Itô Type Set-Valued Stochastic Differential Equation*

Jungang Li†, Shoumei Li
Department of Applied Mathematics, Beijing University of Technology
100 Pingleyuan, Chaoyang District, Beijing, 100124, P.R.China

Received 20 October 2008; Accepted 16 November 2008

Abstract

In this paper, we firstly illustrate why we should introduce the Itô type set-valued stochastic differential equation and then recall some basic results about the Lebesgue integral of a set-valued stochastic process with respect to time t. Secondly we obtain some new properties of the set-valued Lebesgue integral, especially inequality of the set-valued Lebesgue integrals. Finally we prove a theorem of existence and uniqueness of solution of Itô type set-valued stochastic differential equation.

Keywords: set-valued stochastic process, set-valued stochastic differential equation, set-valued Lebesgue integral, Itô integral

1 Introduction

Stochastic differential inclusions as a special form of stochastic differential equations appear in a natural way as a theoretical description of stochastic control problems (cf. [15]). Stochastic differential inclusion is

\[dx_t \in F(t, x_t)dt + G(t, x_t)dB_t, \quad x_0 = \xi, \]

which can be written as the following stochastic integral form

\[x_t - x_s \in \text{cl}\ell L^2 \left(\int_s^t F(\tau, x_\tau) d\tau + G(\tau, x_\tau) dB_\tau \right), \quad s, t \in [0, T], \]

where \(F, G \) are set-valued stochastic processes, \(B = (B_t)_{t \in I} \) is a Brownian motion. In (1), there are two parts: one part is \(F(t, x_t)dt \), which is related to the integral of a set-valued stochastic process with respect to time \(t \), and the other part is \(G(t, x_t)dB_t \), which is related to the Itô integral of a set-valued stochastic process with respect to the Brownian motion \(B_t \).

In [12], Kim used the definition of stochastic integral of a set-valued stochastic process with respect to the Brownian motion introduced by Kisielewicz in [14] and discussed its properties. We called it the Aumann type Itô integral since the idea came from the Aumann integral of a set-valued function [2]. In [10], Jung and Kim gave a new definition with basic space being \(R \) by taking fixed time \(t \). It may be more suitable to treat a set-valued stochastic process as a whole. In [23], Li and Ren introduced a new way to define the Itô integral of set-valued stochastic processes and discussed its properties.

There are many related former works about set-valued Lebesgue integral. Based on the work of Richter [29] and Kudo [19], Aumann introduced Aumann type Lebesgue integral of set-valued functions and discussed its properties in [2]. Kisielewicz introduced Aumann type Lebesgue integral of set-valued stochastic processes in [13]. Kisielewicz with his colleagues discussed stochastic differential inclusions, especially their solutions in [13]–[17]. In [20], Li and Li discussed more properties of the Lebesgue integral of set-valued stochastic processes. We would like to refer to related works such as [5], [24], [26], [32] and so on. In this paper, we shall continue to discuss the properties of the Lebesgue integral of set-valued stochastic processes, especially the inequality of the Lebesgue integrals, which is necessary to discuss set-valued stochastic differential equations.

*Research partially supported by NSFC(No.10771010), Research Fund of Beijing Educational Committee, PHR(IHLB) and 111 Talent Project Fund of BJUT, P.R. China.

†Corresponding author. Email: jungangl@yahoo.cn (J. Li)
It is well known that classical Itô type stochastic differential equations have been widely used in the stochastic control (e.g. [25]) and financial mathematics (e.g. [4], [11]). The Itô type set-valued stochastic differential equation is
\[dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t, \tag{3} \]
where \(b(t, X_t) \) takes values in the space \(K(R^d) \) (the set of all nonempty closed subsets of \(R^d \)), \(\sigma(t, X_t) \) takes values in the space \(K(R^d \otimes R^m) \) (the set of all nonempty closed subsets of matrix space \(R^d \otimes R^m \)) and \(B_t \) is an \(m \)-dimensional Brownian motion. (3) can be written as set-valued stochastic integral form
\[X_t = X_0 + (L) \int_0^t b(t, X_t)dt + (I) \int_0^t \sigma(t, X_t)dB_t, \tag{4} \]
where \((L) \int_0^t b(t, X_t)dt\) is the set-valued Lebesgue integral and \((I) \int_0^t \sigma(t, X_t)dB_t\) is the set-valued Itô integral. If \(\sigma(t, X_t) \in R^d \otimes R^m \), then we have
\[X_t = X_0 + (L) \int_0^t b(t, X_t)dt + \int_0^t \sigma(t, X_t)dB_t, \tag{5} \]
where \(\int_0^t \sigma(t, X_t)dB_t \) is the classical Itô integral.

There are few papers about the Itô type set-valued stochastic differential equations, even in the special case (5). But we know there is a paper about the Itô type fuzzy stochastic differential equations. In [7], Hu et al. used Hukuhara difference to define the differentiability and to discuss the Itô type fuzzy stochastic differential equations in the special case \(\sigma(t, X_t) \in R^d \otimes R^m \), i.e. the equation (5). But since it is well-known that the space of all closed subsets of even \(R \) (the space of all real numbers) is not linear with respect to the addition and scalar multiplication, it leads to a big problem: under what conditions does the Hukuhara difference exist? It is a difficult problem so that they simply assume that the Hukuhara difference of a stochastic process at any two different times always exists. In this paper, we shall use selection method to consider the same type problem as in [7] without using the Hukuhara difference. We shall consider the Itô type set-valued stochastic integral equation (5), discuss the existence and uniqueness of its solution. By using level set method [28], we may easily extend the set-valued case to fuzzy set-valued case.

We organize our paper as follows. In Section 2, we introduce some necessary notations, definitions and results about set-valued stochastic processes and set-valued Lebesgue integral, and then we shall prove some new properties, especially inequality of set-valued Lebesgue integrals. In Section 3, we give a set-valued stochastic differential equation of Itô type, and prove the theorem of existence and uniqueness of solution to this kind of set-valued stochastic differential equation.

2 Stochastic Integral of Set-Valued Stochastic Processes and its Properties

Throughout this paper, assume that \((\Omega, \mathcal{A}, \mu)\) is a complete probability space, the \(\sigma\)-field filtration \(\{\mathcal{A}_t : t \in I\}\) satisfies the usual conditions (i.e. containing all null sets, non-decreasing and right continuous), \(I = [0, T]\) with \(T > 0\), \(R\) is the set of all real numbers, \(N\) is the set of all natural numbers, \(R^d\) is the \(d\)-dimensional Euclidean space with usual norm \(\| \cdot \|\), \(\mathcal{B}(E)\) is the Borel field of the space \(E\). Let \(f = \{f(t), \mathcal{A}_t : t \in I\}\) be a \(R^d\)-valued adapted stochastic process. It is said that \(f\) is progressively measurable if for any \(t \in I\), the mapping \((s, \omega) \mapsto f(s, \omega)\) from \([0, t] \times \Omega\) to \(R^d\) is \(\mathcal{B}([0, t]) \times \mathcal{A}_t\)-measurable. If let
\[\mathcal{C} = \{A \subseteq I \times \Omega : \forall t \in I, A \cap ([0, t] \times \Omega) \in \mathcal{B}([0, t]) \times \mathcal{A}_t\}, \]
then \(f\) is progressively measurable if and only if \(f\) is \(\mathcal{C}\)-measurable. Each right continuous (left continuous) adapted process is progressively measurable.

Assume that \(L^p(R^d)\) \((p \geq 1)\) denotes the set of \(R^d\)-valued stochastic processes \(f = \{f(t), \mathcal{A}_t : t \in I\}\) such that \(f\) satisfying (a) \(f\) is progressively measurable; and (b)
\[\|f\|_p = \left[E \left(\int_0^T \|f(t, \omega)\|^p ds \right) \right]^{1/p} < \infty. \tag{6} \]
Let \(f, f' \in L^p(\mathbb{R}^d) \), \(f = f' \) if and only if \(\|f - f'\|_p = 0 \). Then \((L^p(\mathbb{R}^d), \|\cdot\|_p) \) is complete.

Now we review notation and concepts of set-valued stochastic processes.

Assume that \(\mathbf{K}(R^d) \) is the family of all nonempty, closed subsets of \(R^d \), and \(\mathbf{K}_c(R^d) \) (resp. \(\mathbf{K}_k(R^d) \)) is the family of all nonempty closed convex (resp. compact, compact convex) subsets of \(R^d \). For any \(x \in R^d \), \(A \) is a nonempty subset of \(R^d \), define the distance between \(x \) and \(A \) as \(d(x, A) = \inf_{y \in A} \|x - y\| \).

The Hausdorff metric on \(\mathbf{K}(R^d) \) is defined as

\[
d_H(A, B) = \max\{\sup_{a \in A} d(a, B), \sup_{b \in B} d(b, A)\}
\]

for \(A, B \in \mathbf{K}(R^d) \). For \(B \in \mathbf{K}(R^d) \), define \(\|B\|_H = d_H(\{0\}, B) = \sup_{a \in B} \|a\| \).

For a set-valued random variable \(F \) (cf. \([6], [21]\)), define the set

\[
S^p_F = \{ f \in L^p[\Omega; R^d] : f(\omega) \in F(\omega) \ \text{a.e.} \},
\]

where \(L^p[\Omega; R^d] \) is the set of all \(R^d \)-valued random variables \(f \) such that \(\|f\|_p = [E(\|f\|^p)]^{1/p} < \infty \). The expectation of \(F \) is defined as \(E[F] = \{E[f] : f \in S^p_F\} \). It is called Aumann integrable introduced by Aumann in 1965 (cf. \([2]\)). A set-valued random variable \(F : \Omega \to \mathbf{K}(R^d) \) is called integrable if \(S^p_F \) is non-empty. \(F \) is called \(L^p \)-bounded if \(\int_{\Omega} \|F(\omega)\|^p d\mu < \infty \). Let \(L^p[\Omega; \mathbf{K}(R^d)] \) (resp. \(L^p[\Omega; \mathbf{K}_c(R^d)] \), \(L^p[\Omega; \mathbf{K}_k(R^d)] \)) denote the family of \(\mathbf{K}(R^d) \)-valued (resp. \(\mathbf{K}_c(R^d) \), \(\mathbf{K}_k(R^d) \)-valued) \(L^p \)-bounded random variables. For any two set-valued random variables \(F_1, F_2 \in L^p[\Omega; \mathbf{K}(R^d)] \), define

\[
\Delta_p(F_1, F_2) = \left(\int_{\Omega} \|d_H(F_1(\omega), F_2(\omega))\| d\mu \right)^{1/p},
\]

then \((L^p[\Omega; \mathbf{K}(R^d)], \Delta_p) \) is a complete space. Concerning more definitions and more results of set-valued random variables, readers could refer to \([6]\) or \([21]\).

Definition 1 A set-valued stochastic process \(F = \{F(t) : t \in I\} \) is called progressively measurable, if it is \(\mathcal{C} \)-measurable, i.e., for any \(A \in \mathcal{B}(R^d) \), \(\{s, \omega) \in I \times \Omega : F(s, \omega) \cap A \neq \emptyset \} \in \mathcal{C} \). \(F \) is called \(L^p \)-bounded, if the real stochastic process \(\{||F(t)||_K, A_t : t \in I\} \in L^p(R) \).

Definition 2 A \(R^d \)-valued process \(\{f(t), A_t : t \in I\} \in L^p(R^d) \) is called an \(L^p \)-selection of \(F = \{F(t), A_t : t \in I\} \) if \(f(t, \omega) \in F(t, \omega) \ \text{a.e.} (t, \omega) \in I \times \Omega \).

Let \(S^p(F) \) or \(S^p(F) \) denote the family of all \(L^p \)-selections of \(F = \{F(t), A_t : t \in I\} \), i.e.

\[
S^p(F) = \{ \{f(t)\} \in L^p(R^d) : f(t, \omega) \in F(t, \omega), \ a.e. \ (t, \omega) \in I \times \Omega \}.
\]

Let \(L^p(\mathbf{K}(R^d)) \) denote the set of all \(L^p \)-bounded progressively measurable \(\mathbf{K}(R^d) \)-valued stochastic processes.

Similarly, we have notations \(L^p(\mathbf{K}_c(R^d)) \), \(L^p(\mathbf{K}_k(R^d)) \) and \(L^p(\mathbf{K}_k(R^d)) \). Take \(F_i = \{F_i(t) : t \in I\} \in L^p(\mathbf{K}(R^d)) \), \(i = 1, 2 \), define

\[
\Delta_p(F_1, F_2) = \left(E\left(\int_0^T d_H(F_1(s, \omega), F_2(s, \omega)) ds \right) \right)^{1/p}.
\]

\(F_1 \) and \(F_2 \) are said to be equivalent, if \(\Delta_p(F_1, F_2) = 0 \), denoted by \(F_1 = F_2 \). We have that \((L^p(\mathbf{K}(R^d)), \Delta_p) \) is complete, \(L^p(\mathbf{K}_c(R^d)) \), \(L^p(\mathbf{K}_k(R^d)) \) and \(L^p(\mathbf{K}_k(R^d)) \) are closed subsets of \((L^p(\mathbf{K}(R^d)), \Delta_p) \). Denote \(\|F\|_p = \left(E\left(\int_0^T \|F(s)\|_K ds \right) \right)^{1/p} \).

Now we introduce the concept of decomposability.

Definition 3 A non-empty set \(\Gamma \subseteq L^p(R^d) \) is called decomposable with respect to the progressively measurable \(\sigma \)-field \(\mathcal{C} \), if for any \(f, g \in \Gamma \), any \(U \in \mathcal{C} \), we have \(I_U \cdot f + I_U \cdot g \in \Gamma \).

Firstly, we know that for any set-valued progressively measurable stochastic process \(F \in L^p(\mathbf{K}(R^d)) \), \(S^p(F) \) is decomposable with respect to \(\sigma \)-field \(\mathcal{C} \). Furthermore we have the following Theorem.
There exists a progressively measurable set-valued stochastic process \(\Gamma \) is decomposable with respect to progressively measurable \(\sigma \)-field \(\mathcal{C} \) if and only if there exists a progressively measurable set-valued stochastic process \(F \in \mathcal{L}^p(\mathcal{K}(R^d)) \) such that \(\Gamma = S^p(F) \). Furthermore, \(\Gamma \) is convex if and only if \(F \in \mathcal{L}^p(\mathcal{K}_c(R^d)) \).

Now we consider the integral of set-valued stochastic process. To avoid trouble of dealing with almost every problem, we assume that \(\mathcal{A} \) is \(\mu \)-separable in the following. In this case, for any \(p \geq 1 \), \(\mathcal{L}^p[\mathcal{I} \times \Omega, \mathcal{B}(\mathcal{I}) \times \mathcal{A}, \lambda \times \mu; R^d] \) is a separable Banach space (cf. [31]), \(\mathcal{L}^p(R^d) \) can be considered as its closed subset so that it is separable with respect to \(||| \cdot |||_p \). Thus, For any \(F = \{ F(t) : t \in I \} \in \mathcal{L}^p(\mathcal{K}(R^d)) \), \(S^p(F) \) is separable. We may ignore almost everywhere problem and assume that the following definition is well-defined for all \((t, \omega) \in I \times \Omega \) rather than for almost everywhere \((t, \omega) \in I \times \Omega \).

Definition 4 Let a set-valued stochastic process \(F = \{ F(t) : t \in I \} \in \mathcal{L}^p(\mathcal{K}(R^d)) \), \(1 \leq p < +\infty \). For any \(\omega \in \Omega \), \(t \in I \), define

\[
(A) \int_0^t F(s, \omega)ds := \left\{ \int_0^t f(s, \omega)ds : f \in S^p(F) \right\},
\]

where \(\int_0^t f(s, \omega)ds \) is the Lebesgue integral. \((A) \int_0^t F(s, \omega)ds \) is called the Aumann type Lebesgue integral of set-valued stochastic process \(F \) with respect to time \(t \) introduced in [14]. For any \(0 \leq u < t < T \),

\[
(A) \int_u^t F(s, \omega)ds := (A) \int_0^t I_{[u,t]}(s)F(s, \omega)ds.
\]

Remark 1 In the Definition 4, the set of selections is \(S^p(F) \). As a matter of fact, if we only consider the Lebesgue integral, we can use \(S^1(F) \). But we often consider the sum of integral of a set-valued stochastic process with respect to time \(t \) and integral of a set-valued stochastic process with respect to a Brownian motion, where we have to use \(S^p(F) \). Thus we here use \(S^p(F) \) for more general case.

Remark 2 If a set-valued stochastic process \(F = \{ F(t) : t \in I \} \in \mathcal{L}^p(\mathcal{K}(R^d)) \), then for any \(t \in I \), \(\Gamma(t) := (A) \int_0^t F(s)ds \) is a non-empty subset of \(\mathcal{L}^p[\Omega, \mathcal{A}, \mu; R^d] \). Furthermore, if \(F \in \mathcal{L}^p(\mathcal{K}_c(R^d)) \), then we can prove that \((A) \int_0^t F(s)ds \) is a non-empty convex subset of \(\mathcal{L}^p[\Omega, \mathcal{A}, \mu; R^d] \). However, it is natural to hope that the result of integral is a set-valued stochastic process taking values in \(\mathcal{K}(R^d) \) rather than in \(\mathcal{L}^p[\Omega, \mathcal{A}, \mu; R^d] \). If for any fixed \(t \in I \), let \(\Gamma(t)(\omega) := (A) \int_0^t F(s, \omega)ds \) \((\omega \in \Omega) \), we also do not know whether \(\Gamma(t)(\omega) \) is a closed subset or not, whether it is measurable or not. So it is necessary to give a new definition so that the integral is still a set-valued stochastic process. Since we can not prove directly that \(\{ \Gamma(t) : t \in I \} \) is decomposable with respect to \(\mathcal{C} \), we firstly give the definition of decomposable closure.

Definition 5 For any non-empty subset \(\Gamma \subseteq \mathcal{L}^p[\mathcal{I} \times \Omega, \mathcal{C}, \lambda \times \mu; R^d] \), define the decomposable closure \(\overline{\Gamma} \) of \(\Gamma \) with respect to \(\mathcal{C} \) as

\[
\overline{\Gamma} = \left\{ \{ g(t, \omega) : t \in I \} : \text{for any } \varepsilon > 0, \text{there exists a } \mathcal{C}\text{-measurable finite partition } \{ A_1, \ldots, A_n \} \text{ of } I \times \Omega \text{ and } f_1, \ldots, f_n \in \Gamma \text{ such that } \| g - \sum_{i=1}^n I_{A_i} f_i \|_p < \varepsilon \right\}.
\]

Theorem 2 \((20)\) Assume that \(F = \{ F(t) : t \in I \} \in \mathcal{L}^p(\mathcal{K}(R^d)) \), \(\Gamma(t) := (A) \int_0^t F(s)ds \), then there exists a \(\mathcal{C}\)-measurable set-valued stochastic process \(L(F) = \{ L_t(F) : t \in I \} \in \mathcal{L}^p(\mathcal{K}(R^d)) \) such that \(S^p(L(F)) = \overline{\mathcal{C}\Gamma} \{ \Gamma(t) : t \in I \} \). Furthermore, if \(F \in \mathcal{L}^p(\mathcal{K}_c(R^d)) \), then \(\{ L_t(F) : t \in I \} \in \mathcal{L}^p(\mathcal{K}_c(R^d)) \).

The set-valued stochastic process \(L(F) = \{ L_t(F) : t \in I \} \) defined in Theorem 2 is called the Lebesgue integral of a set-valued stochastic process \(F = \{ F(t) : t \in I \} \in \mathcal{L}^p(\mathcal{K}(R^d)) \) with respect to the time \(t \), and denoted as \(L_t(F) = (L) \int_0^t F(s)ds \).

Theorem 3 \((20)\) Let \(F = \{ F(t) : t \in I \} \in \mathcal{L}^p(\mathcal{K}(R^d)) \), then there exists a sequence of \(R^d \)-valued stochastic processes \(\{ F^i(t) : t \in I \} : i \geq 1 \} \subseteq \mathcal{S}^p(F) \) such that

\[
F(t, \omega) = \text{cl} \{ F^i(t, \omega) : i \geq 1 \}, \text{ a.e. } (t, \omega) \in I \times \Omega,
\]

and

\[
L_t(F) = \text{cl} \{ \int_0^t F^i(s, \omega)ds : i \geq 1 \} \text{ a.e. } (t, \omega) \in I \times \Omega.
\]
Theorem 4 Let set-valued stochastic process \(\{F(t) : t \in I\} \in \mathcal{L}^2(K(R^d)) \). Then there exists a measurable subset \(A \subseteq I \times \Omega \) with \((\lambda \times \mu)(A) = 0 \), so that the following holds

\[
L_t(F)(\omega) = \overline{\left\{ L_{t_1}(F)(\omega) + \left(L \int_{t_1}^t F(s, \omega)ds \right) \mid t_1 \leq t \right\}}
\]

for any \((t, \omega), (t_1, \omega) \in I \times \Omega \setminus A, \ t_1 \leq t,\)

where the closure is taken in \(R^d \).

Proof: From Theorem 3, there exist a sequence \(\{(f^i(t))_{t \in I} : i = 1, 2, \cdots \} \subseteq S^2(F(\cdot)) \) and a measurable subset \(A \subseteq I \times \Omega \) with \((\lambda \times \mu)(A) = 0\) such that for each \((t, \omega) \in I \times \Omega \setminus A\), we have

\[
F(t, \omega) = \overline{\{ (f^i(t, \omega)) : i = 1, 2, \cdots \}},
\]

and

\[
L_t(F)(\omega) = \overline{\left\{ \int_0^t f^i(s, \omega)ds : i = 1, 2, \cdots \right\}}.
\]

Then for \(0 \leq t_1 < t \) with \((t_1, \omega) \in I \times \Omega \setminus A\), we have

\[
L_{t_1}(F)(\omega) = \overline{\left\{ \int_0^{t_1} f^i(s, \omega)ds : i = 1, 2, \cdots \right\}},
\]

\[
(L) \int_{t_1}^t F(s, \omega)ds = \overline{\left\{ \int_{t_1}^t f^i(s, \omega)ds : i = 1, 2, \cdots \right\}}.
\]

It is obvious that

\[
L_t(F)(\omega) \subseteq \overline{\left\{ L_{t_1}(F)(\omega) + (L) \int_{t_1}^t F(s, \omega)ds \right\}}.
\]

Conversely, take \(a \in \overline{\{L_{t_1}(F)(\omega) + (L) \int_{t_1}^t F(s, \omega)ds\}}\), by (9) and (10) for any given \(\epsilon > 0 \), we can find \(m(\epsilon), k(\epsilon) \in N \), such that

\[
\left\| a - \left(\int_0^{t_1} f^{m(\epsilon)}(s, \omega)ds + \int_{t_1}^t f^{k(\epsilon)}(s, \omega)ds \right) \right\| < \frac{\epsilon}{2}.
\]

Let \(g(s, \omega) = f^{m(\epsilon)}(s, \omega)I_{[0,t_1]}(s) + f^{k(\epsilon)}(s, \omega)I_{[t_1,t]}(s) \), where \(I_{[0,t_1]}(s) \) and \(I_{[t_1,t]}(s) \) are indicator functions. Then \(\int_0^t g(s, \omega)ds \in L_t(F)(\omega) \). From (8), there exists \(n(\epsilon) \in N \), such that

\[
\left\| \int_0^t f^{n(\epsilon)}(s, \omega)ds - \int_0^t f^{m(\epsilon)}(s, \omega)ds \right\| < \frac{\epsilon}{2}.
\]

By (11) and (12), we obtain

\[
\left\| a - \int_0^t f^{n(\epsilon)}(s, \omega)ds \right\| < \epsilon,
\]

which implies \(a \in L_t(F)(\omega) \). Thus \(L_t(F)(\omega) \subseteq \overline{\{L_{t_1}(F)(\omega) + (L) \int_{t_1}^t F(s, \omega)ds\}} \).

Now we prove an inequality of set-valued Legesgue integrals which will be used in the next section.

Theorem 5 Let set-valued stochastic processes \(F = \{F(t) : t \in I\}, G = \{G(t) : t \in I\} \in \mathcal{L}^2(K(R^d)) \), then there exists a measurable subset \(A \subseteq I \times \Omega \) with \((\lambda \times \mu)(A) = 0\) so that the following holds

\[
d_H^2(L_t(F)(\omega), L_t(G)(\omega)) \leq \int_0^t d_H^2(F(s, \omega), G(s, \omega))ds,
\]

for any \((t, \omega) \in I \times \Omega \setminus A\).

Proof: Suppose \(\Phi(t) = \int_0^t F(s)ds, \Psi(t) = \int_0^t G(s)ds \). From Theorem 3, there exist \(\{f^i = \{f^i(t) : t \in I\}, i \geq 1\} \subseteq S^2(F), \{g^j = \{g^j(t) : t \in I\}, j \geq 1\} \subseteq S^2(G) \), and a measurable subset \(A \subseteq I \times \Omega \) with \((\lambda \times \mu)(A) = 0\) such that for each \((t, \omega) \in I \times \Omega \setminus A\),

\[
F(t, \omega) = \overline{\{f^i(t, \omega) : i \geq 1\}}, \quad G(t, \omega) = \overline{\{g^j(t, \omega) : j \geq 1\}}.
\]
and
\[
\Phi(t)(\omega) = \text{cl}\left\{ \int_0^t f^i(s, \omega) ds : i \geq 1 \right\},
\]
\[
\Psi(t)(\omega) = \text{cl}\left\{ \int_0^t g^j(s, \omega) ds : j \geq 1 \right\}.
\]
Hence, we have
\[
\inf_{y \in \mathcal{L}_1(F)(\omega)} \left\| \int_0^t f^i(s, \omega) ds - y \right\|^2 = \inf_{j \geq 1} \left\| \int_0^t f^i(s, \omega) ds - \int_0^t g^j(s, \omega) ds \right\|^2
\]
\[
\leq \inf_{j \geq 1} t \int_0^t \left\| f^i(s, \omega) - g^j(s, \omega) \right\|^2 ds.
\]
Further, we can show along the same arguments as in the proof of [21, Lemma 1.3.12]
\[
\inf_{j \geq 1} \int_0^t \left\| f^i(s, \omega) - g^j(s, \omega) \right\|^2 ds = \int_0^t \inf_{y \in \mathcal{L}_1(G)(\omega)} \left\| f^i(s, \omega) - y \right\|^2 ds
\]
\[
\leq \int_0^t d^2_H(F(s, \omega), G(s, \omega))ds.
\]
Noticing that
\[
\sup_{x \in \mathcal{L}_1(F)(\omega)} \inf_{y \in \mathcal{L}_1(G)(\omega)} \left\| x - y \right\| = \sup_{i \geq 1} \inf_{y \in \mathcal{L}_1(G)(\omega)} \left\| \int_0^t f^i(s, \omega) ds - y \right\|
\]
we obtain
\[
\sup_{x \in \mathcal{L}_1(F)(\omega)} \inf_{y \in \mathcal{L}_1(G)(\omega)} \left\| x - y \right\|^2 \leq t \int_0^t d^2_H(F(s, \omega), G(s, \omega))ds.
\]
Similarly, we have
\[
\sup_{x \in \mathcal{L}_1(G)(\omega)} \inf_{y \in \mathcal{L}_1(F)(\omega)} \left\| x - y \right\|^2 \leq t \int_0^t d^2_H(F(s, \omega), G(s, \omega))ds.
\]
Hence, by the definition of Hausdorff distance, we arrive at the result.

3 The Existence and Uniqueness of the Solution of Itô Type Set-Valued Stochastic Differential Equation

We consider the following Itô type set-valued stochastic differential equation
\[
dF(t) = f(t, F(t))dt + g(t, F(t))dB_t,
\]
where the set-valued stochastic process \(F \in \mathcal{L}^2(K(R^d)) \) with initial condition \(F(0) \) being an \(L^2 \)-bounded set-valued random variable, \(f : I \times K(R^d) \to K(R^d) \) is measurable, \(g : I \times K(R^d) \to R^d \) is measurable, \(B_t \) is an \(m \)-dimensional Brown motion. If \(f \in \mathcal{L}^2(K(R^d)) \) and \(g \in \mathcal{L}^2(R^d \otimes R^m) \), then equation (13) is equivalent to the integral form:
\[
F(t) = F(0) + (L) \int_0^t f(s, F(s)) ds + \int_0^t g(s, F(s)) dB_s.
\]

Theorem 6 (Existence and uniqueness Theorem) Assume that \(f(t, F), g(t, F), t \in I, F, F_1, F_2 \in K(R^d) \) satisfy the following conditions:
(i) Linear increasing condition
\[
\| f(t, F) \|_K^2 + \| g(t, F) \|_K^2 \leq K^2(1 + \| F \|_K^2),
\]
where \(K \) is a positive constant.
(ii) Lipschitz continuous condition
\[
d_H(f(t, F_1), f(t, F_2)) + \| g(t, F_1) - g(t, F_2) \| \leq K d_H(F_1, F_2).
\]
Then for any given initial \(L^2 \)-bounded set-valued random variable \(F(0) \), there is a solution to the equation (13), and the solution is unique in the space of \((\mathcal{L}^2(K(R^d)), \Delta_2) \).
Proof: Without loss of generality, we assume that Theorems 4 and 5 are right for all \(t, t_1\). If \(F \in \mathcal{L}^2(K(R^d))\), then for any \(t \in I\),

\[
E\|f(t, F(t))\|_K^2 + E\|g(t, F(t))\|^2 \leq K^2(1 + E\|F(t)\|_K^2).
\]

We have \(f \in \mathcal{L}^2(K(R^d)), g \in \mathcal{L}^2(R^d \otimes R^n)\).

Step 1. We prove the existence by successively approaching. For simplification, we omit the character “(L)” before the symbol of the set-valued Lebesgue integral in the proof of this theorem.

For any \(t \in I\), define

\[
F_0(t) = F(0), \quad F_{n+1}(t) = F(0) + \int_0^t f(s, F_n(s))ds + \int_0^t g(s, F_n(s))dB_s, \quad n \geq 0.
\]

We firstly prove that for any \(n \geq 0\), \(F_n\) is well-defined and satisfies:

(\(\alpha\)) \(F_n \in \mathcal{L}^2(K(R^d))\);

(\(\beta\)) \(\lim_{n \to \infty} Ed_H^2(F_n(t), F_n(s)) = 0\).

For \(n = 0\), it is obviously right. Suppose that \(F_n\) has properties (\(\alpha\)), (\(\beta\)) for any fixed \(n\), we shall prove so does \(F_{n+1}\). Indeed, since \(F_n \in \mathcal{L}^2(K(R^d)), f \in \mathcal{L}^2(K(R^d))\), let

\[
Y(t) := \int_0^t f(s, F_n(s))ds,
\]

we have that \(Y \in \mathcal{L}^2(K(R^d))\) by the definition of set-valued Lebesgue integral. For any \(s, t \in I\), by using triangular inequality and Hölder inequality, we have

\[
\left| E\|F_n(t)\|_K^2 - E\|F_n(s)\|_K^2 \right| \\
= \left| Ed_H^2(F_n(t), 0) - Ed_H^2(F_n(s), 0) \right| \\
\leq E\left| d_H(F_n(t), 0) + d_H(F_n(s), 0) \right| d_H(F_n(t), 0) - d_H(F_n(s), 0) \right| \\
= E[d_H(F_n(t), 0) + d_H(F_n(s), 0)][d_H(F_n(t), 0) - d_H(F_n(s), 0)] \\\n\leq E(d_H(F_n(t), 0) + d_H(F_n(s), 0))d_H(F_n(t), F_n(s)) \\\n\leq \left(E[d_H(F_n(t), 0) + d_H(F_n(s), 0)]^2 Ed_H^2(F_n(t), F_n(s)) \right)^{1/2} \\\n\leq \left(2 Ed_H^2(F_n(t), 0) + Ed_H^2(F_n(s), 0) Ed_H^2(F_n(t), F_n(s)) \right)^{1/2}. \\
\]

Thus, we know that \(E\|F_n(t)\|_K^2\) is continuous in \(I\) by the assumptions.

By virtue of Theorems 4 and 5 and the assumptions of theorems, we obtain

\[
Ed_H^2(Y(t), Y(s)) = Ed_H^2\left(\int_0^t f(s_1, F_n(s_1))ds_1, \int_0^t f(s_1, F_n(s_1))ds_1 \right) \\
= Ed_H^2\left(\int_0^t f(s_1, F_n(s_1))ds_1 + L_s(f) \right) \\
\leq Ed_H^2\left(\int_0^t f(s_1, F_n(s_1))ds_1, 0 \right) \\
= E\left(\int_s^t \|f(s_1, F_n(s_1))\|_K ds_1 \right)^2 \\
\leq E\left(\int_s^t \|f(s_1, F_n(s_1))\|_K ds_1 \right)^2 \\
\leq (t - s)E\left(\int_s^t \|f(s_1, F_n(s_1))\|_K ds_1 \right)^2 \\
\leq (t - s)E\int_s^t K^2(1 + \|F_n(s_1)\|_K)ds_1.
\]
Thus, \(Y \) satisfies properties (\(\alpha \)) and (\(\beta \)).

Now we investigate the Itô integral part. Since \(g(t, F_n(t)) \) is square integrable, the Itô integral

\[
Z(t) := \int_0^t g(s, F_n(s)) dB_s
\]

exists and \(Z(t) \) is square integrable. By using the properties of the classical Itô integral, we have

\[
E\|Z(t) - Z(s)\|^2 = E\left\| \int_s^t g(s, F_n(s)) dB_s - \int_s^t g(s, F_n(s)) dB_s \right\|^2
\]

\[
= E\| \int_s^t g(s, F_n(s)) dB_s \|^2
\]

\[
= E \int_s^t \| g(s, F_n(s)) \|^2 ds
\]

\[
\leq \int_s^t K^2 (1 + E\|F_n(s)\|^2_\mathcal{K}) ds.
\]

Hence, \(Z \) satisfies (\(\alpha \)), (\(\beta \)). Since

\[
F_{n+1}(t) = F(0) + Y(t) + Z(t),
\]

\(F_{n+1} \) exists and satisfies (\(\alpha \)) and (\(\beta \)).

Next we prove that \(F_n \) converges to \(F \) in \(L^2(\mathcal{K}(\mathbb{R}^d)) \). Let

\[
F_0(t) = F(0),
\]

\[
F_{n+1}(t) = F(t_0) + \int_0^t f(s, F_n(s)) ds + \int_0^t g(s, F_n(s)) dB_s, \quad n \geq 0.
\]

Then due to the property of \(d_H \) and triangular inequality, we have

\[
d_H(F_1(t), F_0(t)) = d_H \left(F_0(t) + \int_0^t f(s, F_0(s)) ds + \int_0^t g(s, F_0(s)) dB_s, F_0(t) \right)
\]

\[
\leq d_H \left(\int_0^t f(s, F_0(s)) ds, 0 \right) + d_H \left(\int_0^t g(s, F_0(s)) dB_s, 0 \right)
\]

\[
= \left\| \int_0^t f(s, F_0(s)) ds \right\|_\mathcal{K} + \left\| \int_0^t g(s, F_0(s)) dB_s \right\|_\mathcal{K},
\]

and for the first part of (15), by the Hölder inequality and the assumptions of theorem, we obtain

\[
E \left\| \int_0^t f(s, F_0(s)) ds \right\|^2_\mathcal{K} \leq E \left(\int_0^t \| f(s, F_0(s)) \|_\mathcal{K} ds \right)^2
\]

\[
\leq t E \left(\int_0^t \| f(s, F_0(s)) \|_\mathcal{K} ds \right)^2
\]

\[
= t E \left(\int_0^t \| f(s, F_0(s)) \|_\mathcal{K} ds \right)^2
\]

\[
\leq t K^2 \int_0^t (1 + E\|F_0(s)\|^2_\mathcal{K}) ds
\]

\[
\leq A^2 t,
\]

where \(A^2 = K^2 (1 + E\|F(0)\|^2_\mathcal{K}) T \). For the second part of (15), from classical Itô isometric property and the assumptions of theorem, we have

\[
E \left\| \int_0^t g(s, F_0(s)) dB_s \right\|^2 \leq E \int_0^t \| g(s, F_0(s)) \|^2 ds
\]

\[
\leq E \int_0^t K^2 (1 + \| F_0(s) \|^2_\mathcal{K}) ds
\]

\[
= t K^2 (1 + E\|F(0)\|^2_\mathcal{K})
\]

\[
\leq B^2 t,
\]

where \(B^2 = K^2 (1 + E\|F(0)\|^2_\mathcal{K}) \). Put (16) (17) into (15), we get

\[
Ed_H^2(F_1(t), F_0(t)) \leq 2E \left(\int_0^t f(s, F_0(s)) ds \right)^2_\mathcal{K} + 2E \left(\int_0^t g(s, F_0(s)) dB_s \right)^2_\mathcal{K}
\]

\[
\leq 2(A + B)^2 t.
\]
By the same way, we have

\[E\tilde{d}_H^2(F_{n+1}(t), F_n(t)) \]
\[= E\left(d_H(F(0) + \int_0^t f(s, F_n(s))ds + \int_0^t g(s, F_n(s))dB_s, F(0) \right. \]
\[+ \left. \int_0^t f(s, F_{n-1}(s))ds + \int_0^t g(s, F_{n-1}(s))dB_s \right)^2 \]
\[\leq E\left[d_H(F(0), F(0)) + d_H\left(\int_0^t f(s, F_n(s))ds, \int_0^t f(s, F_{n-1}(s))ds \right) \right. \]
\[+ \left. \left\| \int_0^t g(s, F_n(s))dB_s - \int_0^t g(s, F_{n-1}(s))dB_s \right\|^2 \right] \]
\[\leq 2Ed_H^2\left(\int_0^t f(s, F_n(s))ds, \int_0^t f(s, F_{n-1}(s))ds \right) \]
\[+ 2E\left\| \int_0^t g(s, F_n(s))dB_s - \int_0^t g(s, F_{n-1}(s))dB_s \right\|^2 \]
\[\leq 2tEd_H^2(f(s, F_n(s)), f(s, F_{n-1}(s)))ds \]
\[+ 2E\int_0^t \| g(s, F_n(s)) - g(s, F_{n-1}(s)) \|^2 ds \]
\[\leq 2tE\int_0^t K^2d_H^2(F_n(s), F_{n-1}(s))ds + 2E\int_0^t K^2d_H^2(F_n(s), F_{n-1}(s))ds \]
\[= 2(t + 1)K^2E\int_0^t d_H^2(F_n(s), F_{n-1}(s))ds. \]

Iterating the above process, we obtain

\[E\tilde{d}_H^2(F_{n+1}(t), F_n(t)) \leq K^{2n}2^{n+1}(A + B)^2(t + 1)T!(n + 1)! \]

then

\[(E\tilde{d}_H^2(F_{n+1}(t), F_n(t)))^{1/2} \leq [K^{2n}2^{n+1}(A + B)^2(T + 1)^{n+1}(n + 1)!]^{1/2}. \quad (18) \]

Since the sum of the right of (18) is a series which is convergent and not dependent on t, we have that for any \(t \in I, \)

\[\Delta_2(F_n(t), F_m(t)) = \left(E\tilde{d}_H^2(F_n(t), F_m(t)) \right)^{1/2} \]
\[\leq \sum_{k=m}^{n-1} \Delta_2(F_{k+1}(t), F_k(t)) \]
\[= \sum_{k=m}^{n-1} \left(E\tilde{d}_H^2(F_{k+1}(t), F_k(t)) \right)^{1/2} \to 0 \quad (m, n \to \infty), \]

by noticing the triangular inequality with respect to the metric \(\Delta_2. \) Noting for any \(m < n, \Delta_2(F_n(t), F_m(t)) \) is also bounded in \(I. \) Thus, by using Fubini Theorem and bounded dominated theorem, we have

\[\Delta_2(F_n, F_m) = \left[E \left(\int_0^T d_H^2(F_n(s, \omega), F_m(s, \omega))ds \right) \right]^{1/2} \to 0, \quad as \ m, n \to \infty, \]

that is, \(F_n \) is convergent to \(F \) in \(L^2(K(R^d)). \) By triangular inequality, we have

\[E\tilde{d}_H^2(F(s), F(t)) \]

By property (β) and the convergence of F_n, we have $\lim_{n \to \infty} Ed_H(F(s), F(t)) = 0$. Thus the solution of the set-valued stochastic integral equation is continuous.

Step 2. We prove the uniqueness. Let F and G are two solutions of the equation (14). Similar to the proof of the existence, we have

$$Ed_H^2(F(t), G(t)) \leq 2(t + 1)K^2E \int_0^t d_H^2(F(s), G(s))ds. \quad (19)$$

Since the solutions $F, G \in L^2(K, (\Omega, \mathcal{F}, P))$, we have

$$E \int_0^t d_H^2(F(s), G(s))ds \leq E \int_0^T d_H^2(F(s), G(s))ds \leq 2E \int_0^T (\|F(s)\|_K + \|G(s)\|_K)ds = C^2 < \infty.$$

Together with (19) once, we have

$$Ed_H^2(F(t), G(t)) \leq 2(t + 1)K^2C^2.$$

Together with (19) twice, we have

$$Ed_H^2(F(t), G(t)) \leq 2(t + 1)K^2E \int_0^t d_H^2(F(s), G(s))ds = 2(t + 1)K^2 \int_0^t 2(s + 1)K^2C^2 ds \leq 2^2(t + 1)^2K^2 \int_0^t C^2 ds = (2K^2)^2(t + 1)^2C^2t.$$

Iterating the above process, we get

$$Ed_H^2(F(t), G(t)) \leq K^{2(n+1)}(2(t + 1))^{n+1}C^2T^n \frac{n!}{n!}, \quad (20)$$

Let $n \to \infty$, the right of (20) converges to 0. By using Fubini theorem and classical bounded dominated theorem, we have

$$\Delta_2(F, G) = \left[E \left(\int_0^T d_H^2(F(s, \omega), F(s, \omega))ds \right) \right]^{1/2} \leq 0,$$

the uniqueness is proved.

Acknowledgments

We would like to thank referees for their valuable remarks and kind help.
References

