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Abstract

In this paper, we firstly illustrate why we should introduce the Itô type set-valued stochastic differential
equation and then recall some basic results about the Lebesgue integral of a set-valued stochastic process
with respect to time t. Secondly we obtain some new properties of the set-valued Lebesgue integral,
especially inequality of the set-valued Lebesgue integrals. Finally we prove a theorem of existence and
uniqueness of solution of Itô type set-valued stochastic differential equation.
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1 Introduction

Stochastic differential inclusions as a special form of stochastic differential equations appear in a natural way
as a theoretical description of stochastic control problems (cf. [15]). Stochastic differential inclusion is

dxt ∈ F (t, xt)dt + G(t, xt)dBt, x0 = ξ, (1)

which can be written as the following stochastic integral form

xt − xs ∈ clL2

( ∫ t

s

F (τ, xτ )dτ + G(τ, xτ )dBτ

)
, s, t ∈ [0, T ], (2)

where F, G are set-valued stochastic processes, B = (Bt)t∈I is a Brownian motion. In (1), there are two parts:
one part is F (t, xt)dt, which is related to the integral of a set-valued stochastic process with respect to time
t, and the other part is G(t, xt)dBt, which is related to the Itô integral of a set-valued stochastic process with
respect to the Brownian motion Bt.

In [12], Kim used the definition of stochastic integral of a set-valued stochastic process with respect to
the Brownian motion introduced by Kisielewicz in [14] and discussed its properties. We called it the Aumann
type Itô integral since the idea came from the Aumann integral of a set-valued function [2]. In [10], Jung and
Kim gave a new definition with basic space being R by taking fixed time t. It may be more suitable to treat a
set-valued stochastic process as a whole. In [23], Li and Ren introduced a new way to define the Itô integral
of set-valued stochastic processes and discussed its properties.

There are many related former works about set-valued Lebesgue integral. Based on the work of Richter
[29] and Kudo [19], Aumann introduced Aumann type Lebesgue integral of set-valued functions and discussed
its properties in [2]. Kisielewicz introduced Aumann type Lebesgue integral of set-valued stochastic processes
in [13]. Kisielewicz with his colleagues discussed stochastic differential inclusions, especially their solutions
in [13]–[17]. In [20], Li and Li discussed more properties of the Lebesgue integral of set-valued stochastic
processes. We would like to refer to related works such as [5], [24], [26], [32] and so on. In this paper, we shall
continue to discuss the properties of the Lebesgue integral of set-valued stochastic processes, especially the
inequality of the Lebesgue integrals, which is necessary to discuss set-valued stochastic differential equations.
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It is well known that classical Itô type stochastic differential equations have been widely used in the
stochastic control (e.g. [25]) and financial mathematics (e.g. [4], [11]). The Itô type set-valued stochastic
differential equation is

dXt = b(t,Xt)dt + σ(t,Xt)dBt, (3)

where b(t,Xt) takes values in the space K(Rd) (the set of all nonempty closed subsets of Rd), σ(t,Xt) takes
values in the space K(Rd ⊗Rm) (the set of all nonempty closed subsets of matrix space Rd ⊗Rm) and Bt is
an m-dimensional Brownian motion. (3) can be written as set-valued stochastic integral form

Xt = X0 + (L)
∫ t

0

b(t,Xt)dt + (I)
∫ t

0

σ(t,Xt)dBt, (4)

where (L)
∫ t

0
b(t,Xt)dt is the set-valued Lebesgue integral and (I)

∫ t

0
σ(t,Xt)dBt is the set-valued Itô integral.

If σ(t,Xt) ∈ Rd ⊗Rm, then we have

Xt = X0 + (L)
∫ t

0

b(t,Xt)dt +
∫ t

0

σ(t,Xt)dBt, (5)

where
∫ t

0
σ(t,Xt)dBt is the classical Itô integral.

There are few papers about the Itô type set-valued stochastic differential equations, even in the special case
(5). But we know there is a paper about the Itô type fuzzy stochastic differential equations. In [7], Hu et. al.
used Hukuhara difference to define the differentiability and to discuss the Itô type fuzzy stochastic differential
equations in the special case σ(t,Xt) ∈ Rd ⊗ Rm, i.e. the equation (5). But since it is well-known that the
space of all closed subsets of even R (the space of all real numbers) is not linear with respect to the addition
and scalar multiplication, it leads to a big problem: under what conditions does the Hukuhara difference exist?
It is a difficult problem so that they simply assume that the Hukuhara difference of a stochastic process at
any two different times always exists. In this paper, we shall use selection method to consider the same type
problem as in [7] without using the Hukuhara difference. We shall consider the Itô type set-valued stochastic
integral equation (5), discuss the existence and uniqueness of its solution. By using level set method [28], we
may easily extend the set-valued case to fuzzy set-valued case.

We organize our paper as follows. In Section 2, we introduce some necessary notations, definitions and
results about set-valued stochastic processes and set-valued Lebesgue integral, and then we shall prove some
new properties, especially inequality of set-valued Lebesgue integrals. In Section 3, we give a set-valued
stochastic differential equation of Itô type, and prove the theorem of existence and uniqueness of solution to
this kind of set-valued stochastic differential equation.

2 Stochastic Integral of Set-Valued Stochastic Processes and its
Properties

Throughout this paper, assume that (Ω,A, µ) is a complete probability space, the σ-field filtration {At : t ∈ I}
satisfies the usual conditions (i.e. containing all null sets, non-decreasing and right continuous), I = [0, T ]
with T > 0, R is the set of all real numbers, N is the set of all natural numbers, Rd is the d-dimensional
Euclidean space with usual norm ‖ · ‖, B(E) is the Borel field of the space E. Let f = {f(t),At : t ∈ I}
be a Rd-valued adapted stochastic process. It is said that f is progressively measurable if for any t ∈ I, the
mapping (s, ω) 7→ f(s, ω) from [0, t]× Ω to Rd is B([0, t])×At-measurable. If let

C = {A ⊆ I × Ω : ∀t ∈ I, A ∩ ([0, t]× Ω) ∈ B([0, t])×At},

then f is progressively measurable if and only if f is C-measurable. Each right continuous (left continuous)
adapted process is progressively measurable.

Assume that Lp(Rd) (p ≥ 1) denotes the set of Rd-valued stochastic processes f = {f(t),At : t ∈ I} such
that f satisfying (a) f is progressively measurable; and (b)

|||f |||p =
[
E

( ∫ T

0

‖f(t, ω)‖pds
)]1/p

< ∞. (6)
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Let f, f ′ ∈ Lp(Rd), f = f ′ if and only if |||f − f ′|||p = 0. Then (Lp(Rd), ||| · |||p) is complete.
Now we review notation and concepts of set-valued stochastic processes.
Assume that K(Rd) is the family of all nonempty, closed subsets of Rd, and Kc(Rd) (resp. Kk(Rd),

Kkc(Rd)) is the family of all nonempty closed convex (resp. compact, compact convex) subsets of Rd. For
any x ∈ Rd, A is a nonempty subset of Rd, define the distance between x and A as d(x,A) = infy∈A ‖x− y‖.
The Hausdorff metric on K(Rd) is defined as

dH(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)} (7)

for A,B ∈ K(Rd). For B ∈ K(Rd), define ‖B‖K = dH({0}, B) = supa∈B ‖a‖.
For a set-valued random variable F (cf. [6], [21]), define the set

Sp
F = {f ∈ Lp[Ω;Rd] : f(ω) ∈ F (ω) a.e.},

where Lp[Ω;Rd] is the set of all Rd-valued random variables f such that ‖f‖p = [E(‖f‖p)]1/p < ∞. The
expectation of F is defined as E[F ] = {E[f ] : f ∈ S1

F }. It is called Aumann integral introduced by Aumann
in 1965 (cf. [2]). A set-valued random variable F : Ω → K(Rd) is called integrable if S1

F is non-empty. F is
called Lp-bounded if

∫
Ω
‖F (ω)‖p

Kdµ < ∞. Let Lp[Ω;K(Rd)] (resp. Lp[Ω;Kc(Rd)], Lp[Ω;Kkc(Rd)]) denote
the family of K(Rd)-valued (resp. Kc(Rd), Kkc(Rd)-valued) Lp-bounded random variables. For any two
set-valued random variables F1, F2 ∈ Lp[Ω;K(Rd)], define

∆p(F1, F2) =
( ∫

Ω

dp
H(F1(ω), F2(ω))dµ

)1/p

,

then (Lp[Ω;K(Rd)],∆p) is a complete space. Concerning more definitions and more results of set-valued
random variables, readers could refer to [6] or [21].

Definition 1 A set-valued stochastic process F = {F (t) : t ∈ I} is called progressively measurable, if it is
C-measurable, i.e., for any A ∈ B(Rd), {(s, ω) ∈ I × Ω : F (s, ω) ∩ A 6= ∅} ∈ C. F is called Lp-bounded, if the
real stochastic process {‖F (t)‖K,At : t ∈ I} ∈ Lp(R).

Definition 2 A Rd-valued process {f(t),At : t ∈ I} ∈ Lp(Rd) is called an Lp-selection of F = {F (t),At :
t ∈ I} if f(t, ω) ∈ F (t, ω) a.e.(t, ω) ∈ I × Ω.

Let Sp({F (·)}) or Sp(F ) denote the family of all Lp-selections of F = {F (t),At : t ∈ I} , i.e.

Sp(F ) =
{
{f(t)} ∈ Lp(Rd) : f(t, ω) ∈ F (t, ω), a.e. (t, ω) ∈ I × Ω

}
.

Let Lp(K(Rd)) denote the set of all Lp-bounded progressively measurable K(Rd)-valued stochastic processes.
Similarly, we have notations Lp(Kc(Rd)), Lp(Kk(Rd)) and Lp(Kkc(Rd)). Take Fi = {Fi(t) : t ∈ I} ∈
Lp(K(Rd)), i = 1, 2, define

∆p(F1, F2) =
[
E

( ∫ T

0

dp
H(F1(s, ω), F2(s, ω))ds

)]1/p

.

F1 and F2 are said to be equivalent, if ∆p(F1, F2) = 0, denoted by F1 = F2. We have that (Lp(K(Rd)),∆p)
is complete, Lp(Kc(Rd)), Lp(Kk(Rd)) and Lp(Kkc(Rd)) are closed subsets of (Lp(K(Rd)),∆p). Denote

|||F |||p =
[
E

( ∫ T

0
‖F (s)‖p

Kds
)]1/p

.

Now we introduce the concept of decomposability.

Definition 3 A non-empty set Γ ⊆ Lp(Rd) is called decomposable with respect to the progressively measurable
σ-field C , if for any f, g ∈ Γ, any U ∈ C, we have IUf + IUcg ∈ Γ.

Firstly, we know that for any set-valued progressively measurable stochastic process F ∈ Lp(K(Rd)),
Sp(F ) is decomposable with respect to σ-field C. Furthermore we have the following Theorem.
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Theorem 1 [20] Assume that Γ ⊆ Lp(Rd) is a non-empty closed set of Rd-valued progressively measurable
stochastic processes, then Γ is decomposable with respect to progressively measurable σ-field C if and only if
there exists a progressively measurable set-valued stochastic process F ∈ Lp(K(Rd)) such that Γ = Sp(F ).
Furthermore, Γ is convex if and only if F ∈ Lp(Kc(Rd)).

Now we consider the integral of set-valued stochastic process. To avoid trouble of dealing with almost
every problem, we assume that A is µ-separable in the following. In this case, for any p ≥ 1, Lp[I ×Ω,B(I)×
A, λ × µ;Rd] is a separable Banach space (cf. [31]), Lp(Rd) can be considered as its closed subset so that
it is separable with respect to ||| · |||p. Thus, For any F = {F (t) : t ∈ I} ∈ Lp(K(Rd)), Sp(F ) is separable.
We may ignore almost everywhere problem and assume that the following definition is well-defined for all
(t, ω) ∈ I × Ω rather than for almost everywhere (t, ω) ∈ I × Ω.

Definition 4 Let a set-valued stochastic process F = {F (t) : t ∈ I} ∈ Lp(K(Rd)), 1 ≤ p < +∞. For any
ω ∈ Ω, t ∈ I, define

(A)
∫ t

0

F (s, ω)ds :=
{∫ t

0

f(s, ω)ds : f ∈ Sp(F )
}

,

where
∫ t

0
f(s, ω)ds is the Lebesgue integral. (A)

∫ t

0
F (s, ω)ds is called the Aumann type Lebesgue integral of

set-valued stochastic process F with respect to time t introduced in [14]. For any 0 ≤ u < t < T ,

(A)
∫ t

u

F (s, ω)ds := (A)
∫ t

0

I[u,t](s)F (s, ω)ds.

Remark 1 In the Definition 4, the set of selections is Sp(F ). As a matter of fact, if we only consider the
Lebesgue integral, we can use S1(F ). But we often consider the sum of integral of a set-valued stochastic
process with respect to time t and integral of a set-valued stochastic process with respect to a Brownian
motion, where we have to use S2(F ). Thus we here use Sp(F ) for more general case.
Remark 2 If a set-valued stochastic process F = {F (t) : t ∈ I} ∈ Lp(K(Rd)), then for any t ∈ I, Γ(t) =:
(A)

∫ t

0
F (s)ds is a non-empty subset of Lp[Ω,At, µ;Rd]. Furthermore, if F ∈ Lp(Kc(Rd)), then we can prove

that (A)
∫ t

0
F (s)ds is a non-empty convex subset of Lp[Ω,At, µ;Rd]. However, it is natural to hope that the

result of integral is a set-valued stochastic process taking values in K(Rd) rather than in Lp[Ω,At, µ;Rd]. If
for any fixed t ∈ I, let Γ(t)(ω) =: (A)

∫ t

0
F (s, ω)ds (ω ∈ Ω), we also do not know whether Γ(t)(ω) is a closed

subset or not, whether it is measurable or not. So it is necessary to give a new definition so that the integral
is still a set-valued stochastic process. Since we can not prove directly that {Γ(t) : t ∈ I} is decomposable
with respect to C, we firstly give the definition of decomposable closure.

Definition 5 For any non-empty subset Γ ⊆ Lp[I ×Ω, C, λ× µ;Rd] , define the decomposable closure deΓ of
Γ with respect to C as

deΓ =
{

g = {g(t, ω) : t ∈ I} : for any ε > 0, there exists a C-measurable finite partition

{A1, · · · , An} of I × Ω and f1, · · · , fn ∈ Γ such that |||g −
n∑

i=1

IAifi|||p < ε
}

.

Theorem 2 ([20]) Assume that F = {F (t) : t ∈ I} ∈ Lp(K(Rd)), Γ(t) = (A)
∫ t

0
F (s)ds, then there exists

a C-measurable set-valued stochastic process L(F ) = {Lt(F ) : t ∈ I} ∈ Lp(K(Rd)) such that Sp(L(F )) =
de{Γ(t) : t ∈ I}. Furthermore, if F ∈ Lp(Kc(Rd)), then {Lt(F ) : t ∈ I} ∈ Lp(Kc(Rd)).

The set-valued stochastic process L(F ) = {Lt(F ) : t ∈ I} defined in Theorem 2 is called the Lebesgue
integral of a set-valued stochastic process F = {F (t) : t ∈ I} ∈ Lp(K(Rd)) with respect to the time t, and
denoted as Lt(F ) = (L)

∫ t

0
F (s)ds.

Theorem 3 ([20]) Let F = {F (t) : t ∈ I} ∈ Lp(K(Rd)), then there exists a sequence of Rd-valued stochastic
processes {f i = {f i(t) : t ∈ I} : i ≥ 1} ⊆ Sp(F ) such that

F (t, ω) = cl{f i(t, ω) : i ≥ 1}, a.e. (t, ω) ∈ I × Ω,

and

Lt(F ) = cl
{∫ t

0

f i(s, ω)ds : i ≥ 1
}

a.e. (t, ω) ∈ I × Ω.
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Theorem 4 Let set-valued stochastic process {F (t) : t ∈ I} ∈ L2(K(Rd)). Then there exists a measurable
subset A ⊆ I × Ω with (λ× µ)(A) = 0, so that the following holds

Lt(F )(ω) = cl
{

Lt1(F )(ω) + (L)
∫ t

t1

F (s, ω)ds
}

for any (t, ω), (t1, ω) ∈ I × Ω \A, t1 ≤ t,

where the closure is taken in Rd.

Proof: From Theorem 3, there exist a sequence {(f i(t))t∈I : i = 1, 2, · · ·} ⊆ S2(F (·)) and a measurable subset
A ⊆ I × Ω with (λ× µ)(A) = 0 such that for each (t, ω) ∈ I × Ω \A, we have

F (t, ω) = cl{(f i(t, ω)) : i = 1, 2, · · ·},

and

Lt(F )(ω) = cl
{∫ t

0

f i(s, ω)ds : i = 1, 2, · · ·
}

. (8)

Then for 0 ≤ t1 < t with (t1, ω) ∈ I × Ω \A, we have

Lt1(F )(ω) = cl
{∫ t1

0

f i(s, ω)ds : i = 1, 2, · · ·
}

, (9)

(L)
∫ t

t1

F (s, ω)ds = cl
{∫ t

t1

f i(s, ω)ds : i = 1, 2, · · ·
}

. (10)

It is obvious that

Lt(F )(ω) ⊆ cl
{

Lt1(F )(ω) + (L)
∫ t

t1

F (s, ω)ds
}

.

Conversely, take a ∈ cl{Lt1(F )(ω) + (L)
∫ t

t1
F (s, ω)ds}, by (9) and (10) for any given ε > 0, we can find

m(ε), k(ε) ∈ N , such that
∥∥∥∥a− (

∫ t1

0

fm(ε)(s, ω)ds +
∫ t

t1

fk(ε)(s, ω)ds)
∥∥∥∥ <

ε

2
. (11)

Let g(s, ω) = fm(ε)(s, ω)I[0,t1](s) + fk(ε)(s, ω)I[t1,t](s), where I[0,t1](s) and I[t1,t](s) are indicator functions.
Then

∫ t

0
g(s, ω)ds ∈ Lt(F )(ω). From (8), there exists n(ε) ∈ N , such that

∥∥∥∥
∫ t

0

g(s, ω)ds−
∫ t

0

fn(ε)(s, ω)ds

∥∥∥∥ <
ε

2
. (12)

By (11) and (12), we obtain ∥∥∥∥a−
∫ t

0

fn(ε)(s, ω)ds

∥∥∥∥ < ε,

which implies a ∈ Lt(F )(ω). Thus Lt(F )(ω) ⊇ cl{Lt1(F )(ω) + (L)
∫ t

t1
F (s, ω)ds}.

Now we prove an inequality of set-valued Legesgue integrals which will be used in the next section.

Theorem 5 Let set-valued stochastic processes F = {F (t) : t ∈ I}, G = {G(t) : t ∈ I} ∈ L2(K(Rd)), then
there exists a measurable subset A ⊆ I × Ω with (λ× µ)(A) = 0 so that the following holds

d2
H(Lt(F )(ω), Lt(G)(ω)) ≤ t

∫ t

0

d2
H(F (s, ω), G(s, ω))ds, for any (t, ω) ∈ I × Ω \A.

Proof: Suppose Φ(t) =
∫ t

0
F (s)ds, Ψ(t) =

∫ t

0
G(s)ds. From Theorem 3, there exist {f i = {f i(t) : t ∈ I}, i ≥

1} ⊆ S2(F ), {gj = {gj(t) : t ∈ I}, j ≥ 1} ⊆ S2(G), and a measurable subset A ⊆ I × Ω with (λ× µ)(A) = 0
such that for each (t, ω) ∈ I × Ω \A,

F (t, ω) = cl{f i(t, ω) : i ≥ 1}, G(t, ω) = cl{gj(t, ω) : j ≥ 1},
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and

Φ(t)(ω) = cl
{∫ t

0

f i(s, ω)ds : i ≥ 1
}

,

Ψ(t)(ω) = cl
{∫ t

0

gj(s, ω)ds : j ≥ 1
}

.

Hence, we have

infy∈Lt(G)(ω)

∥∥∥
∫ t

0
f i(s, ω)ds− y

∥∥∥
2

= infj≥1

∥∥∥
∫ t

0
f i(s, ω)ds− ∫ t

0
gj(s, ω)ds

∥∥∥
2

≤ infj≥1 t
∫ t

0
‖f i(s, ω)− gj(s, ω)‖2ds.

Further, we can show along the same arguments as in the proof of [21, Lemma 1.3.12]

infj≥1

∫ t

0
‖f i(s, ω)− gj(s, ω)‖2ds =

∫ t

0
infy∈G(s, ω) ‖f i(s, ω)− y‖2ds

≤ ∫ t

0
d2

H(F (s, ω), G(s, ω))ds.

Noticing that

sup
x∈Lt(F )(ω)

inf
y∈Lt(G)(ω)

‖x− y‖ = sup
i≥1

inf
y∈Lt(G)(ω)

∥∥∥
∫ t

0

f i(s, ω)ds− y
∥∥∥,

we obtain

sup
x∈Lt(F )(ω)

inf
y∈Lt(G)(ω)

‖x− y‖2 ≤ t

∫ t

0

d2
H(F (s, ω), G(s, ω))ds.

Similarly, we have

sup
x∈Lt(G)(ω)

inf
y∈Lt(F )(ω)

‖x− y‖2 ≤ t

∫ t

0

d2
H(F (s, ω), G(s, ω))ds.

Hence, by the definition of Hausdorff distance, we arrive at the result.

3 The Existence and Uniqueness of the Solution of Itô Type Set-
Valued Stochastic Differential Equation

We consider the following Itô type set-valued stochastic differential equation

dF (t) = f(t, F (t))dt + g(t, F (t))dBt, (13)

where the set-valued stochastic process F ∈ L2(K(Rd)) with initial condition F (0) being an L2-bounded set-
valued random variable, f : I ×K(Rd) → K(Rd) is measurable, g : I ×K(Rd) → Rd ⊗Rm is measurable, Bt

is an m-dimensional Brown motion. If f ∈ L2(K(Rd)) and g ∈ L2(Rd⊗Rm), then equation (13) is equivalent
to the integral form:

F (t) = F (0) + (L)
∫ t

0

f(s, F (s))ds +
∫ t

0

g(s, F (s))dBs. (14)

Theorem 6 (Existence and uniqueness Theorem) Assume that f(t, F ), g(t, F ), t ∈ I, F, F1, F2 ∈ K(Rd)
satisfy the following conditions:
(i) Linear increasing condition

‖f(t, F )‖2K + ‖g(t, F )‖2 ≤ K2(1 + ‖F‖2K),

where K is a positive constant.
(ii) Lipschitz continuous condition

dH(f(t, F1), f(t, F2)) + ‖g(t, F1)− g(t, F2)‖ ≤ KdH(F1, F2).

Then for any given initial L2-bounded set-valued random variable F (0), there is a solution to the equation
(13), and the solution is unique in the space of (L2(K(Rd)),∆2).
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Proof: Without loss of generality, we assume that Theorems 4 and 5 are right for all t, t1. If F ∈ L2(K(Rd)),
then for any t ∈ I,

E‖f(t, F (t))‖2K + E‖g(t, F (t))‖2 ≤ K2(1 + E‖F (t)‖2K).

We have f ∈ L2(K(Rd)), g ∈ L2(Rd ⊗Rm).
Step 1. We prove the existence by successively approaching. For simplification, we omit the character “(L)”
before the symbol of the set-valued Lebesgue integral in the proof of this theorem.

For any t ∈ I, define

F0(t) = F (0),

Fn+1(t) = F (0) +
∫ t

0

f(s, Fn(s))ds +
∫ t

0

g(s, Fn(s))dBs, n ≥ 0.

We firstly prove that for any n ≥ 0, Fn is well-defined and satisfies:
(α) Fn ∈ L2(K(Rd));
(β) lim

s→t
Ed2

H(Fn(t), Fn(s)) = 0.

For n = 0, it is obviously right. Suppose that Fn has properties (α), (β) for any fixed n, we shall prove so
does Fn+1. Indeed, since Fn ∈ L2(K(Rd)), f ∈ L2(K(Rd)), let

Y (t) :=
∫ t

0

f(s, Fn(s))ds,

we have that Y ∈ L2(K(Rd)) by the definition of set-valued Legesgue integral. For any s, t ∈ I, by using
triangular inequality and Hölder inequality, we have

∣∣∣E‖Fn(t)‖2K − E‖Fn(s)‖2K
∣∣∣

=
∣∣∣Ed2

H(Fn(t), 0)− Ed2
H(Fn(s), 0)

∣∣∣

≤ E
∣∣∣(dH(Fn(t), 0) + dH(Fn(s), 0))(dH(Fn(t), 0)− dH(Fn(s), 0))

∣∣∣
= E[(dH(Fn(t), 0) + dH(Fn(s), 0))|dH(Fn(t), 0)− dH(Fn(s), 0)|]
≤ E[(dH(Fn(t), 0) + dH(Fn(s), 0))dH(Fn(t), Fn(s))]

≤
(
E[(dH(Fn(t), 0) + dH(Fn(s), 0))2]Ed2

H(Fn(t), Fn(s))
)1/2

≤
(
2E[d2

H(Fn(t), 0) + d2
H(Fn(s), 0)]Ed2

H(Fn(t), Fn(s))
)1/2

.

Thus, we know that E‖Fn(t)‖2K is continuous in I by the assumptions.
By virtue of Theorems 4 and 5 and the assumptions of theorems, we obtain

Ed2
H(Y (t), Y (s)) = Ed2

H

( ∫ t

0

f(s1, Fn(s1))ds1,

∫ s

0

f(s1, Fn(s1))ds1

)

= Ed2
H

(
cl(Ls(f) +

∫ t

s

f(s1, Fn(s1))ds1), Ls(f)
)

≤ Ed2
H

( ∫ t

s

f(s1, Fn(s1))ds1, 0
)

= E
∥∥∥

∫ t

s

f(s1, Fn(s1))ds1

∥∥∥
2

K

≤ E(
∫ t

s

‖f(s1, Fn(s1))‖Kds1)2

≤ (t− s)E
∫ t

s

‖f(s1, Fn(s1))‖2Kds1

≤ (t− s)E
∫ t

s

K2(1 + ‖Fn(s1)‖2K)ds1.
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Thus, Y satisfies properties (α) and (β).
Now we investigate the Itô integral part. Since g(t, Fn(t)) is square integrable, the Itô integral

Z(t) :=
∫ t

0

g(s, Fn(s))dBs

exists and Z(t) is square integrable. By using the properties of the classical Itô integral, we have

E‖Z(t)− Z(s)‖2 = E
∥∥∥

∫ t

0

g(s1, Fn(s1))dBs1 −
∫ s

0

g(s1, Fn(s1))dBs1

∥∥∥
2

= E
∥∥∥

∫ t

s

g(s1, Fn(s1))dBs1

∥∥∥
2

= E

∫ t

s

‖g(s1, Fn(s1))‖2ds1

≤
∫ t

s

K2(1 + E‖Fn(s1)‖2K)ds1.

Hence, Z satisfies (α), (β). Since
Fn+1(t) = F (0) + Y (t) + Z(t),

Fn+1 exists and satisfies (α) and (β).
Next we prove that Fn converges to F in L2(K(Rd)). Let

F0(t) = F (0),

Fn+1(t) = F (t0) +
∫ t

0

f(s, Fn(s))ds +
∫ t

0

g(s, Fn(s))dBs, n ≥ 0.

Then due to the property of dH and triangular inequality, we have

dH(F1(t), F0(t)) = dH

(
F0(t) +

∫ t

0
f(s, F0(s))ds +

∫ t

0
g(s, F0(s))dBs, F0(t)

)

≤ dH

( ∫ t

0
f(s, F0(s))ds, 0

)
+ dH

( ∫ t

0
g(s, F0(s))dBs, 0

)

=
∥∥∥

∫ t

0
f(s, F0(s))ds

∥∥∥
K

+
∥∥∥

∫ t

0
g(s, F0(s))dBs

∥∥∥,

(15)

and for the first part of (15), by the Hölder inequality and the assumptions of theorem, we obtain

E
∥∥∥

∫ t

0
f(s, F0(s))ds

∥∥∥
2

K
≤ E

( ∫ t

0
‖f(s, F0(s))‖Kds

)2

≤ tE(
∫ t

0
‖f(s, F0(s))‖2Kds)

= t
∫ t

0
E‖f(s, F0(s))‖2Kds

≤ tK2
∫ t

0
(1 + E‖F0(s)‖2K)ds

≤ A2t,

(16)

where A2 = K2(1 + E‖F (0)‖2K)T. For the second part of (15), from classical Itô isometric property and the
assumptions of theorem, we have

E
∥∥∥

∫ t

0
g(s, F0(s))dBs

∥∥∥
2

= E
∫ t

0
‖g(s, F0(s))‖2ds

≤ E
∫ t

0
K2(1 + ‖F0(s)‖2K)ds

= tK2(1 + E‖F (0)‖2K)
≤ B2t,

(17)

where B2 = K2(1 + E‖F (0)‖2K). Put (16) (17) into (15), we get

Ed2
H(F1(t), F0(t)) ≤ 2E

∥∥∥
∫ t

0

f(s, F0(s))ds
∥∥∥

2

K
+ 2E

∥∥∥
∫ t

0

g(s, F0(s))dBs

∥∥∥
2

≤ 2(A + B)2t.
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By the same way, we have

Ed2
H(Fn+1(t), Fn(t))

= E
(
dH(F (0) +

∫ t

0

f(s, Fn(s))ds +
∫ t

0

g(s, Fn(s))dBs, F (0)

+
∫ t

0

f(s, Fn−1(s))ds +
∫ t

0

g(s, Fn−1(s))dBs)
)2

≤ E
[
dH(F (0), F (0)

)
+ dH

( ∫ t

0

f(s, Fn(s))ds,

∫ t

0

f(s, Fn−1(s))ds
)

+
∥∥∥

∫ t

0

g(s, Fn(s))dBs −
∫ t

0

g(s, Fn−1(s))dBs

∥∥∥
]2

≤ 2Ed2
H

( ∫ t

0

f(s, Fn(s))ds,

∫ t

0

f(s, Fn−1(s))ds
)

+ 2E
∥∥∥

∫ t

0

g(s, Fn(s))dBs −
∫ t

0

g(s, Fn−1(s))dBs

∥∥∥
2

≤ 2tE

∫ t

0

d2
H(f(s, Fn(s)), f(s, Fn−1(s)))ds

+ 2E

∫ t

0

‖g(s, Fn(s))− g(s, Fn−1(s))‖2ds

≤ 2tE

∫ t

0

K2d2
H(Fn(s), Fn−1(s))ds + 2E

∫ t

0

K2d2
H(Fn(s), Fn−1(s))ds

= 2(t + 1)K2E

∫ t

0

d2
H(Fn(s), Fn−1(s))ds.

Iterating the above process, we obtain

Ed2
H(Fn+1(t), Fn(t)) ≤ K2n2n+1(A + B)2

(t + 1)n

(n + 1)!
,

then

(Ed2
H(Fn+1(t), Fn(t)))1/2 ≤ [K2n2n+1(A + B)2

(T + 1)n+1

(n + 1)!
]1/2. (18)

Since the sum of the right of (18) is a series which is convergent and not dependent on t, we have that for any
t ∈ I,

∆2(Fn(t), Fm(t)) =
(
Ed2

H(Fn(t), Fm(t))
)1/2

≤
n−1∑

k=m

∆2(Fk+1(t), Fk(t))

=
n−1∑

k=m

(
Ed2

H(Fk+1(t), Fk(t))
)1/2 → 0 (m,n →∞),

by noticing the triangular inequality with respect to the metric ∆2. Noting for any m < n, ∆2(Fn(t), Fm(t))
is also bounded in I. Thus, by using Fubini Theorem and bounded dominated theorem, we have

∆2(Fn, Fm) =
[
E

( ∫ T

0

d2
H(Fn(s, ω), Fm(s, ω))ds

)]1/2

→ 0, as m,n →∞,

that is, Fn is convergent to F in L2(K(Rd)). By triangular inequality, we have

Ed2
H(F (s), F (t))
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≤ E
(
dH(F (s), Fn(s)) + dH(Fn(s), Fn(t)) + dH(Fn(t), F (t))

)2

= Ed2
H(F (s), Fn(s)) + Ed2

H(Fn(s), Fn(t)) + Ed2
H(Fn(t), F (t))

+ 2E(dH(F (s), Fn(s))dH(Fn(s), Fn(t))) + 2E(dH(F (s), Fn(s))dH(Fn(t), F (t)))
+ 2E(dH(Fn(s), Fn(t))dH(Fn(t), F (t)))

≤ Ed2
H(F (s), Fn(s)) + Ed2

H(Fn(s), Fn(t)) + Ed2
H(Fn(t), F (t))

+ 2
√

Ed2
H(F (s), Fn(s))Ed2

H(Fn(s), Fn(t)) + 2
√

Ed2
H(F (s), Fn(s))Ed2

H(Fn(t), F (t))

+ 2
√

Ed2
H(Fn(s), Fn(t))Ed2

H(Fn(t), F (t)).

By property (β) and the convergence of Fn, we have lim
s→t

Ed2
H(F (s), F (t)) = 0. Thus the solution of the

set-valued stochastic integral equation is continuous.
Step 2. We prove the uniqueness. Let F and G are two solutions of the equation (14). Similar to the proof
of the existence, we have

Ed2
H(F (t), G(t)) ≤ 2(t + 1)K2E

∫ t

0

d2
H(F (s), G(s))ds. (19)

Since the solutions F, G ∈ L2(K(Rd)), we have

E

∫ t

0

d2
H(F (s), G(s))ds ≤ E

∫ T

0

d2
H(F (s), G(s))ds

≤ 2E

∫ T

0

(‖F (s)‖2K + ‖G(s)‖2K)ds

= C2 < ∞.

Together with (19) once, we have

Ed2
H(F (t), G(t)) ≤ 2(t + 1)K2C2.

Together with (19) twice, we have

Ed2
H(F (t), G(t)) ≤ 2(t + 1)K2E

∫ t

0

d2
H(F (s), G(s))ds

= 2(t + 1)K2

∫ t

0

2(s + 1)K2C2ds

≤ 22(t + 1)2K2·2
∫ t

0

C2ds

= (2K2)2(t + 1)2C2t.

Iterating the above process, we get

Ed2
H(F (t), G(t)) ≤ K2(n+1)(2(t + 1))n+1C2 tn

n!
. (20)

Let n → ∞, the right of (20) converges to 0. By using Fubini theorem and classical bounded dominated
theorem, we have

∆2(F, G) =
[
E

( ∫ T

0

d2
H(F (s, ω), F (s, ω))ds

)]1/2

≤ 0, as n →∞,

the uniqueness is proved.
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