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Abstract

In this paper, we firstly illustrate why we should introduce the It type set-valued stochastic differential
equation and then recall some basic results about the Lebesgue integral of a set-valued stochastic process
with respect to time t. Secondly we obtain some new properties of the set-valued Lebesgue integral,
especially inequality of the set-valued Lebesgue integrals. Finally we prove a theorem of existence and
uniqueness of solution of It6 type set-valued stochastic differential equation.
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1 Introduction

Stochastic differential inclusions as a special form of stochastic differential equations appear in a natural way
as a theoretical description of stochastic control problems (cf. [15]). Stochastic differential inclusion is

dxy € F(t, th)dt + G(t, th)dBt, xo =&, (1)

which can be written as the following stochastic integral form
t
Ty — T € Clpe (/ F(r,z,;)dr + G(, mT)dBT), s,t €[0,T], (2)
S

where F, G are set-valued stochastic processes, B = (Bi)¢er is a Brownian motion. In (1), there are two parts:
one part is F(t,x;)dt, which is related to the integral of a set-valued stochastic process with respect to time
t, and the other part is G(t, x¢)dB;, which is related to the It6 integral of a set-valued stochastic process with
respect to the Brownian motion By.

In [12], Kim used the definition of stochastic integral of a set-valued stochastic process with respect to
the Brownian motion introduced by Kisielewicz in [14] and discussed its properties. We called it the Aumann
type It6 integral since the idea came from the Aumann integral of a set-valued function [2]. In [10], Jung and
Kim gave a new definition with basic space being R by taking fixed time ¢. It may be more suitable to treat a
set-valued stochastic process as a whole. In [23], Li and Ren introduced a new way to define the Ito integral
of set-valued stochastic processes and discussed its properties.

There are many related former works about set-valued Lebesgue integral. Based on the work of Richter
[29] and Kudo [19], Aumann introduced Aumann type Lebesgue integral of set-valued functions and discussed
its properties in [2]. Kisielewicz introduced Aumann type Lebesgue integral of set-valued stochastic processes
in [13]. Kisielewicz with his colleagues discussed stochastic differential inclusions, especially their solutions
in [13]-[17]. In [20], Li and Li discussed more properties of the Lebesgue integral of set-valued stochastic
processes. We would like to refer to related works such as [5], [24], [26], [32] and so on. In this paper, we shall
continue to discuss the properties of the Lebesgue integral of set-valued stochastic processes, especially the
inequality of the Lebesgue integrals, which is necessary to discuss set-valued stochastic differential equations.
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It is well known that classical It6 type stochastic differential equations have been widely used in the
stochastic control (e.g. [25]) and financial mathematics (e.g. [4], [11]). The Itd type set-valued stochastic
differential equation is

dX; = b(t, X3)dt + o(t, X;)d By, (3)

where b(t, X;) takes values in the space K(R?) (the set of all nonempty closed subsets of R?), o(t, X;) takes
values in the space K(R? @ R™) (the set of all nonempty closed subsets of matrix space R @ R™) and B; is
an m-dimensional Brownian motion. (3) can be written as set-valued stochastic integral form

Xt = X() + (L) At b(t,Xt)dt + (I) /Oi U(t,Xt)dBt, (4)

where (L) fot b(t, X;)dt is the set-valued Lebesgue integral and (1) fot o(t, X¢)dBy is the set-valued Itd integral.
If o(t, X;) € RY® R™, then we have

Xt = X() + (L) At b(t,Xt)dt + At U(t,Xt)dBt, (5)

where fot o(t, X¢)dB is the classical It6 integral.

There are few papers about the It6 type set-valued stochastic differential equations, even in the special case
(5). But we know there is a paper about the It6 type fuzzy stochastic differential equations. In [7], Hu et. al.
used Hukuhara difference to define the differentiability and to discuss the It6 type fuzzy stochastic differential
equations in the special case o(t, X;) € R? ® R™, i.e. the equation (5). But since it is well-known that the
space of all closed subsets of even R (the space of all real numbers) is not linear with respect to the addition
and scalar multiplication, it leads to a big problem: under what conditions does the Hukuhara difference exist?
It is a difficult problem so that they simply assume that the Hukuhara difference of a stochastic process at
any two different times always exists. In this paper, we shall use selection method to consider the same type
problem as in [7] without using the Hukuhara difference. We shall consider the Itd type set-valued stochastic
integral equation (5), discuss the existence and uniqueness of its solution. By using level set method [28], we
may easily extend the set-valued case to fuzzy set-valued case.

We organize our paper as follows. In Section 2, we introduce some necessary notations, definitions and
results about set-valued stochastic processes and set-valued Lebesgue integral, and then we shall prove some
new properties, especially inequality of set-valued Lebesgue integrals. In Section 3, we give a set-valued
stochastic differential equation of It6 type, and prove the theorem of existence and uniqueness of solution to
this kind of set-valued stochastic differential equation.

2  Stochastic Integral of Set-Valued Stochastic Processes and its
Properties

Throughout this paper, assume that (€2, A, i) is a complete probability space, the o-field filtration {A; : t € I}
satisfies the usual conditions (i.e. containing all null sets, non-decreasing and right continuous), I = [0,7
with T > 0, R is the set of all real numbers, N is the set of all natural numbers, R? is the d-dimensional
Euclidean space with usual norm || - ||, B(E) is the Borel field of the space E. Let f = {f(t), A: : t € I}
be a R?valued adapted stochastic process. It is said that f is progressively measurable if for any ¢ € I, the
mapping (s,w) — f(s,w) from [0,¢] x Q to R is B([0,t]) x A;-measurable. If let

C={ACTIxQ:Vtel, AN (0,1 x Q) € B([0,]) x A},

then f is progressively measurable if and only if f is C-measurable. Each right continuous (left continuous)
adapted process is progressively measurable.

Assume that £P(R?) (p > 1) denotes the set of R%valued stochastic processes f = {f(t), A; : t € I} such
that f satisfying (a) f is progressively measurable; and (b)

s = [2( "irewras)]” < o (6)
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Let f, f' € LP(R?), f = f" if and only if |||f — f'[||[, = 0. Then (L?(R%),||| - |||,) is complete.

Now we review notation and concepts of set-valued stochastic processes.

Assume that K(R?) is the family of all nonempty, closed subsets of RY, and K.(RY) (resp. Ky(R?),
K;..(R%)) is the family of all nonempty closed convex (resp. compact, compact convex) subsets of RY. For

any z € R?, A is a nonempty subset of R?, define the distance between z and A as d(x, A) = infyeca ||z — y.
The Hausdorff metric on K(R?) is defined as

dp (A, B) = max{sup d(a, B),supd(b, A)} (7)
acA beB

for A, B € K(RY). For B € K(R%), define || B|lx = du ({0}, B) = sup,¢p ||al|-
For a set-valued random variable F' (cf. [6], [21]), define the set

SP={f e LP[%RY: f(w) € F(w) a.e.},

where LP[Q); RY] is the set of all R%-valued random variables f such that | f||, = [E(]|f||")]*/? < co. The
expectation of F is defined as E[F] = {E[f] : f € Sk}. It is called Aumann integral introduced by Aumann
in 1965 (cf.[2]). A set-valued random variable F : Q — K(R?) is called integrable if Sk is non-empty. F is
called LP-bounded if [, ||F(w)|lixdp < co. Let LP[Q;K(R)] (resp. LP[Q; K (RY)], LP[Q; Kio(RY)]) denote
the family of K(R?)-valued (resp. K.(R?), Ki.(R%)-valued) LP-bounded random variables. For any two
set-valued random variables Fy, Fy € LP[Q; K(R?)], define

8u(F1, ) = ([ i (Fi), Fawnan)

then (LP[Q;K(RY)],A,) is a complete space. Concerning more definitions and more results of set-valued
random variables, readers could refer to [6] or [21].

Definition 1 A set-valued stochastic process F = {F(t) : t € I} is called progressively measurable, if it is
C-measurable, i.e., for any A € B(R?),{(s,w) € I x Q: F(s,w)NA# 0} €C. F is called LP-bounded, if the
real stochastic process {||F(t)||k, At : t € I} € LP(R).

Definition 2 A R%-valued process {f(t), A; : t € I} € LP(R?) is called an LP-selection of F = {F(t), A; :
tel} if f(t,w) € F(t,w) a.e.(t,w) € I x L.

Let SP({F(-)}) or SP(F) denote the family of all LP-selections of F' = {F(t), A : t € I}, i.e.
SP(F) = {{f(t)} € LP(RY) : f(t,w) € F(t,w), ae. (t,w) el x Q}

Let £P(K(R%)) denote the set of all LP-bounded progressively measurable K(R?)-valued stochastic processes.
Similarly, we have notations L£P(K.(R%)), £P(Kx(R?)) and LP(Kj.(R?)). Take F; = {F;(t) : t € I} €
LP(K(RY), i = 1,2, define

A, (F, Fy) = [E(/OT d%(Fl(s,w),Fg(s,w))ds)}1/p.

Fy and F; are said to be equivalent, if A,(F1, Fz) =0, denoted by Fy = F>. We have that (LP(K(R%)), A,)

is complete, L£P(K.(R?)), £P(K(R?)) and LP(Ky.(RY)) are closed subsets of (£P(K(R?)),A,). Denote
T 1/p

W, = [B( S 15 ) ds) |

Now we introduce the concept of decomposability.

Definition 3 A non-empty set I' C LP(R?) is called decomposable with respect to the progressively measurable
o-field C , if for any f,g € T, any U € C, we have Iy f + Iyeg € T'.

Firstly, we know that for any set-valued progressively measurable stochastic process F' € LP(K(R?)),
SP(F) is decomposable with respect to o-field C. Furthermore we have the following Theorem.
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Theorem 1 [20] Assume that T C LP(R?) is a non-empty closed set of R%-valued progressively measurable
stochastic processes, then I' is decomposable with respect to progressively measurable o-field C if and only if
there exists a progressively measurable set-valued stochastic process F € LP(K(R?)) such that T = SP(F).
Furthermore, T is convex if and only if F € LP(K.(R%)).

Now we consider the integral of set-valued stochastic process. To avoid trouble of dealing with almost
every problem, we assume that A is p-separable in the following. In this case, for any p > 1, LP[I x Q, B(I) x
A, X x p1; R is a separable Banach space (cf. [31]), £P(R?) can be considered as its closed subset so that
it is separable with respect to ||| - |||, Thus, For any F = {F(t) : t € I} € LP(K(R?)), SP(F) is separable.
We may ignore almost everywhere problem and assume that the following definition is well-defined for all
(t,w) € I x Q rather than for almost everywhere (¢,w) € I x Q.

Definition 4 Let a set-valued stochastic process F = {F(t) : t € I} € LP(K(R%)), 1 < p < +oo. For any

w e, tel, define . .
() [ Flsyis = { [ s g e SP<F>} ,

where fo s,w)ds is the Lebesgue integral. fo (s,w)ds is called the Aumann type Lebesque integral of
set-valued stochastzc process F with respect to time t mtmduced in [14]. For any 0 <u<t<T,

/ F(s,w)ds = (4) / I (8) F(s,0)ds.

Remark 1 In the Definition 4, the set of selections is SP(F). As a matter of fact, if we only consider the
Lebesgue integral, we can use S1(F). But we often consider the sum of integral of a set-valued stochastic
process with respect to time ¢ and integral of a set-valued stochastic process with respect to a Brownian
motion, where we have to use S?(F). Thus we here use SP(F) for more general case.

Remark 2 If a set-valued stochastic process F = {F(t) ct €I} € LP(K(RY)), then for any ¢t € I, ['(t) =

fo ds is a non-empty subset of LP[Q2, A;, y; R?]. Furthermore, if F € £P(K.(R?)), then we can prove
that fo s)ds is a non-empty convex subset of LP[Q, Ay, u; RY]. However, it is natural to hope that the
result of mtegral is a set- valued stochastlc process taking values in K(R?) rather than in LP[Q, Ay, u; RY). If

for any fixed t € I, let T'(¢)( fo (s,w)ds (w € Q), we also do not know whether I'(t)(w) is a closed
subset or not, whether it is measurable or not. So it is necessary to give a new definition so that the integral
is still a set-valued stochastic process. Since we can not prove directly that {I'(¢) : ¢ € I} is decomposable
with respect to C, we firstly give the definition of decomposable closure.

Definition 5 For any non-empty subset I' C LP[I x ,C, X x u; RY] , define the decomposable closure del’ of
I' with respect to C as

del’ = {g ={g(t,w):t €I} : for any e > 0, there exists a C-measurable finite partition
{Aryoo An} of T Q and fi, fo €T such that |llg = 3. Ia, filllp < & 3

Theorem 2 ([20]) Assume that F = {F(t) : t € I} € LP(K(RY)), T fo s)ds, then there ewists
a C-measurable set-valued stochastic process L(F) = {L,(F) : t € I} E ﬁp( (R%)) such that SP(L(F)) =
de{T'(t) : t € I'}. Furthermore, if F € LP(K.(R?)), then {L,(F) :t € I} € LP(K.(R%)).

The set-valued stochastic process L(F) = {L:(F') : t € I} defined in Theorem 2 is called the Lebesgue
integral of a set- valued stochastic process ' = {F(t) : t € I} € LP(K(R?%)) with respect to the time ¢, and
denoted as L;(F fo

Theorem 3 ([20]) Let F' = {F(t) :t €I} € LP(K(RY)), then there exists a sequence of R%-valued stochastic
processes {ft = {fi(t):t €I} :i>1} C SP(F) such that

F(t,w) =cl{f'(t,w):i>1}, ae. (t,w)elxQ,
and

Li(F) = cl{ /Ot fi(s,w)ds :i > 1} a.e. (t,w) eI x N
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Theorem 4 Let set-valued stochastic process {F(t) : t € I} € L2(K(R?)). Then there exists a measurable
subset A C T x Q with (A x p)(A) =0, so that the following holds

Li(F)(w) = cl{Lt1 (F)(w) + (L)/ F(s,w)ds} for any (t,w), (t1,w) € I x Q\ A, t; <t,

ty
where the closure is taken in R®.

Proof: From Theorem 3, there exist a sequence {(f*(t))ier : i =1,2,---} C S?(F(-)) and a measurable subset
A C T xQ with (A x u)(A) = 0 such that for each (t,w) € I x Q\ A, we have

F(t,w) =cl{(fi(t,w)):i=1,2,---},

and .
Lt(F)(w):cl{ fi(s,w)dszi:1,2,--~}. 8)
0
Then for 0 < t; <t with (t1,w) € I x 2\ A, we have
w)=cl i w)ds i =
Lo =af [ fwdszi=12. ) 9)
t t
(L) F(s,w)ds:cl{ fi(s,w)ds;izl,z,--.}. (10)

t1 t1

It is obvious that

Li(F)(w) C cl{Ltl(F)(w) (L) /t F(s,w)ds}.

t1

Conversely, take a € cl{L:, (F) ft (s,w)ds}, by (9) and (10) for any given € > 0, we can find
m(e), k(e) € N, such that

t1 t
a—( / £ (s,w0)ds + [ £5O (s, w)ds)

t1

(11)

< £

5
Let g(s, w) = ™ (s,w)o.4,1(s) + fF(s,w) I}, 4(s), where Ijg,(s) and Iy, 4(s) are indicator functions.
Then fo s,w)ds € Li(F)(w). From (8), there exists n(e) € N, such that

¢ ¢
H/ g(s,w)ds —/ O (s,w)ds|| < < (12)
0 0 2
By (11) and (12), we obtain
¢
—/ @ (s,w)ds|| < e,
0
which implies a € Li(F)(w). Thus L;(F)(w) 2 cl{Ly, (F) ft (s,w)ds}.

Now we prove an inequality of set-valued Legesgue mtegrals which w111 be used in the next section.

Theorem 5 Let set-valued stochastic processes F = {F(t) : t € I},G = {G(t) : t € I} € L*(K(RY)), then
there exists a measurable subset A C I x  with (A x u)(A) =0 so that the following holds

d% (Li(F)(w), Li(G)(w)) < t/o d3;(F(s, w), G(s, w))ds, for any (t,w) € I x Q\ A.

Proof: Suppose ®(¢ f F(s)ds, ¥(t fo G(s)ds. From Theorem 3, there exist {f = {fi(t):t € I},i >
1} C S%(F), {¢ = {gj( ):te I} J > 1} C 5%(@), and a measurable subset A C I x Q with (A x u)(4) =0
such that for each (t,w) € I x Q\ A,

F(t,w)=cl{f'(t,w):i>1}, Gt,w)=cl{g(t,w):j>1},
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and
P(t)(w) = cl{ /Ot fi(s,w)ds :i > 1}7
U(t)(w) = cl{ At ¢ (s,w)ds : j > 1}.

Hence, we have
. t o 2 . t o t 2
infyer, (@) (w) Hfo fi(s,w)ds — yH = inf;>; H fo fi(s,w)ds — fo g’ (s,w)dsH
<infj>q tfg I fi(s, w) — g7 (s, w)||*ds.

Further, we can show along the same arguments as in the proof of [21, Lemma 1.3.12]

infjs1 [) 1F1(s, w) — g (s, w)|Pds = [ infyecs,w) 1F1(s, w) — yl*ds
< [y d3(F(s, w), G(s, w))ds.

Noticing that

t
sup inf x —y|| = sup inf H/ fi(s, w)ds —yl|,
€L (F)(w) YEL(G)(w) | | i>1 YL (G)(w) Il Jo ( )
we obtain .
sup inf |z —y|®< t/ d% (F(s, w), G(s, w))ds.
€L (F)(w) YEL(G) (W) 0

Similarly, we have

t
sup int e ylP <t [ d(F(s w), Gls, w)is
€L (G)(w) YELt(F)(w) 0

Hence, by the definition of Hausdorff distance, we arrive at the result.

3 The Existence and Uniqueness of the Solution of Ité6 Type Set-
Valued Stochastic Differential Equation

We consider the following Ito type set-valued stochastic differential equation
dF(t) = f(t, F(t))dt + g(t, F(t))dB, (13)

where the set-valued stochastic process F € £L2(K(R?)) with initial condition F(0) being an L2-bounded set-
valued random variable, f : I x K(R?) — K(R?) is measurable, g : I x K(R?) — R?® R™ is measurable, B,
is an m-dimensional Brown motion. If f € £2(K(R?)) and g € £2(R? ® R™), then equation (13) is equivalent
to the integral form:

F(t)=F(0)+ (L) /0 f(s, F(s))ds + /0 g(s, F(s))dBs. (14)

Theorem 6 (Existence and uniqueness Theorem) Assume that f(t,F),g(t,F),t € I, F, F, F, € K(R%)
satisfy the following conditions:
(i) Linear increasing condition

1F (8, F)ll + llg(t, P)I* < K*(1+ || Fll),

where K is a positive constant.
(i1) Lipschitz continuous condition

dr(f(t, F1), f(t, F2)) + llg(t, F1) — g(t, Fo)|| < Kdp(Fy, F»).

Then for any given initial L?-bounded set-valued random wvariable F(0), there is a solution to the equation

(18), and the solution is unique in the space of (L2(K(R?)), As).
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Proof: Without loss of generality, we assume that Theorems 4 and 5 are right for all ¢,¢,. If F € L2(K(R%)),
then for any t € I,
B|ft, Ft)llk + Ellgt, F@)|I* < K*(1+ E|F(1)]%)-
We have f € L2(K(RY)), g € L2 (R?® R™).
Step 1. We prove the existence by successively approaching. For simplification, we omit the character “(L)”
before the symbol of the set-valued Lebesgue integral in the proof of this theorem.
For any ¢ € I, define

Fo(t)

Foa(t) = F(0)+/O f(s,Fn(s))ds—i—/O 9(s, Fr(s))dBs, n>0.

F(0),

We firstly prove that for any n > 0, F), is well-defined and satisfies:
(o) Fy € L2(K(RY));
(8) lim B (Fu(t), Fu(s)) = 0.

S—

For n = 0, it is obviously right. Suppose that F, has properties (), (8) for any fixed n, we shall prove so
does F,41. Indeed, since F,, € L2(K(R?)), f € L2(K(RY)), let

V()= [ fsPol)ds

we have that Y € £L2(K(R?)) by the definition of set-valued Legesgue integral. For any s,t € I, by using
triangular inequality and Hélder inequality, we have

EIIFL ) — EIFa(s) ||%<]

:’Edz (Fu(t),0) — Ed% (F, ‘

<E\<dH 2(6),0) + dir (Fa(s), 0)) (At (Fa(#),0) = dir(Fa(s),0))|
Bl(din (Fi(£),0) + dir (F(5), 0)) dss (Fa (1), 0) = dis (Fu(s), )]
El(dn(Fa(t),0) + du (Fu(5),0)du (Fa(t), Fa(s))

< ( (A (Fa0),0) + s (Po(5),0) 2] By (F(t), ()

< (2103 (F(0).0) + d3 (Fu(). OB (Fu(1). Fu(s)))

Thus, we know that E||F),(t)||% is continuous in I by the assumptions.
By virtue of Theorems 4 and 5 and the assumptions of theorems, we obtain

Edy (Y (1),Y (s))

Bd /tf(sl,Fn(sl))dsl,/sf(sl,Fn(sl))dsl)
_ Ed2 /fsl, (1) dsl)L(f))

< By /f(sth(sl))dsl,O)

_ EH/:f(sl,Fn(sl))dsl j{

< B([ IfGs1.Falo) s’
< (t-9)E / £ (51, Fa(s1))|[Zedsy
< -9 [ K2+ B[
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Thus, Y satisfies properties («) and (8).
Now we investigate the It integral part. Since g(t, F},(¢)) is square integrable, the Itd integral

Z(t) ::/0 g(s, F(s))dBs

exists and Z(t) is square integrable. By using the properties of the classical It6 integral, we have

2

Bl2) - 200 = | [ otor Futsias, ~ [ otor,Falorim,

t 2
— & [ g1 Futsyis.,

t
_ / (st Fa(s1))|%dsy

IN

t
/K2(1+E||Fn(sl)||%<)dsl.

Hence, Z satisfies («), (). Since
Fop1(t) = F(O0)+Y(t) + Z(t),

F, 1 exists and satisfies (o) and (3).
Next we prove that F,, converges to F in £L2(K(R?)). Let

Fo(t) = F(0),
t t
Fon(t) = F(to) + / F(s, Fu(s))ds + / o(s, Fu())dBs, > 0.
0 0
Then due to the property of dy and triangular inequality, we have

du (F1(t), Fo(t))

dir (Folt) + Jy f(s. Fo(s))ds + Jy g(s, Fo(s))dBy, Fo(t) )
it ( fy £(s, Fo(s))ds, 0) +di  Jy 9(s, Fo(s))dBs,0) (15)
| o £ Fo(snds| + || Jy g(s. Fols)dB,

IN

)

and for the first part of (15), by the Holder inequality and the assumptions of theorem, we obtain

IN

(L1 Fo(s))lcds)

tE(fy 11£(5: Fols)) [eds) )
t Jy E|| (s Fo(s))licds

HE o (1 + ELFo(o) )

)

2
EH fg f(s,Fo(s))dsHK

INIA A

where A% = K?(1 + E||F(0)||%)T. For the second part of (15), from classical It6 isometric property and the
assumptions of theorem, we have

= B lgls Fols)|Pds

E [y K*(1+ [ Fo(s)|¥)ds an
HEA (1 + BIF(0)]13)

B?t,

B| fy 9(s. Fo(s))dB,

IA I IA

where B? = K2(1+ E||F(0)||%). Put (16) (17) into (15), we get

Ed3 (Fi(t), Fo(t)) 2

IN

2EH/0tf(s,F0(s))dsHi+2EH/0tg(s,F0(s))st
< 2(A+ B)%t.
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By the same way, we have
Edi] (F7L+1(t)> Fn(t))

— B(dn(P(0) + / F(5, Fu(s))ds + / o(5, Fu(s))dB., F(0)

+ /O F(s, Fa1(s))ds + /0 9(s. B ())dB,)
< E[dH(F(O),F(O)) +dH(/Otf(s7Fn(8))d87/0tf(SaFn—l(S))ds)

:

t
0

+ H/Otg(s’Fn(s))st */ (s, Fn_1(s))dB,
< 2Ed§,(/0tf(s,Fn(s))ds, /Otf(S’Fnl(s))dS)

2

t t
+2EH/O g(s,Fn(s))stf/O 9(s, Fr_1(5))dB,
< UE [ (5. Fals). (5, For () s
0
t
42 [ gl Pals)) = gl Faca(s))ds
0
< 2E / K2d% (F,(s), Fr_1(s))ds + 2F / K2d% (F(s), F_1(s))ds
0 0
=2(t + 1)K2E/ d2(Fn(s), F_1(s))ds.
0
Iterating the above process, we obtain

o (E+1)"

Ed3(Foi(t), Fu(t)) < K*"2" T (A + B) CESE

then )
(T +1)" /2

(n+1)! '
Since the sum of the right of (18) is a series which is convergent and not dependent on ¢, we have that for any
tel,

(B (Fas1 (1), Fa(t)"? < [K*"2" T (A + B) (18)

Ao (Fu(t), Fin(t))

(B (Ea(e), Fu(e)

IN

2 AQ(Fk+1(t)a Fk(t))
k=m

n—1

= Y (Bdy(Fus (1), Fi(t))

k=m

12 o (m,n — 00),

by noticing the triangular inequality with respect to the metric Ay. Noting for any m < n, Aq(F,(t), Fin(t))
is also bounded in I. Thus, by using Fubini Theorem and bounded dominated theorem, we have

T ) 1/2
As(Fp, Fy) = [E(/O dH(Fn(s,w),Fm(s,w))ds)] — 0, as m,n — o0,

that is, F, is convergent to F in £L2(K(R?)). By triangular inequality, we have
Edy(F(s), F(t))
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< B(dn (F(s). Fa(9)) + di (Fo(9). Fu () + di (Fu (). (1))

= Bdy (F(s), Fu(s)) + Bdi (Fa(s), Fu(t)) + Bdy (Fa(t), (1))
+2E(du (F(s), Fo(5))d (Fu(s), Fu (1)) + 2E(dm (F(s), Fu(s))da (Fa (1), F(#)))
+ 2B (dr (Fu(s), Fu(t))du (Fu(t), F(1)))
< Edy(F(s), Fu(s)) + Edjy (Fa(s), Fa(t)) + Edjy (Fa(t), F(t))

)
2\ Ed (F(5), Fu(s)) Ed (Fo(s), Fa(t)) + 2y Ed% (F(s), Fu(s)) Ed% (Fu (1), F (1))
2\ B (Fo(s), Fu(0) B (Fa (1), F(1)).

By property () and the convergence of F,, we have lirr% Ed?(F(s),F(t)) = 0. Thus the solution of the

set-valued stochastic integral equation is continuous.
Step 2. We prove the uniqueness. Let F' and G are two solutions of the equation (14). Similar to the proof
of the existence, we have

Ed%(F(t),G(1)) < 2(t+1)K?E /t d3;(F(s),G(s))ds. (19)
0
Since the solutions F,G € £*(K(R%)), we have
t T
E /0 & (F(s),G(s)ds < E /0 & (F(s), G(s))ds
T
< ZE/ (I1F(s) % + 1G(s)llk)ds

0

= O? < oo
Together with (19) once, we have
Edy(F(t),G(t)) <2(t +1)K*C2,

Together with (19) twice, we have

Ed; (F(t),G(t))

IN

2(t + 1)K*E /t d2,(F(s),G(s))ds

0

t
= 2(t+1)K2/ 2(s + 1) K2C?%ds
0

t
< 2%(t+ 1)2K2'2/ C2%ds
0
= (2K?)*(t+1)2Ct.
Iterating the above process, we get

B (F(), G(1) < K2 (e + 1)1 e?l (20)

Let n — oo, the right of (20) converges to 0. By using Fubini theorem and classical bounded dominated
theorem, we have

1/2

As(F,G) = [E(/OTd%{(F(s,w),F(s,w))ds)} <0, as n — oo,

the uniqueness is proved.
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