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Abstract. This paper deals in a preliminary way with the problem of clustering of three-way data. A
method of the problem solving is based on the application of a direct possibilistic clustering algorithm
based on the concept of allotment among fuzzy cluster to a matrix of feeble fuzzy tolerance, which represent
a structure of the set of objects under uncertainty. The paper provides the description of basic ideas of the
method of clustering and the plan of a direct possibilistic clustering algorithm. Basic ideas of the method
of three-way data preprocessing for construction of a matrix of feeble fuzzy tolerance are also considered.
An illustrative example of three-way data preprocessing and clustering is given and an analysis of the
experimental results of the method’s application to the Sato’s three-way data is carried out. Preliminary
conclusions are discussed.
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1 Introduction

The first subsection of this introduction includes a brief review of uncertain data clustering methods. The
second subsection provides some remarks on author’s preliminary results.

1.1 A Problem of Clustering of Uncertain Data

Clustering is a process aiming at grouping a set of objects into classes according to the characteristics of data
so that objects within a cluster have high mutual similarity while objects in different clusters are dissimilar.
In other words, cluster analysis refers to a spectrum of methods, which try to divide a set of objects X =
{x1, ..., xn} into subsets, called clusters, which are pairwise disjoint, all non empty and reproduce X via union.
Fuzzy sets theory, which was proposed by Zadeh [30], gives an idea of uncertainty of belonging to a cluster,
which is described by a membership function. Fuzzy clustering methods have been applied effectively in
image processing, data analysis, symbol recognition and modeling. The idea of fuzzy approach application to
clustering problems was proposed by Bellmann, Kalaba and Zadeh [1]. Heuristic methods of fuzzy clustering,
hierarchical methods of fuzzy clustering and optimization methods of fuzzy clustering were proposed by
different researchers. A review of some heuristic methods, hierarchical methods and optimization methods of
fuzzy clustering was made by Viattchenin [17].

The most widespread approach in fuzzy clustering is the optimization approach and the traditional op-
timization methods of fuzzy clustering are based on the concept of fuzzy partition. The initial set X =
{x1, ..., xn} of n objects represented by the matrix of similarity coefficients, the matrix of dissimilarity co-
efficients or the matrix of object attributes, should be divided into c fuzzy clusters. Namely, the grade
µli, 1 ≤ l ≤ c, 1 ≤ i ≤ n, to which an object xi belongs to the fuzzy cluster Al should be determined. For
each object xi, i = 1, . . . , n the grades of membership should satisfy the conditions of a fuzzy partition:

c∑

l=1

µli = 1, 1 ≤ i ≤ n; 0 ≤ µli ≤ 1, 1 ≤ l ≤ c. (1)

In other words, the family of fuzzy sets P (X) = {Al|l = 1, c, c ≤ n} is the fuzzy partition of the initial set
of objects X = {x1, ..., xn} if condition (1) is met. Fuzzy partition P (X) may be described with the aid of
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a partition matrix Pc×n = [µli], l = 1, . . . , c, i = 1, . . . , n. The set of all fuzzy partitions will be denoted by
Π. So, the fuzzy problem formulation in cluster analysis can be defined as the optimization task Q → extr

P (X)∈Π

under the constraints (1), where Q is a fuzzy objective function.
The best known optimization approach to fuzzy clustering is the method of fuzzy c-means, developed by

Bezdek [2]. The fuzzy c-means algorithm is the basis of the family of fuzzy clustering algorithms. The family
of objective function-based fuzzy clustering algorithms includes

• fuzzy c-means algorithm (FCM): spherical clusters of approximately the same size;

• Gustafson-Kessel algorithm (GK): ellipsoidal clusters with approximately the same size; there are also
axis-parallel variants of this algorithm; can also be used to detect lines;

• Gath-Geva algorithm (GG): ellipsoidal clusters with varying size; there are also axis-parallel variants of
this algorithm; can also be used to detect lines;

• fuzzy c-varieties algorithm (FCV): detection of linear manifolds, that is infinite lines in 2D data;

• fuzzy c-shells algorithm (FCS): detection of circles;

• fuzzy c-rings algorithm (FCR): detection of circles;

• fuzzy c-quadric shells algorithm (FCQS): detection of ellipsoids.

These fuzzy clustering algorithms were proposed by different authors and they are described in Höppner,
Klawonn, Kruse and Runkler [5] in detail.

If, on the other hand, condition

c∑

l=1

µli ≥ 1, 1 ≤ i ≤ n; 0 ≤ µli ≤ 1, 1 ≤ l ≤ c (2)

is met for each object xi, 1 ≤ i ≤ n, then the corresponding family of fuzzy sets C(X) = {Al|l = 1, c, c ≤ n}
is the fuzzy coverage of the initial set of objects X = {x1, ..., xn}.

The concept of fuzzy coverage is used mainly in heuristic fuzzy clustering procedures. For example,
an algorithm of Couturier and Fioleau [4] is very good illustration of the characterization. Moreover, the
conditions (1) of fuzzy partition are very difficult from essential positions. So, a possibilistic approach to
clustering was proposed by Krishnapuram and Keller [7]. A concept of possibilistic partition is a basis of
possibilistic clustering methods and membership values µli, i = 1, . . . , n, l = 1, . . . , c can be interpreted as
the values of typicality degree. For each object xi, i = 1, . . . , n the grades of membership should satisfy the
conditions of a possibilistic partition:

c∑

l=1

µli > 0, 1 ≤ i ≤ n; 0 ≤ µli ≤ 1, 1 ≤ l ≤ c. (3)

So, the family of fuzzy sets Y (X) = {Al|l = 1, c, c ≤ n} is the possibilistic partition of the initial set of
objects X = {x1, ..., xn} if condition (3) is met. The possibilistic approach to clustering was developed by
ÃLȩski [8], Zhang and Leung [34], Yang and Wu [29], Xie, Wang, and Chung [26], and other researchers. This
approach can be considered as a way in the optimization approach in fuzzy clustering because all methods of
possibilistic clustering are objective function-based methods.

Most fuzzy clustering methods are designed for treating crisp data. However, we often have to deal with
objects that cannot be described by the quantitative, large or binary signs. In other words, there exists a sign
of the object that may assume several values at the same time or, for a given sign; there exists uncertainty in
representing the values of this sign. Traditional fuzzy clustering methods cannot be applied directly to such
types of objects. So, a problem of fuzzy clustering of uncertain data arises. Such a need occurs mostly in
medicine, biology, chemistry, economy, sociology and some other domains.

Several kinds of uncertainty exist and a number of approaches to the uncertain data fuzzy clustering
problem solving were proposed by different researchers. Firstly, Žák [32] uses fuzzy sets to describe the
uncertainty of the data and introduces the concepts of fuzzy objects and fuzzy dissimilarity. Using these
notions, Žák [32] proposed hierarchical and non-hierarchical clustering methods of fuzzy objects.
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Secondly, Yang and Ko [27] proposed a class of fuzzy c-number clustering procedures for fuzzy data
clustering. These so-called FCN-algorithms were developed by Yang and Liu [28] for conical fuzzy vector
data. Notable that a methodology of fuzzy data clustering based on the D-AFC(c)-algorithm was proposed
by Viattchenin [25].

Thirdly, Sato and Sato [10] consider a problem of fuzzy clustering for three-way data. Typical three-way
data are composed of objects, attributes and situations, for instance, of height and weight of children at
several ages. The purpose of clustering for three-way data is to reveal the latent structure through all the
time situations by constructing clusters which take into account not only the similarity between the pair of
objects at individual time instants but also the similarity between the patterns of change of observation in
time. Fuzzy clustering procedure for three-way data is considered as a procedure of solving a multicriteria
optimization problem. In other words, cluster structure of the set of objects X = {x1, ..., xn} must be robust
at each time. The method of fuzzy clustering of Sato and Sato [10] was developed by Sato-Ilic and Jain [11].

From the other hand, very interesting results for three-way data were obtained by Coppi and D’Urso
[3]. In particular, fuzzy multivariate time trajectories are defined, three types of dissimilarity measures are
introduced and three corresponding kinds of dynamic fuzzy clustering models are suggested in [3]. These
models are based on a generalization of the Yang and Ko [27] objective functions for fuzzy clustering.

The problem of fuzzy clustering for three-way data is very important in medicine, sociology, economics,
and military applications. Objective function-based fuzzy clustering methods are a basis of clustering for
three-way data. However, the methods are complex from mathematical positions. Moreover, some methods
have not a serious epistemological motivation. That is why a common method of clustering for three-way
data must be developed. The fact is main motivation of the work.

1.2 Preliminary Results

Heuristic algorithms of fuzzy clustering display high level of essential clarity and low level of a complexity.
Some heuristic clustering algorithms are based on a definition of a cluster concept and the aim of these
algorithms is cluster detection conform to a given definition. Mandel [8] notes that such algorithms are
called algorithms of direct classification or direct clustering algorithms. Direct heuristic algorithms of fuzzy
clustering are simple and very effective in many cases.

Let us remember the preliminary results which are necessary in the rest of the paper. In the first place,
an outline for a new heuristic method of fuzzy clustering was presented by Viattchenin [18], where concepts
of fuzzy α-cluster and allotment among fuzzy α-clusters were introduced and a basic version of direct fuzzy
clustering algorithm was described. The basic version of the algorithm can be called the D-AFC(c)-algorithm.
The allotment of elements of the set of classified objects among fuzzy clusters can be considered as a special
case of possibilistic partition. That is why the D-AFC(c)-algorithm can be considered as a direct algorithm
of possibilistic clustering. The fact was noted by Viattchenin [24].

Secondly, an object cannot be similar to oneself at different time situations. That is why the three-way data
structure cannot be represented by the a fuzzy similarity relation on the set of objects X = {x1, ..., xn}. The
notions of powerful fuzzy tolerance, feeble fuzzy tolerance and strict feeble fuzzy tolerance were introduced by
Viattchenin [12]. The fuzzy tolerances are considered also from philosophical positions by Viattchenin [15].
An application of the feeble fuzzy tolerance for the three-way data structure representation was proposed by
Viattchenin [14]. Moreover, the D-AFC(c)-algorithm can be applied directly to the matrix of feeble fuzzy
tolerance. The matrix of feeble fuzzy tolerance can be obtained after an application of a special technique to
the three-way data. The special technique of the three-way data preprocessing was proposed by Viattchenin
[21, 22].

The results will be described in detail in further considerations. The main goal of the present paper is
consideration of the problem of possibilistic clustering of the three-way data. For this purpose, a short outline
of the method of possibilistic clustering based on the concept of allotment of elements of the set of classified
objects among fuzzy clusters is presented. Techniques of the three-way data preprocessing are outlined and
described in detail. An illustrative example of the data preprocessing is shown and experimental results of
application of the proposed method to Sato’s three-way data are given. Concluding remarks are stated and
perspectives for research are considered.
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2 Outline of the Approach

The basic concepts of the heuristic method of possibilistic clustering based on the allotment concept and a
plan of the direct clustering algorithm are considered in the first subsection. Techniques of the three-way data
preprocessing are outlined in the second subsection of the section.

2.1 General Plan of the Clustering Procedure

Let us remind the basic concepts of the fuzzy clustering method based on the concept of allotment among
fuzzy clusters, which was proposed by Viattchenin [18]. The concept of fuzzy tolerance is the basis for the
concept of fuzzy α-cluster. That is why definition of fuzzy tolerance must be considered in the first place.

Let X = {x1, ..., xn} be the initial set of elements and T : X ×X → [0, 1] some binary fuzzy relation on
X = {x1, ..., xn} with µT (xi, xj) ∈ [0, 1], ∀xi, xj ∈ X being its membership function.

Definition 2.1 Fuzzy tolerance is the fuzzy binary intransitive relation which possesses the symmetricity
property

µT (xi, xj) = µT (xj , xi), ∀xi, xj ∈ X, (4)

and the reflexivity property
µT (xi, xi) = 1, ∀xi ∈ X. (5)

The notions of powerful fuzzy tolerance, feeble fuzzy tolerance and strict feeble fuzzy tolerance were
considered by Viattchenin [12, 18], as well. In this context the classical fuzzy tolerance in the sense of
Definition 2.1 was called usual fuzzy tolerance and this kind of fuzzy tolerance was denoted by T2.

The kind of the fuzzy tolerance imposed determines the real structure of the data, as demonstrated by
Viattchenin [21]. So, the notions of powerful fuzzy tolerance, feeble fuzzy tolerance and strict feeble fuzzy
tolerance must be considered too.

Definition 2.2 The feeble fuzzy tolerance is the fuzzy binary intransitive relation which possesses the sym-
metricity property (4) and the feeble reflexivity property

µT (xi, xj) ≤ µT (xi, xi), ∀xi, xj ∈ X. (6)

This kind of fuzzy tolerance is denoted by T1.

Definition 2.3 The strict feeble fuzzy tolerance is the feeble fuzzy tolerance with strict inequality in (6):

µT (xi, xj) < µT (xi, xi), ∀xi, xj ∈ X. (7)

This kind of fuzzy tolerance is denoted by T0.

Definition 2.4 The powerful fuzzy tolerance is the fuzzy binary intransitive relation which possesses the
symmetricity property (4) and the powerful reflexivity property. The powerful reflexivity property is defined as
the condition of reflexivity (5) together with the condition

µT (xi, xj) < 1, ∀xi, xj ∈ X, xi 6= xj . (8)

This kind of fuzzy tolerance is denoted by T3.
Fuzzy tolerances T1 and T0 are subnormal fuzzy relations if the condition µT (xi, xi) < 1, ∀xi ∈ X is met.

The fact was demonstrated by Viattchenin [13] and it is important for representation of the structure of the
uncertain data. However, the essence of the method here considered does not depend on the kind of fuzzy
tolerance. That is why the method herein is described for any fuzzy tolerance T .

Let us consider the general definition of fuzzy cluster, the concept of the fuzzy cluster’s typical point and
the concept of the fuzzy allotment of objects.

The number c of fuzzy clusters can be equal to the number of objects, n. This is taken into account in
further considerations.

Let X = {x1, ..., xn} be the initial set of objects. Let T be a fuzzy tolerance on X and α be α-level value
of T , α ∈ (0, 1]. Columns or lines of the fuzzy tolerance matrix are fuzzy sets {A1, ..., An}. Let {A1, ..., An}
be fuzzy sets on X, which are generated by a fuzzy tolerance T .
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Definition 2.5 The α-level fuzzy set Al
(α) = {(xi, µAl(xi))|µAl(xi) ≥ α, xi ∈ X, l ∈ [1, n]} is fuzzy α-cluster

or, simply, fuzzy cluster. So Al
(α) ⊆ Al, α ∈ (0, 1], Al ∈ {A1, . . . , An} and µli is the membership degree of the

element xi ∈ X for some fuzzy cluster Al
(α), α ∈ (0, 1], l ∈ {1, . . . , n}. Value of α is the tolerance threshold of

fuzzy clusters elements.

The membership degree of the element xi ∈ X for some fuzzy cluster Al
(α), α ∈ (0, 1], l ∈ {1, . . . , n} can

be defined as a

µli =
{

µAl(xi), xi ∈ Al
α

0, otherwise
, (9)

where an α-level Al
α = {xi ∈ X|µAl(xi) ≥ α}, α ∈ (0, 1] of a fuzzy set Al is the support of the fuzzy cluster

Al
(α). So, the α-level Al

α of a fuzzy set Al is a crisp set and condition Al
α = Supp(Al

(α)) is met for each fuzzy
cluster Al

(α), α ∈ (0, 1], l ∈ {1, . . . , n}.
Membership degree can be interpreted as a degree of typicality of an element to a fuzzy cluster. The value

of a membership function of each element of the fuzzy cluster in the sense of Definition 2.5 is the degree of
similarity of the object to some typical object of fuzzy cluster.

In other words, if columns or lines of fuzzy tolerance T matrix are fuzzy sets {A1, ..., An} on X then fuzzy
clusters {A1

(α), ..., A
n
(α)} are fuzzy subsets of fuzzy sets {A1, ..., An} for some value α, α ∈ (0, 1]. The value

zero for a fuzzy set membership function is equivalent to non-belonging of an element to a fuzzy set. That is
why values of tolerance threshold α are considered in the interval (0, 1].

Definition 2.6 If T is a fuzzy tolerance on X, where X is the set of elements, and {A1
(α), ..., A

n
(α)} is the

family of fuzzy clusters for some α ∈ (0, 1], then the point τ l
e ∈ Al

α, for which

τ l
e = arg max

xi

µli, ∀xi ∈ Al
α (10)

is called a typical point of the fuzzy cluster Al
(α), α ∈ (0, 1], l ∈ {1, . . . , n}.

Obviously, a typical point of a fuzzy cluster does not depend on the value of tolerance threshold. Moreover,
a fuzzy cluster can have several typical points. That is why symbol e is the index of the typical point.

Definition 2.7 Let Rα
z (X) = {Al

(α)|l = 1, c, 2 ≤ c ≤ n, α ∈ (0, 1]} be a family of fuzzy clusters for some
value of tolerance threshold α, α ∈ (0, 1], which are generated by some fuzzy tolerance T on the initial set of
elements X = {x1, ..., xn}. If condition

c∑

l=1

µli > 0, ∀xi ∈ X (11)

is met for all fuzzy clusters Al
(α), l = 1, c, c ≤ n, then the family is the allotment of elements of the set

X = {x1, ..., xn} among fuzzy clusters {Al
(α)|l = 1, c, 2 ≤ c ≤ n} for some value of the tolerance threshold

α, α ∈ (0, 1].

It should be noted that several allotments Rα
z (X) can exist for some tolerance threshold α, α ∈ (0, 1].

That is why symbol z is the index of an allotment.
The condition (11) requires that every object xi, i = 1, . . . , n must be assigned to at least one fuzzy cluster

Al
(α), l = 1, . . . , c, c ≤ n with the membership degree higher than zero. The condition 2 ≤ c ≤ n requires

that the number of fuzzy clusters in Rα
z (X) must be more than two. Otherwise, the unique fuzzy cluster will

contain all objects, possibly with different positive membership degrees.
Obviously, the definition of the allotment among fuzzy clusters (11) is similar to the definition of the

possibilistic partition (3). So, the allotment among fuzzy clusters can be considered as the possibilistic
partition and fuzzy clusters in the sense of definition 2.5 are elements of the possibilistic partition. However,
the concept of allotment will be used in further considerations. The concept of allotment is the central point
of the method. But the next concept introduced should be paid attention to, as well.

Definition 2.8 Allotment Rα
I (X) = {Al

(α)|l = 1, n, α ∈ (0, 1]} of the set of objects among n fuzzy clusters
for some tolerance threshold α, α ∈ (0, 1] is the initial allotment of the set X = {x1, ..., xn}.
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In other words, if initial data are represented by a matrix of some fuzzy T then lines or columns of the
matrix are fuzzy sets Al ⊆ X, l = 1, n and level fuzzy sets Al

(α), l = 1, n, α ∈ (0, 1] are fuzzy clusters.
These fuzzy clusters constitute an initial allotment for some tolerance threshold and they can be considered
as clustering components.

Thus, the problem of fuzzy cluster analysis can be defined in general as the problem of discovering the
unique allotment R∗(X), resulting from the classification process, which corresponds to either most natural
allocation of objects among fuzzy clusters or to the researcher’s opinion about classification. In the first case,
the number of fuzzy clusters c is not fixed. In the second case, the researcher’s opinion determines the kind
of the allotment sought and the number of fuzzy clusters c can be fixed.

If some allotment Rα
z (X) = {Al

(α)|l = 1, c, c ≤ n, α ∈ (0, 1]} corresponds to the formulation of a concrete
problem, then this allotment is an adequate allotment. In particular, if condition

c⋃

l=1

Al
α = X, (12)

and condition
card(Al

α ∩Am
α ) = 0, ∀Al

(α), A
m
(α), l 6= m, α ∈ (0, 1] (13)

are met for all fuzzy clusters Al
(α), l = 1, c of some allotment Rα

z (X) = {Al
(α)|l = 1, c, c ≤ n, α ∈ (0, 1]} then

the allotment is the allotment among fully separate fuzzy clusters.
However, fuzzy clusters in the sense of Definition 2.5 can have an intersection area. This fact was demon-

strated by Viattchenin [20]. If the intersection area of any pair of different fuzzy cluster is an empty set, then
the condition (13) is met and fuzzy clusters are called fully separate fuzzy clusters. Otherwise, fuzzy clusters
are called particularly separate fuzzy clusters and w = {0, . . . , n} is the maximum number of elements in
the intersection area of different fuzzy clusters. Obviously, for w = 0 fuzzy clusters are fully separate fuzzy
clusters. So, the conditions (12) and (13) can be generalized for a case of particularly separate fuzzy clusters.
Condition

c∑

l=1

card(Al
α) ≥ card(X), ∀Al

(α) ∈ Rα
z (X), α ∈ (0, 1], card(Rα

z (X)) = c, (14)

and condition
card(Al

α ∩Am
α ) ≤ w, ∀Al

(α), A
m
(α), l 6= m, α ∈ (0, 1], (15)

are generalizations of conditions (12) and (13). Obviously, if w = 0 in conditions (14) and (15) then conditions
(12) and (13) are met.

The adequate allotment Rα
z (X) for some value of tolerance threshold α, α ∈ (0, 1] is a family of fuzzy

clusters which are elements of the initial allotment Rα
I (X) for the value of α and the family of fuzzy clusters

should satisfy either the conditions (12) and (13) or the conditions (14) and (15). So, the construction of
adequate allotments Rα

z (X) = {Al
(α)|l = 1, c, c ≤ n, α ∈ (0, 1]} for every α, α ∈ (0, 1] is a trivial problem of

combinatorics.
Several adequate allotments can exist. Thus, the problem consists in the selection of the unique adequate

allotment R∗(X) from the set B of adequate allotments, B = {Rα
z (X)}, which is the class of possible solutions

of the concrete classification problem and B = {Rα
z (X)} depends on the parameters the classification problem.

The selection of the unique adequate allotment R∗(X) from the set B = {Rα
z (X)} of adequate allotments

must be made on the basis of evaluation of allotments. The criterion

F1(Rα
z (X), α) =

c∑

l=1

1
nl

nl∑

i=1

µli − α · c, (16)

where c is the number of fuzzy clusters in the allotment Rα
z (X) and nl = card(Al

α), Al
(α) ∈ Rα

z (X) is the
number of elements in the support of the fuzzy cluster Al

(α), can be used for evaluation of allotments. The
criterion

F2(Rα
z (X), α) =

c∑

l=1

nl∑

i=1

(µli − α), (17)

can also be used for evaluation of allotments. Both criteria were proposed by Viattchenin [16].
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Maximum of criterion (16) or criterion (17) corresponds to the best allotment of objects among c fuzzy
clusters. So, the classification problem can be characterized formally as determination of the solution R∗(X)
satisfying

R∗(X) = arg max
Rα

z (X)∈B
F (Rα

z (X), α), (18)

where B = {Rα
z (X)} is the set of adequate allotments corresponding to the formulation of a concrete classifi-

cation problem and criteria (16) and (17) are denoted by F (Rα
z (X), α).

The criterion (16) can be considered as the average total membership of objects in fuzzy clusters of the
allotment Rα

z (X) minus α · c. The quantity α · c regularizes with respect to the number of clusters c in the
allotment Rα

z (X). The criterion (17) can be considered as the total membership of objects in fuzzy clusters
of the allotment Rα

z (X) with an appreciation through the value α of tolerance threshold.
The condition (18) must be met for the some unique allotment Rα

z (X) ∈ B(c). Otherwise, the number c
of fuzzy clusters in the allotment sought R∗(X) is suboptimal. The condition was formulated by Viattchenin
[19].

Detection of fixed c number of fuzzy clusters can be considered as the aim of classification. So, the adequate
allotment Rα

z (X) is any allotment among c fuzzy clusters in the case. There is a seven-step procedure of
classification:

1. Calculate α-level values of the fuzzy tolerance T and construct the sequence 0 < α0 < α1 < . . . < α` <
. . . < αZ ≤ 1 of α-levels; let ` := 1;

2. Construct the initial allotment Rα
I (X) = {Al

(α)|l = 1, n}, α = α` for every value α` from the sequence
0 < α0 < α1 < . . . < α` < . . . < αZ ≤ 1;

3. Let w := 0;

4. Construct allotments Rα
z (X) = {Al

(α)|l = 1, c, c ≤ n}, α = α`, which satisfy conditions (14) and (15)
for every value α` from the sequence 0 < α0 < α1 < . . . < α` < . . . < αZ ≤ 1;

5. Construct the class of possible solutions of the classification problem B(c) = {Rα
z (X)}, α ∈ {α1, . . . , αZ}

for the given number of fuzzy clusters c and different values of the tolerance threshold α, α ∈ {α1, . . . , αZ}
as follows:
if for some allotment Rα

z (X), α ∈ {α1, . . . , αZ} the condition card(Rα
z (X)) = c is met

then Rα
z (X) ∈ B(c)

else let w := w + 1 and go to step 4;

6. Calculate the value of some criterion F (Rα
z (X), α) for every allotment Rα

z (X) ∈ B(c);

7. The result R∗(X) of classification is formed as follows:
if for some unique allotment Rα

z (X) from the set B(c) the condition (18) is met
then the allotment is the result of classification
else the number c of classes is suboptimal.

The allotment Rα
z (X) = {Al

(α)|l = 1, c, α ∈ (0, 1]} among the given number of fuzzy clusters and the
corresponding value of tolerance threshold α, α ∈ (0, 1] are results of classification.

2.2 A Technique of the Three-Way Data Preprocessing

The problem of clustering of three-way data can be formulated as follows. Let X = {x1, ..., xn} is set
of objects, where objects are indexed i, i = 1, . . . , n; each object xi is described by m1 attributes, in-
dexed t1, t1 = 1, . . . , m1, so that an object xi can be represented by vector xi = (x1

i , . . . , x
t1
i , . . . , xm1

i );
every attribute xt1 , t1 = 1, . . . , m1 can be characterized by m2 values of 2-ary attributes, so that xt1

i =
(xt1(1)

i , . . . , x
t1(t2)
i , . . . , x

t1(m2)
i ). So, the three-way data can be presented by a poly-matrix as follows

Xn×m1×m2 = [xt1(t2)
i ], i = 1, . . . , n; t1 = 1, . . . , m1, t2 = 1, . . . , m2. (19)

In other words, the three-way data are the data, which are observed by the values of m1 attributes with
respect to n objects for m2 situations. The purpose of the clustering is to classify the set X = {x1, ..., xn} into
c fuzzy clusters. So, an allotment R∗(X) among c fuzzy clusters A1

(α), ..., A
n
(α), α ∈ (0, 1] must be detected.
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The D-AFC(c)-algorithm can be applied directly to the data given as a matrix of tolerance coefficients.
This means that it can be used with the objects by attributes data by choosing a suitable metric to measure
similarity. So, the main problem is the problem of the three-way data preprocessing. First of all a method
for the traditional two-way data preprocessing must be considered.

The matrix of fuzzy tolerance T = [µT (xi, xj)], i, j = 1, . . . , n is the matrix of initial data for the
D-AFC(c)-algorithm. However, the data can be presented as a matrix of attributes X̂n×m1 = [x̂t1

i ], i =
1, . . . , n, t1 = 1, . . . , m1, where the value x̂t1

i is the value of the t1th attribute for ith object. In the first place,
the data can be normalized as follows

xt1
i =

x̂t1
i

max
i

x̂t1
i

. (20)

In the second place, the data can be normalized using a formula

xt1
i =

x̂t1
i −min

i
x̂t1

i

max
i

x̂t1
i −min

i
x̂t1

i

. (21)

So, each object can be considered as a fuzzy set xi, i = 1, . . . , n and xt1
i = µxi

(xt1) ∈ [0, 1], i =
1, . . . , n, t1 = 1, . . . , m1 are their membership functions.

The matrix of coefficients of pair wise dissimilarity between objects I = [µI(xi, xj)], i, j = 1, . . . , n can
be obtained after application of some distance to the matrix of normalized data Xn×m1 = [µxi

(xt1)], i =
1, . . . , n; t1 = 1, . . . , m1. The most widely used distances for fuzzy sets xi, xj , i, j = 1, . . . , n in X =
{x1, ..., xn} are:

The normalized Hamming distance

l(xi, xj) =
1

m1

m1∑
t1=1

|µxi
(xt1)− µxj

(xt1)|, i, j = 1, . . . , n. (22)

The normalized Euclidean distance

e(xi, xj) =

√√√√ 1
m1

m1∑
t1=1

(
µxi

(xt1)− µxj
(xt1)

)2
, i, j = 1, . . . , n. (23)

The squared normalized Euclidean distance

ε(xi, xj) =
1

m1

m1∑
t1=1

(
µxi(x

t1)− µxj (x
t1)

)2
, i, j = 1, . . . , n. (24)

These distances were considered by Kaufmann [6] in detail. The matrix of fuzzy tolerance T = [µT (xi, xj)],
i, j = 1, . . . , n can be obtained after application of complement operation

µT (xi, xj) = 1− µI(xi, xj), ∀i, j = 1, . . . , n (25)

to the matrix of fuzzy intolerance I = [µI(xi, xj)], i, j = 1, . . . , n.
The three-way data can be normalized. For the purpose, (20) can be generalized as follows

x
t1(t2)
i =

x̂
t1(t2)
i

max
i,t2

x̂
t1(t2)
i

. (26)

On the other hand, the three-way data can be normalized using a generalization of the formula (21), which
can be written as follows

x
t1(t2)
i =

x̂
t1(t2)
i −min

i,t2
x̂

t1(t2)
i

max
i,t2

x̂
t1(t2)
i −min

i,t2
x̂

t1(t2)
i

. (27)
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So, each object xi, i = 1, . . . , n from the initial set X = {x1, . . . , xn} can be considered as a type-two
fuzzy set and x

t1(t2)
i = µxi

(xt1(t2)), i = 1, . . . , n ; t1 = 1, . . . , m1, t2 = 1, . . . , m2, xt1(t2) = µt1(x
t2) ∈ [0, 1],

t1 = 1, . . . , m1, t2 = 1, . . . , m2 are its membership functions.
The concept of a type-two fuzzy set was introduced by Zadeh [31] as an extension of the concept of an

ordinary fuzzy set, which was called type-one fuzzy set. The advances of type-two fuzzy sets for pattern
recognition were considered by Zeng and Liu [33].

In the case of three-way data each object xi, i = 1, . . . , n can be presented as a matrix X(i)m1×m2 =
[xt1(t2)

i ], t1 = 1, . . . , m1, t2 = 1, . . . , m2. Dissimilarity coefficients between the objects can be constructed on
a basis of generalizations of distances (22) – (24) between fuzzy sets and these generalizations must be taken
into account dissimilarities between objects attributes as well as attributes situations.

So, generalizations of the distances for fuzzy sets are functions of dissimilarities and the functions can be
written as follows:

A generalization of the normalized Hamming distance for the three-way data is described by the expression

lG2(xi, xj) =
1

m1

m1∑
t1=1

(
1

m2
2

m2∑
u1,v1=1

|µxi
(xt1,u1)− µxj

(xt1,v1)|
)

, i, j = 1, . . . , n. (28)

A generalization of the normalized Euclidean distance for the three-way data is described by the expression

eG2(xi, xj) =

√√√√ 1
m1

m1∑
t1=1

(
1

m2
2

m2∑
u1,v1=1

(
µxi(xt1,u1)− µxj (xt1,v1)

)2

)
, i, j = 1, . . . , n. (29)

A generalization of the squared normalized Euclidean distance for the three-way data is described by the
expression

εG2(xi, xj) =
1

m1

m1∑
t1=1

(
1

m2
2

m2∑
u1,v1=1

(
µxi(x

t1,u1)− µxj (x
t1,v1)

)2

)
, i, j = 1, . . . , n. (30)

These functions of dissimilarities were proposed by Viattchenin [21, 22]. Obviously, for m2 = 1 a usual
distance for fuzzy sets will be obtained in every case. A matrix of a feeble fuzzy tolerance T1 will be obtained
after an application of the formulae (28) – (30) and the complement operation (25) to the three-way data.
The fact was demonstrated by Viattchenin [21].

However, a value m2 can be different for different attributes x̂t1 , t1 ∈ {1, . . . , m1}, or a value m2 of grades
for a fixed attribute x̂t1 , t1 ∈ {1, . . . , m1} can be different for different objects xi, i ∈ {1, . . . , n}. So, each
object xi, i = 1, . . . , n cannot be presented as a matrix X(i)m1×m2 = [xt1(t2)

i ], t1 = 1, . . . , m1, t2 = 1, . . . , m2,
because a value m2, which is general for all attributes x̂t1 , t1 ∈ {1, . . . , m1}, must be established. In these
cases a general value m2 can be defined as follows:

m2 = max
t1

m
(t1)
2 , t1 = 1, . . . , m1, (31)

where the number of grades of every attribute x̂t1 , t1 ∈ {1, . . . , m1} is denoted by m
(t1)
2 . However, values

x
t1(t2)
i , i ∈ {1, . . . , n} may not be known for some objects xi ∈ X, i ∈ {1, . . . , n}. In such a case, the unknown

values x
t1(t2)
i , i ∈ {1, . . . , n} can be defined as follows

x
t1(t2)
i = max

t1
t
(t1)
2 , i ∈ {1, . . . , n}, t2 = 1, . . . , m

(t1)
2 . (32)

Obviously, the method of the three-way data preprocessing can be very simply generalized for the case of
the p-way data.

3 The Experimental Results

The Sato’s three-way data are described in the first subsection. Illustrative examples of the data preprocessing
are considered also in the first subsection. The second subsection includes results of numerical experiments
for three functions of distances.
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3.1 The Sato’s Three-Way Data

The Sato’s artificial three-way data are a follow-up of the survey of physical constitution, involving height,
weight, chest girth and sitting height, which are the measurements of 38 boys at three instants, that is, when
subjects are 13, 14 and 15 years old. These data originally appear in Sato and Sato [10]. The original data
can be rewritten and the rewritten data are presented in Table 1.

Denote height by x̂1, weight by x̂2, chest girth by x̂3 and sitting height by x̂4. So, every attribute
x̂t1 , t1 = 1, . . . , 4 is observed at three instants t2 = 1, . . . , 3. A value of the t1th attribute in the t2th moment
for the ith object will be denoted by x̂

t1(t2)
i , i = 1, . . . , 38, t1 = 1, . . . , 4, t2 = 1, . . . , 3. The methodology of

the three-way data preprocessing can be applied directly to the data.
The data can be normalized using formula (26) or formula (27). For example, the thirteenth object after

normalization (26) will be presented as a matrix X4×3 = [xt1(t2)
13 ], t1 = 1, . . . , 4, t2 = 1, . . . , 3, shown in Table 2.

The matrix can be presented as a membership function of the type-two fuzzy set on the attributes and
every attribute can be described by type-one fuzzy set. The membership function of a type-two fuzzy set
which describes the thirteenth object and the membership function of a type-one fuzzy set which describes
the first attribute of the thirteenth object are presented in Figure 1.

a) b)

Figure 1: (a) a membership function of the type-two fuzzy set which describes the thirteenth object after
normalization using the formula (26) and (b) a membership function of the type-one fuzzy set describing the
first attribute of the thirteenth object after normalization using the formula (26) at three time instants.

The thirteenth object after normalization (27) can be presented as a matrix X4×3 = [xt1(t2)
13 ], t1 = 1, . . . , 4,

t2 = 1, . . . , 3, shown in Table 3. So, the membership function of a type-two fuzzy set which describes the
thirteenth object and the membership function of a type-one fuzzy set which describes the first attribute of
the thirteenth object are presented in Figure 2.
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Table 1: Physical constitution of 38 boys

Boys

Height, cm Weight, kg Chest girth, cm Sitting height, cm

13
years
old

14
years
old

15
years
old

13
years
old

14
years
old

15
years
old

13
years
old

14
years
old

15
years
old

13
years
old

14
years
old

15
years
old

1 147 157 162 40 47 54 70 76 81 80 85 87
2 161 166 167 49 50 52 75 75 79 85 87 88
3 153 159 161 45 48 51 72 75 75 86 90 92
4 155 163 168 51 58 66 77 82 87 85 87 92
5 160 165 167 51 56 61 75 77 82 86 88 89
6 153 159 167 38 43 44 67 70 71 81 84 87
7 166 169 172 67 72 79 86 89 92 89 90 95
8 168 174 175 55 60 65 76 79 81 91 93 95
9 142 149 157 35 39 46 69 68 75 75 78 82
10 151 160 165 44 51 57 72 78 80 79 85 89
11 164 167 169 55 58 65 77 79 80 88 89 93
12 153 163 168 42 46 53 70 73 78 83 88 91
13 148 158 164 41 47 51 72 77 81 78 82 85
14 164 169 171 75 84 88 92 97 102 90 93 95
15 145 151 162 34 39 45 65 68 72 76 80 84
16 151 159 162 51 57 64 80 83 87 81 85 87
17 145 153 162 50 55 59 82 84 82 79 81 86
18 154 163 169 47 53 56 71 75 80 82 86 89
19 156 166 171 48 50 56 73 72 75 81 86 89
20 144 149 157 30 33 37 60 62 66 73 75 79
21 154 164 169 41 49 56 69 76 77 82 88 91
22 155 165 169 43 52 57 71 75 79 82 87 90
23 155 162 166 48 58 60 76 85 84 82 86 89
24 155 162 172 49 55 57 73 76 76 80 84 87
25 156 163 164 48 53 54 76 79 82 81 86 87
26 156 164 172 50 53 56 74 76 79 81 84 87
27 162 168 170 45 48 52 71 71 75 84 88 89
28 147 154 163 37 43 50 71 75 80 79 82 86
29 149 157 166 40 47 53 71 79 78 80 83 87
30 148 155 162 37 41 47 69 70 74 78 81 85
31 156 163 166 52 57 62 75 79 81 83 87 89
32 141 151 159 35 42 48 68 74 79 73 77 82
33 140 147 157 30 34 43 67 70 73 76 77 83
34 146 153 161 49 52 53 76 78 76 80 79 84
35 162 168 161 53 58 53 74 78 76 86 79 84
36 146 158 165 36 44 51 68 75 73 77 85 89
37 141 151 158 41 46 51 71 75 76 76 80 83
38 158 167 171 65 71 79 93 93 90 85 90 91
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Table 2: A description of an object as a matrix after normalization using the formula (26)

A number i A number
of an object of the situation t2

Attributes xt1(t2) of the object xi

of an attribute xt1(t2)

x1(t2) x2(t2) x3(t2) x4(t2)

13
1 0.8457 0.4659 0.7059 0.8211
2 0.9029 0.5341 0.7549 0.8632
3 0.9371 0.5795 0.7941 0.8947

Table 3: A description of an object as a matrix after normalization using the formula (27)

A number i A number
of an object of the situation t2

Attributes xt1(t2) of the object xi

of an attribute xt1(t2)

x1(t2) x2(t2) x3(t2) x4(t2)

13
1 0.2286 0.1897 0.2857 0.2273
2 0.5143 0.2931 0.4048 0.4091
3 0.6857 0.3621 0.5000 0.5455

So, a membership function of the type-two fuzzy set which is describes an object xi ∈ X, i ∈ {1, . . . , 38}
depends on the method of normalization of the data. The fact is very important for the classification result.

3.2 The Results of Classification

Let us consider the classification result which was presented by Sato and Sato [10]. A fuzzy partition is the
result of application of their method to the three-way data. Membership functions of four classes of the fuzzy
partition are presented in Figure 3.

Membership values of the first class are represented by +, membership values of the second class are
represented by ¥, membership values of the third class are represented by ×, and membership values of the
fourth class are represented by ◦. The number of classes was determined so as to get the most reasonable
interpretations of fuzzy clusters. The boys from the first class have a good constitution through all the years.
The boys from the second class have a poor constitution, with a tendency of growing between 13 and 14 years
of age. The boys from the third class and from the fourth class have the standard constitution, but there is
a difference in the pattern of growth, namely the third class has the tendency of growing in both height and
weight through all the years. On the other hand, the fourth class contains the boys who grow through all
the years but not so conspicuously. Moreover, the boys who belong to the third class and the fourth class
simultaneously have the tendency to growth in height from 13 to 14 years of age, and to the growth in weight
from 14 to 15 years of age. So, the reasonable classes of physical constitution were found by taking into
account the growth pattern.

For comparison, the D-AFC(c)-algorithm was applied to the data for all three kinds of proposed functions
of distance. Formula (27) was used for data normalization in every experiment. Let us consider results of
experiments.

By executing the D-AFC(c)-algorithm for four classes using the formula (28) in the process of the data
preprocessing, we obtain that the first class is formed by 3 elements, the second class is composed of 4 elements,
the third class is formed by 28 elements and the fourth class includes 6 elements. The second element belongs
to the third class and to the fourth class, the seventh element belongs to the first class and to the fourth
class, and the ninth element belongs to the second class and to the third class. The allotment R∗(X), which
corresponds to the result, was obtained for the tolerance threshold α = 0.810500.

The value of the membership function of the fuzzy cluster, which corresponds to the first class is maximal
for the thirty-eighth object and is equal 0.8937. So, the thirty-eighth object is the typical point of the fuzzy
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a) b)

Figure 2: (a) a membership function of the type-two fuzzy set which describes the thirteenth object after
normalization using the formula (27) and (b) a membership function of the type-one fuzzy set describing the
first attribute of the thirteenth object after normalization using the formula (27) at three time instants.

cluster which corresponds to the first class. The membership value of the twentieth object is equal 0.8991 and
the value is maximal for the fuzzy cluster which corresponds to the second class. Thus, the twentieth object
is the typical point of the fuzzy cluster which corresponds to the second class. The membership function of
the third fuzzy cluster is maximal for the thirteenth object and is equal 0.8709. That is why the thirteenth
object is the typical point of the fuzzy cluster which corresponds to the third class. The membership function
of the fourth fuzzy cluster is maximal for the eighth object and is equal 0.9252. That is why the eighth object
is the typical point of the fourth fuzzy cluster.

Membership functions of four classes of the allotment are presented in Figure 4 and values which equal
zero are not shown in the figure.

By executing the D-AFC(c)-algorithm for four classes using the formula (29) in the process of the data
preprocessing, we obtain that the first class is formed by 3 elements, the second class is composed of 5 elements,
the third class is formed by 28 elements and the fourth class includes 7 elements. The second and the fifth
elements belong to the third class and to the fourth class, the seventh element belongs to the first class and
to the fourth class, the ninth and the fifth elements belong to the second class and to the third class. The
allotment R∗(X), which is corresponds to the result, was obtained for the tolerance threshold α = 0.755300.

The fourteenth object is the typical point of the first fuzzy cluster, the twentieth object is the typical
point of the fuzzy cluster which corresponds to the second class, the thirteenth object is the typical point of
the fuzzy cluster which corresponds to the third class, and the eighth object is the typical point of the fourth
fuzzy cluster.

Membership functions of four classes of the allotment are presented in Figure 5.
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Figure 3: Membership function of four classes obtained from the Sato’s classification method

Object assignments due to application of the D-AFC(c)-algorithm for four classes using the formula (30), we
similar to the assignments, which were obtained using the formula (29) in the process of the data preprocessing.
The allotment R∗(X), which corresponds to the result in the case of using of the formula (30), was obtained
for the tolerance threshold α = 0.940100.

So, the results, which are obtained from the D-AFC(c)-algorithm using the proposed method of the three-
way data preprocessing, are similar to the results, which were obtained by Sato and Sato [10] using their
multicriteria optimization method. Moreover, the membership function from the proposed method is sharper
than the membership function from the Sato’s method.

4 Final Remarks

Preliminary conclusions are discussed in the first subsection of the section. The second subsection deals with
the perspectives on future investigations.

4.1 Discussions

The results of application of the fuzzy clustering method based on the allotment concept can be very well
interpreted. Moreover, the fuzzy clustering method based on the allotment concept depends on the set of
adequate allotments only. That is why the clustering results are stable.

The methodology of fuzzy clustering of three-way data is outlined in the paper. The approach is based
on the concept of the feeble fuzzy tolerance which is represents the structure of the three-way data. For
construction the feeble tolerance matrix, the three-way data can be normalized and every object can be
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Figure 4: Membership functions of four classes obtained from the D-AFC(c)-algorithm using the formula (28).

represented as the type-two fuzzy set. A matrix of dissimilarity coefficients between type-two fuzzy set can
be constructed using the proposed functions of dissimilarities. The results of application of the proposed
methodology of the three-way data preprocessing and its processing by the D-AFC(c)-algorithm to the Sato’s
three-way data show that the methodology and the D-AFC(c)-algorithm are a precise and effective technique
for the three-way data possibilistic clustering.

It is should be noted, that the proposed approach is more general and simple, than of the method of fuzzy
clustering of Sato and Sato [10], because the latter method is more complex, than the here proposed method.

4.2 Perspectives

In the first place, the D-AFC(c)-algorithm is the basic version of the clustering procedure. Other parameters
of a clustering procedure were introduced by Viattchenin [20]. Moreover, a heuristic for the detection of an
unknown number of fuzzy clusters in the sought allotment was also proposed by Viattchenin [23]. So, the
corresponding versions of the algorithm can be developed.

In the second place, the described approach of the three-way data can be generalized for a case of the
multi-way data very simply. Moreover, the values of the grades of attributes of the objects can be represented
by fuzzy numbers. So, a combination of the proposed approach with the method of Yang and Ko [27] of
calculation of a distance between fuzzy numbers can be elaborated.

These perspectives for investigations are of great interest both from the theoretical point of view and from
the practical one as well.
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Figure 5: Membership functions of four classes obtained from the D-AFC(c)-algorithm using the formula (29).
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