1

0 32233

1

0 2
1 aadaaadAC uu λλλλ .                                       (23) 

Therefore, the interval number considering A~  as a TFN (Triangular Fuzzy Numbers) is: 
( ) ( ) ]2,2[ 3221 aaaa ++ .    

Similarly, when A~  is a PFN (Parabolic fuzzy numbers), then  
( ) ( ) ( )2 2 1 1 ,lA a a aα λ= − − −  ( ) ( ) ( )2 3 2 1 .uA a a aα λ= − − −  

Following the procedure stated above, the interval number is ( ) ( ) ]32,32[ 3221 aaaa ++ .                        
 

4.3  The Heuristic Algorithm Based on the Nearest Interval Approximation of 
Fuzzy Numbers 

 
The algorithm used for solving the problem is summarized as follows: 
Input: processing times of two jobs on two machines.  
Output: a solution of flow shop scheduling problems that minimizes the maximum flow time (makespan). 
Our proposed algorithm: 
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Step 1: Convert all fuzzy processing times to internal numbers by using the method described in Section 4.2. (e.g. for 
triangular fuzzy numbers, apply relations 22 and 23).   
Step 2: Calculate ( )21 ,min BA  and ( )12 ,min BA . Then rank the two interval numbers ( ( )21 ,min BA  and ( )12 ,min BA ) 
using Definitions 2 or 3, and then use Johnson’s algorithm to determine an optimal job sequence. 
Step 3: In this step, based on the optimal job sequence obtained in Step 2, calculate the makespan. It should be noted 
that all fuzzy processing times are converted to nearest interval approximation; thus, the makespan is also calculated 
as an interval number.  

Let [ ], 1 2, , 1, 2,..., , 1, 2
ix jP p p i n j= = =  and [ ], 1 2, , 1, 2,..., , 1, 2

ix jC c c i n j= = =  be the fuzzy processing time and 

fuzzy completion time of job ix  on machine j , 2,1=j , respectively. The mathematical formulation of the problem is 
as follows: find a sequence of jobs to achieve the minimum makespan ( )2,nxC  such that: 

1 1,1 ,1,x xC P=                                                                                                    (24) 

1,1 ,1 ,1 1.2,..., ,
i i ix x xC C P for i n

−
= + =                                                                   (25) 

1 1 1,2 ,1 ,2 ,x x xC C P= +                                                                                   (26) 

( )2,2 ,2 ,1 ,2max , 1.2,..., .
i i i ix x x xC C C P for i n

−
= + =                                                         (27) 

The makespan is an interval number; thus, in order to evaluate the makespan obtained, we use the mean value of 
the left and right limits of the interval number as follows (number approximation of the interval number): 

[ ]
2

, 21
212,

cc
ccC

nx
+

==                                                                                  (28) 

 
5   Illustration of the Proposed Algorithm 

 
We use the problem presented in Section 3 to illustrate our algorithm. 
Step 1: All fuzzy processing times are converted to interval numbers as shown in Table (5). 

 
Table 5: Interval number of jobs 

 1 2 

A 
B 

[1.5,19] 
[23,26] 

[6.5,15.5] 
[10.5,14] 

 
Step 2: The optimal sequence is obtained by Johnson’s algorithm as follows: 

 
( ) ( )
[ ] [ ]( ) [ ] [ ] [ ]( ) [ ]

1 2 2 1min , min ,

min 1.5,19 , 10.5,14 1.5,14 min 23, 26 , 6.5,15.5 6.5,15.5 .

A B A B< ⇒

= < =
 

Thus, the job sequence should be 1x , 2x (Table 6). 
Step 3: Calculate the makespan. The makespan achieved is [35, 59.5] obtained through the formulae 24-27. The 
calculated approximation number is 47.5 obtained through (28). 

 
Table 6: Solution (sequence 1x , 2x ) 

 1 2 

A 
B 

[1.5,19] 
[24.5,45.5] 

[8,34.5] 
[35,59.5] 

 
 
We will show below that the results thus obtained are more satisfactory than those obtained from by McCahon 

and Lee’s algorithm and, further, that ours is the optimal solution. 

J
Machine 

J
Machine 
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6  Computational Results 

 
The algorithm described in Section 4.3. was tested and compared with both full search and McCahon & Lee's 
methods. The method was coded in MATLAB 7.0 (The Math Works, Inc. 2004) and experiments were executed on a 
Pentium IV 3.2 GHz processor with 1GB RAM. We conducted simulation experiments in which 50 instances were 
randomly generated for n=3, 4, 5, 6, 7 jobs. Because the full search method is computationally intractable for high 
numbers of jobs, we had to use small size problems to evaluate the efficiency of our algorithm. In other words, as the 
problem size increases, finding an optimal solution in reasonable time becomes extremely difficult. 

While all the methods under consideration yielded identical results in 49 example problems, in 1 example, 
however, the results obtained from the McCahon & Lee's method was worse  than those obtained from other methods. 
This example is shown in Table (7). Six jobs are to be scheduled in a two-step operation. Each job has two tasks that 
must be executed consecutively on two machines.  

 
Table 7: Triangular fuzzy processing time of the problem 

      Job 
Machine 

1 2 3 4 5 6 

A 
B 

(1,14,40) 
(12,16,18) 

(20,33,35)
(50,60,65)

(3,7,19) 
(24,30,40)

(18,24,37)
(7,10,15)

(17,21,32) 
(8,11,14) 

(13,16,36)
(3,8,20) 

 
Table 8 shows the job sequences obtained by the McCahon & Lee’s algorithm, our algorithm, and the full search 

method. It shows that our algorithm gave a new sequence with improved makespan compared with McCahon and 
Lee’s solution; the solution was equal to that of the full search method. 

 
Table 8: Results 

makespan Job 
sequence  Solving method 

147 3-2-1- 6-5-4full search’s solution 
147 3-2-1- 6-5-4our proposed algorithm 
154 3-2-1-5-4-6 McCahon and Lee’s algorithm 

 
 

7   Conclusion 
  

Flow shop scheduling problems under uncertainty are discussed in this paper. We use fuzzy sets to describe uncertain 
processing times in two machine flow shop problems. The goal is to determine a job permutation that minimizes the 
makespan. We have proposed a new scheduling algorithm using the interval numbers concept that improves 
McCahon & Lee’s work by applying the nearest interval approximation of the fuzzy processing times. Unlike the 
McCahon & Lee’s algorithm that converts all fuzzy processing times to exact numbers using the GMV concept, in 
our heuristic algorithm, all fuzzy processing times are converted to interval numbers. This operation avoids missing 
information on fuzzy processing times. Computational results show that our heuristic algorithm is better than 
McCahon & Lee’s.  

 In this paper, we assume that a fuzzy set is continuous and we use a triangular membership function. However, 
the algorithm can be easily extended to handle other types of membership functions, while calculating GMV for other 
types of fuzzy numbers is difficult. It may be possible to consider other task constraints, such as set-up times, due 
dates, and priorities in future research. 
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