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Abstract 

 
In this paper, we merge the differential equation model, regression model and credibility measure based fuzzy 

mathematics proposed by Liu [13] into a new differential equation associated regression model (abbreviated as DEAR 
model). The creation of the DEAR model does not only offer a rigorous treatment of the grey differential equation 
problem proposed by Deng [3] on the random fuzzy variable theoretical foundation, but also increases the variety of 
model choices greatly. Furthermore, we develop a multivariate DEAR model for the quantitative modeling based on 
multivariate small sample data. Multivariate DEAR models will be able to establish the quantitative relationship 
among the main response factor vectors and the covariate vectors, which is a major improvement of information 
extraction under sparse data availability. Finally, we point out some potential application areas of the new modeling 
family.  

 © 2009 World Academic Press, UK. All rights reserved. 
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1 Introduction 
 
When facing a system in the real world, the dynamic law governing the system will be the aim of study. Statisticians, 
mathematicians or engineers often use the linearization idea to establish a linear model (geometrically a hyper-plane 
in multi-dimensional space) on the region where the sampling data are collected to approximate the true nonlinear 
dynamics (high dimensional surface or curve) according to linear model theory. Without any doubt, non-linear 
statistical models may be also established based on maximum likelihood theory (or other criterion, say, maximum 
entropy). However, the non-linear statistical modeling is required large sample for accuracy. A rule of thumb for the 
ratio of the number of sample points to the number of parameters to be estimated is 15 to 1. 

In real life, data collection requires manpower, equipment resources, and money and thus is expensive. 
Furthermore, in today’s fast globalization business environments, product life circles are often shortening. For 
example, in nano industries, every three months a new generation of nano chips is generated. In such circumstances, 
there is no chance to collect of data. In other words, it is necessary to address the problem analyzing of real world 
complicated systems without adequate sample information available. 

The fundamental challenge becomes a problem whether a system dynamic law (nonlinear in nature) can be 
revealed in terms of small sample data information. Utilizing small sample data in simple linear regression is well-
developed in statistics, while the differential equation is a well-known model for describing nonlinear law in many 
scientific fields. These facts lead to the question whether a linear modeling of small sample could a generate nonlinear 
law.  

In this paper, we merge differential equation theory, linear regression theory, and random fuzzy variable theory 
into a new mathematical theory of a small-sample oriented system analysis, which is named as DEAR, an 
abbreviation of differential equation associated regression. 

The structure of this paper is stated as follows. Section 2 introduces the DEAR concept and a classification of the 
DEAR modeling family. In Section 3, we discuss the role of the Coupling Principle in DEAR model formation and 
the error structure from coupling of differential equation and regression. Section 4 discusses the parameter estimation 
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in a univariate DEAR model. Section 5 is a brief discussion of the formation of a multivariate DEAR model for a 
single exploratory variable. Section 6 discusses the bivariate DEAR model which details the relevant theoretical 
developments. A brief conclusion is given in Section 7. In the Appendix, there is a brief review of Liu’s [13,14] 
credibility measure axiomatic foundation and random fuzzy variable theory. 

 
2  Concept of DEAR Model, Classification 

 
In engineering theory, particularly, in modern control theory, it is often convenient to use a hypothesized differential 
equation to describe the dynamic law of a continuous system, for example, a pth-order univariate differential equation, 
which proposes an unknown d-dimensional parameter vector ( )1 2θ  = , , ,T

dθ θ θ" . 
       However, until the unknown parameter vector θ  is estimated by data information obtained from sampling from 
the system itself, the system dynamic law is still unspecified. As we noted in the introduction, DEAR uses a linear 
regression approach to achieve nonlinear modeling aim, which may seem contradictory. How could this aim be 
achieved? The question deserves an intuitive explanation.   

Without loss of generality, a simple linear differential equation dx dt xα β= +  is used in this paper for 

illustrative purposes. Let ( )1ˆix  denote an approximation to the primitive function ( )x t  at , and let it i ix tΔ Δ be an 

approximation to the derivative function dx dt  at , withit ( ) ( )1i i ix x t x t −Δ = − , 1i i it t t −Δ = − .  
Definition 2.1: If a dynamic system governed by dx dt xα β= + is observed through n samples at its derivative level, 

denoted by ( ) ( ) ( ) ( ){ }0 0 0 0
1 2, , , nX x x x= " , the coupled equation system 

( ) ( )0 1ˆ ,  2,3, ,i i i

dx x
dt
x x i

α β

α β ε

⎧ = +⎪
⎨
⎪ = + + =⎩ " n

                                                              (1) 

is called Type I DEAR model.  

Definition 2.2: If a dynamic system governed by Eq. (1) is sampled at its primitive level with sample size n, denoted 
by ( ) ( ) ( ) ( ){1

1 2, , , nX x t x t x t= " } , the coupled equation system 

( ) ,  2,3, ,i
i i

i

dx x
dt

x x t i
t

α β

α β ε

⎧ = +⎪⎪
⎨Δ⎪ = + + =
Δ⎪⎩

" n
                                                            (2) 

is called Type II DEAR model. 
The second equations in Eq. (1) and Eq. (2) are called the coupled regressions, while the first equations are 

called the associated differential equations.  
Let us examine Type I DEAR model first. The system dynamics are governed by the linear differential equation 

dx dt xα β= + , or equivalently, a nonlinear functional . If the sample could be very large, it is 
possible to perform a non-linear statistical modeling in terms of standard maximum likelihood procedures to estimate 
a system parameter

( ) ( ); ,x t f t α β=

( , )θ α β= . However, if only small-sample observations are available, the “best” modeling 

exercise is to fit a simple regression model ( ) 0 1ˆ ˆ ˆx t tγ γ= + , called primitive regression, for approximating the system 

dynamics . Figure 1 shows that the blue-dot straight line ( ) ( ); ,x t f t α β= ( ) 0 1ˆ ˆ ˆx t tγ γ= +  may poorly approximate a 

nonlinear curve  in the (  space (or ( -coordinate system). ( ) ( ); ,x t f t α β= )

}

,t x ),t x
Let us consider the case where sampling observations are collected at first-order derivative level, denoted 

as ( ) ( ) ( ) ( ){0 0 0 0
1 2, , , nX x x x= " . By a linear transformation, approximations to primitive function level observations are 

obtained, denoted by ( ) ( ) ( ){ }1 2ˆ ˆ, , , nx t x t x t" , say, by partial sum. In terms of Type I DEAR model thinking, we 

first fit the coupled regression, i.e., the second equation in the DEAR equation system of Eq. (2) in the ( ), 'x x  space 
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(or ( ), 'x x -coordinate system), where 'x denotes the derivative of x  with respect to , i.e., t 'x dx dt= . 
 

 
Figure 1: Two approximations to nonlinear curve  in ( ) ( ); ,x t f t α β= ( ),t x  space 

 
From the fitting of the coupled regression, , the estimator of parameter ( ) ( )0 1ˆi ix xα β ε= + + i ( , )θ α β= , denoted 

by ( )ˆ ˆ ,θ α β= ˆ ) is obtained. Now, in the ( , 'x x  space, we fit the straight line ˆˆ ˆ' ˆx xα β= +  to approximate the straight 

line 'x xα β= + .  It is obvious that goodness-of-fit measures for this model could be very good even with small 
samples.. 

 

 
Figure 2: Type I approximation in ( ), 'x x  space 

 
Once the parameter ( , )θ α β=  is obtained, by solving the approximated linear differential equation 

ˆˆdx dt xα β= + , we will obtain an approximated nonlinear curve , (yellow-colored curve in Figure 

1), which is expected to approximate the primitive curve with relatively high accuracy. 

( )( 1
0

ˆˆ' ; , ,x t xϕ α= )β

}
Let us consider the case in which the sampling observations are collected at primitive function level, denoted as 

( ) ( ) ( ) ( ){1
1 2, , , nX x t x t x t= " . Then in terms of DEAR Type II model thinking, the derivatives could be 

approximated, for example, by the divided difference, i.e., i ix tΔΔ , or other approaches available. Just as shown in 
Figure 3, we fit ˆˆ ˆ'x x t xα β=Δ Δ = +  for the approximating line x ' xα β= + . Similarly, the estimated parameter 

( )ˆ ˆ, ˆθ α β=  will lead from the nonlinear approximation  to the primitive function  
in (  space (shown in Figure 1). 

( )( 1
0

ˆˆ' ; , ,x t xϕ α= )β
)

( ) ( ); ,x t f t α β=
,t x
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Figure 3: Type II approximation in ( ), 'x x  space 

 
Remark 2.3: As hinted by the intuitive discussion of Type I and Type II DEAR models, the associated differential 
equation should take a linear form in system parameters, i.e., 1 2, , , dθ θ " θ , whenever possible. The maximal 

dimensionality of θ  should be . Furthermore, the hypothesized differential equation model should 
include minimal numbers of unknown parameters, 

max 2d n= −
θ . 

To further discussion, it is necessary to define the divided differences and partial sum for approximating 
primitive function respectively. 

Definition 2.4: Given a set of n sampling observations at pth order derivative level over ( , denoted by )1 2, , , nt t t"
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 1 1

1 2, , ,p p p p
nX x t x t x t− + − + − + − += " , then the approximations to the kth order derivatives are denoted 

by ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 1 1
1

ˆ ˆ ˆ ˆ, , ,k k k k
p k p k nX x t x t x t− + − + − + − +
− − += " , where 1,2, , 2k p= −" .   

Then the approximations to the first order derivatives dx dt  and primitive function ( )x t , are denoted by  
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 0 0 0

1
ˆ ˆ ˆ ˆ, , ,p p nX x t x t x t−= "  

and  
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 1 1

1
ˆ ˆ ˆ ˆ, , ,p p n ,X x t x t x t+= "  

respectively. It is obvious that the notation in Definition 2.4 is consistent with Definition 2.1. The question of how to 
obtain ( ) ( ) ( ) (2 3 0ˆ ˆ ˆ ˆ, , , ,p p )1X X X− + − + " X  is a matter of approximations to relevant integrations 

( )( )p pd x dt dt∫ , ( )( )1 1p pd x dt dt− −∫ ,"  , ( )( )2 2d x dt dt∫ , ( )dx dt dt∫ . 

For example, given the first-order (approximated) values  
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 0 0 0

1
ˆ ˆ ˆ ˆ, , ,p p nX x t x t x t−= " , 

the approximate values of primitive function may be obtained by  

( ) ( ) ( )( )
1

1 0
1

2

ˆ ˆ( )
ktk

k j j j
j t

dxx t x t t t dt
dt−

=

⎛ ⎞= − ≈ ⎜ ⎟
⎝ ⎠

∑ ∫ . 

Definition 2.5: Given a set of n sampling observations at pth order derivative level over ( , denoted by )1 2, , , nt t t"
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 1 1

1 2, , ,p p p p
nX x t x t x t− + − + − + − += " , then a pair of equations is called a (pth  order) Type I DEAR 

model if 
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( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

1 2

1 2

1 2 3 1 0 1

, , , , ;                                                                 

垐 垐 ?, , , , , ( );  , 1, , .

p p p

p p p

p p p
k k k k k k k

d x d x d x dx x a
dtdt dt dt

x t x t x t x t x t x t k p p n b

ϕ θ

ϕ θ

− −

− −

− + − + − + −

⎧ ⎛ ⎞
=⎪ ⎜ ⎟⎪ ⎜ ⎟

⎝ ⎠⎨
⎪ = +⎪⎩

"

" "ε = +

            (3)              

 
Eq. (3a) is called the associated differential equation and Eq. (3b) is called the coupled regression model. 
It is obvious that Definition 2.5 is a generalization of 1st  order DEAR Type I model. The Type II (pth order) 

DEAR model can be defined similarly. 
Definition 2.6: Given a set of n sampling observations at primitive function level, ( ) ,x t denoted by 

( ) ( ) ( ) ( ) ( ) ( ) ( )(1 1 1 1
1 2, , , n )X x t x t x t= " , then a pair of equations is called (pth order) Type II DEAR model if 

( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

1 2

1 2

1 2 3 1 0 1

, , , , ;                                                                 

ˆ ˆ ˆ ˆ ˆ, , , , , ( );  , 1, , .

p p p

p p p

p p p
k k k k k k k

d x d x d x dx x a
dtdt dt dt

x t x t x t x t x t x t k p p n b

ϕ θ

ϕ θ

− −

− −

− + − + − + −

⎧ ⎛ ⎞
=⎪ ⎜ ⎟⎪ ⎜ ⎟

⎝ ⎠⎨
⎪ = +⎪⎩

"

" "ε = +

              (4) 

In Type II model, obtaining the values of ( ) ( ) ( ) ( )1 2 1ˆ ˆ ˆ ˆ, , , ,p p 0X X X− + − + −" X  is matter of approximating the 

derivatives ( ) ( ) ( )1 21 2, , , ,p pp pd x dt d x dt d x dt dx dt− − " . Typically, the divided difference is a primary 
approximation approach, for example, 

( ) ( ) ( ) ( )0ˆ mi
i i

i

x
ix t x t

t
α β

Δ
= = +

Δ
x t . 

However, in numerical analysis literature, there are many efficient approaches for derivative approximations. 
If we examine the DEAR models in Eq. (3) and Eq. (4) in detail, we will find that a DEAR model starts with an 
associated differential equation, then, the coupled regression model is specified in the discretized form of the 
associated differential equation, in turn, in terms of coupling regression model. The parameters specifying the 
associated differential equation are estimated under a least-squares criterion. 
Furthermore, the solution to the associated differential equation (or the discretized solution) evaluated with data-
assimilated parameter estimates, is used for system analysis or prediction. We should emphasize here that the way a 
DEAR model uses system sampling information to solve the associated differential equation is different from that in 
common algorithms for solving a differential equation numerically. In a DEAR model, we will obtain a closed-form 
functional solution (i.e., the primitive function) to the associated differential equation with optimal data-assimilated 
parameters. The availability of the closed-form primitive function ( )x t , will provide great conveniences in the 
further investigation on the system under study. We acknowledge that the idea of obtaining a closed-form solution to 
the associated differential equation was suggested by the founder of Grey Mathematics, Deng [3]. The DEAR models 
defined in Definitions 2.5 and 2.6 have a common feature that both of them start with (a hypothesized) differential 
equation model and then the coupling regression model. Therefore, they are differential equation motivated regression 
(abbreviated as DEMR) models, Guo et al. [10]. 
It is possible that in modeling real world data, there is no hypothesized differential equation as such a priori. What 
we may do is to search a best fitted regression model, for example, a set of system data ( ){ }, 1,2, ,ix t i n= "  is 
collected and a fitted regression model takes the form 

( ) ( ) ( ) ( )0ˆ mi
i i

i

x
ix t x t

t
α β

Δ
= = +

Δ
x t . 

Then, the associated differential equation is a Bernoulli equation of the form  

( )2( ) mdx p t x q t x
dt

+ = . 

Then a model can be established as 
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( )

( ) .

i
i

i

m m
i i

x x t
t

dxx t x
dt

α β

ε α β

⎧Δ⎪⎪ = +⎪⎪Δ⎪⎨⎪⎪⎪ + = +⎪⎪⎩
x

                                                       (5) 

It should be fully appreciated that the estimated Bernoulli equation ˆˆ mdx x x
dt

α β= + , which results in a solution 

( ) ( )( )( ) ( ) ( )1ˆ 11
1

ˆˆˆ; , 1 ,  0,1
ˆ

m t tmt e c t mαβ
ϕ α β

α
− −−= − + ≠  

for producing the nonlinear approximation to the true system dynamics .  ( ); , ,x f t α β γ=
The example discussed actually begins from a fitted regression and then searching for the best matched (coupled) 
differential equation from a differential equation family. This kind of nonlinear modeling idea can be called  
regression motivated differential equation (abbreviated RMDE) modeling. For the distinction between DEMR and 
RMDE models, we always put the motivated model first. For example, in the RMDE model of Eq. (5), the regression 
comes first and the differential equation comes second. 
In summary, DEAR models are classified into two families: DEMR and RMDE. Each family is classified into two 
subfamilies: Type I (sampling at derivative level and thus primitive function requires approximation) and Type II 
(sampling at primitive function level and thus approximation to the derivative is necessary), as in Table 1. 
 

Table 1: DEAR family and its classifications 

 DEAR 

DEAR subfamily DEMR RMDE 

Type I 

(data at derivative 
level) ( ) ( )0 1

                           

ˆ ,  1,2, ,i i i

dx x
dt

x x i

α β

α β ε

⎧ = +⎪
⎨
⎪ = + + =⎩ " n

 
( ) ( )0 1ˆ ,  1,2, ,

                               

i i ix x i
dx x
dt

α β ε

α β

⎧ = + + =
⎪
⎨

= +⎪⎩

" n
 

TYPE II 

(data at primitive 
level) ( )

( ) ( ) ( )
1

0 1

                            

ˆ ,  1,2, ,k
i i i

k

dx x
dt
x t

x x i
t

α β

α β ε

⎧ = +⎪⎪
⎨ Δ⎪ = = + + =
⎪ Δ⎩

" n

( )
( ) ( ) ( )
1

0 1ˆ ,  1,2, ,

                                                  

k
i i i

k

x t
x x i

t
dx x
dt

α β ε

α β

⎧ Δ
= = + + =⎪⎪ Δ

⎨
⎪ = +⎪⎩

" n

 
We should emphasize that the new DEAR modeling family proposed by Guo et al. [7, 8, 9, 10], includes very 

rich members and therefore the DEAR modeling family will have potentially wide applications. In data modeling 
exercises if a linear differential equation (or non-linear in some cases) has the close-form solution its coupled 
regression can be identified for fitting the data collected. Conversely, a very good linear regression model may be 
“pointed” to a differential equation with close-form solution. Therefore, in either case, the approximated solution of 
the associated differential equation with fitted parameters obtained from regression modeling should provide accurate 
predictions. Furthermore, DEAR modeling idea may facilitate an accurate model goodness of fit without large sample 
requirement.  

Linear regression modeling practices revealed that sample data collected possesses both local features and global 
features. Goodness of fit, as a measure of modeling accuracy, is local. The solution (with estimated parameters) to the 
associated differential equation is global. DEAR modeling is actually seeking a balance between local and global 
features carried by sample data. 

For illustrating the richness and easiness of DEAR family, we list seven elementary models in Table 2. Note that 
the order of differential equation:  and 1,2p = ϕ  a linear function in (4a). 
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Table 2: Seven elementary models in the Type II DEMR subfamily 

DEAR 
model 

Order  1p = Order 2p =  

 
A 

( ) ( )

0 1

0 1

      

k
k k

k

dx x
dt

x t
x t

t

α α

α α ε

⎧ = +⎪⎪
⎨Δ⎪ = + +
⎪ Δ⎩

 ( ) ( ) ( )

( ) ( )

2

0 1 22

1
0 1

2

          

k k
k

k

k
k

k

d x dxx
dtdt

x t x t
x t

t
x t

k
t

α α α

α α

α ε

−

⎧
= + +⎪

⎪
Δ − Δ⎪⎪ = +⎨ Δ⎪

⎪ Δ
+ +⎪

Δ⎪⎩

 

 
B 

( ) ( )

0 1

0 1

       

k

t

k t
k k

k

dx e x
dt

x t
e x t

t

δ

δ

α α

α α ε

⎧ = +⎪⎪
⎨Δ⎪ = + +
⎪ Δ⎩

 
( ) ( ) ( )

( )

2

0 1 22

1
0 1

2

          

k

t

k k t
k

k

k
k

k

d x dxe x
dtdt

x t x t
e x t

t
x t

t

δ

δ

α α α

α α

α ε

−

⎧
= + +⎪

⎪
Δ −Δ⎪⎪ = +⎨ Δ⎪

⎪ Δ
+ +⎪

Δ⎪⎩

 

 
C ( )

( ) ( ) ( )

0 1

0 1

sin        

sink
k k

k

dx t x
dt

x t
t x t

t

α ω ϖ α

kα ω ϖ α ε

⎧ = + +⎪⎪
⎨Δ⎪ = + +
⎪ Δ⎩

+
 

( )

( ) ( ) ( ) (

( )

)

2

0 1 22

1
0 1

2

sin           

sink k
k k

k

k
k

k

d x dxt x
dtdt

x t x t
t x

t
x t

t

α ω ϖ α α

α ω ϖ α

α ε

−

⎧
= + + +⎪

⎪
Δ − Δ⎪⎪ = + +⎨ Δ⎪

⎪ Δ
+ +⎪

Δ⎪⎩

t

 
D ( )

( ) ( ) ( )

0 1

0 1

sin        

sink

t

k t
k k

k

dx e t x
dt

x t
e t x t

t

δ

δ

α ω ϖ α

kα ω ϖ α ε

⎧ = + +⎪⎪
⎨Δ⎪ = + +
⎪ Δ⎩

+
 

( )

( ) ( ) ( ) (

( )

)

2

0 1 22

1
0 1

2

sin           

sink

t

k k t
k k

k

k
k

k

d x dxe t x
dtdt

x t x t
e t x

t
x t

t

δ

δ

α ω ϖ α α

α ω ϖ α

α ε

−

⎧
= + + +⎪

⎪
Δ − Δ⎪⎪ = + +⎨ Δ⎪

⎪ Δ
+ +⎪

Δ⎪⎩

t
 

 
E* ( )

( ) ( ) ( )

0 1

0 1

       q

k
q k k k

k

dx p t x
dt

x t
p t x t

t

α α

α α ε

⎧ = +⎪⎪
⎨Δ⎪ = +
⎪ Δ⎩

+
 

( )

( ) ( ) ( ) ( )

( )

2

0 1 22

1
0 1

2

          q

k k
q k k

k

k
k

k

d x dxp t x
dtdt

x t x t
p t x t

t
x t

t

α α α

α α

α ε

−

⎧
= + +⎪

⎪
Δ −Δ⎪⎪ = +⎨ Δ⎪

⎪ Δ
+ +⎪

Δ⎪⎩

 

 
F* ( )

( ) ( ) ( )

0 1

0 1

       

k

t
q

k t
q k k k

k

dx e p t x
dt

x t
e p t x t

t

δ

δ

α α

α α ε

⎧ = +⎪⎪
⎨Δ⎪ = +
⎪ Δ⎩

+
 

( )

( ) ( ) ( ) ( )

( )

2

0 1 22

1
0 1

2

          

k

t
q

k k t
q k k

k

k
k

k

d x dxe p t x
dtdt

x t x t
e p t x t

t
x t

t

δ

δ

α α α

α α

α ε

−

⎧
= + +⎪

⎪
Δ −Δ⎪⎪ = +⎨ Δ⎪

⎪ Δ
+ +⎪

Δ⎪⎩

 

 
G* ( ) ( )

( ) ( ) ( ) ( )

0 1

0 1

sin        

sin

q

k
q k k k k

k

dx p t t x
dt

x t
p t t x t

t

α ω ϖ α

α ω ϖ α ε

⎧ = + +⎪⎪
⎨Δ⎪ = + +
⎪ Δ⎩

+

( ) ( )

( ) ( ) ( ) ( ) ( )

( )

2

0 1 22

1
0 1

2

sin           

sin

q

k k
q k k k

k

k
k

k

d x dxp t t x
dtdt

x t x t
p t t x

t
x t

t

α ω ϖ α α

α ω ϖ α

α ε

−

⎧
= + + +⎪

⎪
Δ −Δ⎪⎪ = + +⎨ Δ⎪

⎪ Δ
+ +⎪

Δ⎪⎩

t

Note: (*) involves a qth-order polynomial function: ( ) 0 1 ( 1)q
q qp t p p t p t q= + + + >" .  

. 
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 3  The Coupling Principle and Error Structure of a DEAR Model 
 

Based on the discussions of DEAR model in Section 2, it is fairly clear that organically coupling a differential 
equation and a regression together does change the nature of data-oriented modeling exercises. Such coupling 
generates a different optimality and efficiency in terms of a small sample of observations. In the paper of Guo, Guo 
and Thiart [6], the nature of coupling a differential equation and regression was examined for the first time and 
accordingly summarized as the Coupling Principle. For an overall intuitive picture of the coupling principle, we list 
the relevant components and the discretization rule according to the coupling principle in Table 3. 

 

 

Table 3: Coupling principle (Rule) in univariate first-order DEMR model 

Term Motivated DE Coupled REG 
DISCRETIZATION  RULE  BETWEEN  MOTIVATED DE  AND  COUPLED REG 

Intrinsic feature Continuous Discrete 
Independent Variable t ,  1,2, ,kt k n= "  
 
1st-order Derivative 

dx
dt  ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )1 1 1
0 1

1

ˆ k k
k

k k k

kx t x t x t
x t

t t t
−

−

Δ −
= =

Δ −  

 
 
pth-order Derivative 

 
( ) ( )p

p

d x t
dt

 

 

( ) ( )
( )

( ) ( ) ( ) ( ) ( )

1
1

2 2
1

1

ˆ ( )ˆ

ˆ

k

p
p k

k
k

p p p
k k

p
k k t t

x tx t
t

x t x t d x
t t dt

− +
− −

− + − +
−

− =

Δ
Δ

−
= ≈

−

�
 

Primitive function x(t) ( )kx t  
 
 
Model Formation 

 
( ) ( )dx t

x t
dt

α β= +  

( ) ( ) ( )

( ) ( )

0 ˆ

or
k k

k
k k

k

x t x t

x t
x t

t

k= α +β + ε

Δ
= α +β + ε

Δ

 

 
A fundamental idea here is that an approximated derivative of the dynamic law ( )x t  is obtained by divided 

difference, and the primitive is linked to the partial sum as an approximation to the integration (i.e., the primitive 
function). 

In the literature of classical statistical linear models, the error terms in a regression model, denoted as 
,  1,2, ,i i nε = " , are typically assumed to have zero mean and constant variance, i.e., [ ]E ε = 0  and [ ] 2Var ε = σ . For 

the convenience in hypothesis testing, ,  1,2, ,i i nε = "  are assumed to be sampled from a normal distribution with 

zero mean and constant variance, i.e., ( )20,N σ .   

However, we should be fully aware that when carrying the coupling principle back and forward between the 
associated differential equation and coupled regression, approximation errors are introduced. In other words, the 
discretization and alternation between the associated differential equation and the coupled regression, in terms of the 
Coupling Principle, will bring in new error which is different from the random sampling error of the ( )20,N σ  

variable. Use of a divided difference ( ) ( ) ( )( ) ( )1k k k k k k 1x t t x t x t t t−Δ Δ = − − −  to replace a derivative ( )
kt t

dx dt
=

and 

use of the average accumulated partial sum ( )ˆ kx t  to replace the primitive function ( )kx t  during the discretization 
between the associated differential equation and the coupled regression give rise to new error. 

Our simulation studies have shown that the coupling-introduced error is dependent upon the grid size , or 
equivalently upon the total number of approximations N. The simulation evidence has shown that the larger the count 

h
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of nodes on the approximating grid, or equivalently, the smaller the approximating grid size, the smaller the coupling 
discretization error. However, the coupling discretization error and the approximating grid do not satisfy a 
deterministic functional relation. What we can see is the functional relation has a particular degree of belongingness. 
In other words, the coupling discretization process induces a fuzzy error term, denoted as e  with a credibility 
distribution function 

�
( )eΛ ⋅� . 

For example, a simulation study of the error occurrence frequencies when approximating ( )cos 2π  by 

( ) ( )( )sin 2 sin 2 x xπ π− + Δ Δ , gave the following graph.   
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Figure 4: Error occurrence frequency 

 
In general the discretization error term of a DEAR model is fuzzy because of the stratification feature and the 

vague nature of the error occurrences. In this sense, the coupled regression in Eq. (4b) and Eq. (5b) are actually cases 
of a special random fuzzy regression model.  

As a standard approach, the fuzzy error component  may be assumed to be a triangular fuzzy variable with a 
membership function 

ie

( )

if 0

 if 0

0     otherwise,

e

s g g s
g

g ss s g
g

+⎧ − ≤ <⎪
⎪

−⎪
μ = ≤⎨

⎪
⎪
⎪
⎩

≤

n

 

which has a fuzzy mean zero. Therefore, the composite error term appearing in the differential equation associated 
regression is , which is a sequence of random fuzzy variables, because of the nature of the 
summation of a fuzzy variable, e , and a random variable, 

,  2,3, ,i i ie iε = + τ = "
τ  with [ ]E τ 0= and [ ] 2Var τ σ= , according to Liu [13,14].  

Finally, we need also stress that the coupling-generated errors need not be a zero mean fuzzy variable. In general, 
we may assume a triangular membership function specified by parameters (a,b,c) as shown in Eq. (A8) in the 
Appendix. 

 
4  An M-Estimator for a Univariate DEAR Model 

 
We emphasize here that the coupled regression is in nature a random fuzzy regression model. The literature is limited 
but very complicated when the random fuzzy regression model is handled at random fuzzy set level, for example, 
Bandemer [1],  Bardossy [2],  Diamond [4],  Kacprzyk and Fredrizzi [11], Korner [12], Tanaka and Watada [16], and 
others. However, based on the credibility measure theoretical foundation developed by Liu and Liu [15], Liu [13,14], 
a random fuzzy variable is defined as a mapping from the credibility space ( ),2 ,CrΘΘ  to a set of random variables and 

thus the random fuzzy regression modeling will be handled at (scalar) functional level. The fundamental change in 
modeling level will lead to random fuzzy regression, highly similar to that in statistical regression models (or linear 
models based on probabilistic foundation) rather than these developments at set level.  
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As we pointed out in Section 3, the coupled regression either in Type I DEAR model or Type II DEAR model is 
random fuzzy regression in nature and thus the usual statistical regression theory should not be directly utilized. 

Without loss of generality, we use the coupled regression in a simplest DEAR model form , 
and a differentiable function of the random fuzzy error term is assumed to take a form 

i iY xα β ε= + + i

iβ( ) ( )( )( )2
i ig w Y xε αΨ = − − + . 

Definition 4.1(M-function for random fuzzy variable): Let { }1 2, , , nx x x"  be a simple random fuzzy data sampled 

drawing from a given random fuzzy population, where parameter-vector ( )1 2θ , , ,T
dθ θ θ= " ,  Then the M-

function is defined by 
1d ≥

{ } (1 2 1 2 1 2
1

( , , , | , , , | , , ,
n

d n i
i

x x x x )dθ θ θ θ θ θ
=

= Ψ∑" " "C  

For a given simple random sample { }1 2, , , nx x x" , the optimal data-assimilated parameter-vector  

( 1 2θ , , ,T
d )θ θ θ= "  maximizes the M-function. 

Mathematically, the parameter search can be performed by solving a nonlinear M-function equation system, 
which is called an average chance M-function 

( )

( )

11 1

1

;
0

;
0.

n
i

i

n
i

id d

x

x

θ
θ θ

θ
θ θ

=

=

⎧ ∂Ψ∂
= =⎪ ∂ ∂⎪⎪

⎨
⎪ ∂Ψ∂⎪ = =
⎪∂ ∂⎩

∑

∑

#

C

C

                                                                             (6) 

The solution to the M-function equation system is called an M-estimator for ( )1 2, , ,
T

γθ θ θ" . 

Theorem 4.2: The M-estimator for coupled regression coefficients ( ), Tα βΓ= , denoted by ( )ˆ ˆ ,
T

α βΓ= ˆ  is the 

solution to the M-functional equation system 

( )( ) ( )( )
( )( ) ( )( )

2

1

2

1

ˆ ˆˆ ˆ 0

ˆ ˆˆ ˆ 0,

n

i i i i
i

n

i i i i i
i

w Y x Y x

w Y x Y x x

δ α β α β

δ α β α β

=

=

⎧ ⎛ ⎞− − + − + =⎜ ⎟⎪ ⎝ ⎠⎪
⎨

⎛ ⎞⎪ − − + − + =⎜ ⎟⎪ ⎝ ⎠⎩

∑

∑
                                                (7) 

where ( )δ ⋅  is the derivative of ( )g ⋅ . 
The proof is very straightforward by taking the derivative of Eq. (6) with respect to α  and β respectively. 

Equivalently, Eq. (7) can be written in a weighted least-squares normal equation 
T TX W X X W Y− −Γ =1 1 , 

where  and ( )( )( )2
i id w Y a bxδ= − − + i

1 1 1

2 2 21

1 0
1 0

,  ,  .

1 0 0n n

Y x d
Y x d

Y X W

Y x

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

"
"

# # # # # %
"

0
0

nd
#

 

Furthermore, the coefficient M-estimator will have weighted least square presentation form 
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( )( )( )( )( )

( )( )( )( )

2

1

2 2

1

ˆ                                                    

ˆ ,

n

i i i i
i

n

i i i
i

Y bx

w Y a bx x x Y Y

w Y a bx x x

δ δ

δ δ

δ

α

δ
β

δ

=

=

⎧ = −
⎪
⎪⎪ − − + − −
⎨

=⎪
⎪ − − + −
⎪⎩

∑

∑

 

where the weighted averages are defined as 

( )( )( )
( )( )( )

( )( )( )
( )( )( )

2

21

1

2

21

1

.

n i i

in
i

i i
i

n i i

in
i

i i
i

w Y a bx
x x

w Y a bx

w Y a bx
Y Y

w Y a bx

δ

δ

δ

δ

δ

δ

=

=

=

=

⎧ − − +⎪ =⎪
− − +⎪

⎪
⎨
⎪ − − +
⎪ =
⎪ − − +⎪⎩

∑
∑

∑
∑

 

Theorem 4.3: The coupled regression coefficient M-estimator is unbiased, i.e., [ ] ˆˆE ,   Eα α β⎡ ⎤ β= =⎣ ⎦ . 

The proof is divided into two steps. First setting 

( )( )( )( )

( )( )( )( )

2

1

2 2

1

,   1,2, ,

n

i i i
i

i n

i i i
i

w Y a bx x x
i n

w Y a bx x x

δ

δ

δ
κ

δ

=

=

− − + −
= =

− − + −

∑

∑
" . 

Then, writing β̂ as 
1

ˆ
n

i i
i

Yβ κ
=

=∑ .  Finally, it is not difficult to show that 
1

ˆE E
n

i i
i

Yβ κ β
=

⎡ ⎤⎡ ⎤ = =⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ . 

Theorem 4.4: The estimated variance-covariance matrix of the regression coefficient M-estimators is given by 

( ) [ ] ( )ˆ ˆ ˆ
T

T T TV X W X X V Y W X X W Xσ
− −− − −⎡ ⎤⎡ ⎤Γ =⎣ ⎦ ⎢ ⎥⎣ ⎦
1 12 1 1 1

0
, 

where 
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1

1ˆ
2

n

i i i
i

h Y a bx Y a bx
n

σ
=

= − − + − +
− ∑ i . 
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σ α β σ β
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2

0 2
. 

Corollary 4.5: The estimated variances and the covariance for M-estimator  and  respectively, are α̂ β̂
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and 
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( )
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Theorem 4.4 and Corollary 4.5 pave the way of prediction for a future n kY +  value, denoted by  given n̂ kY + n kx + , 

 as well as the variance of . 1,2, ,k = " K n̂ kY +

 
5  The General Formation of a Mutivariate DEAR Model 

 
A multivariate DEAR (m-dimensional) model may be stated as 

( ) ( )

( )
( )

( ) ( ) ( )

( )
( )( )

( )
( )( ) ( ) ( )( )

( )

1
1

1 1 1
1

0 1

( 1)1 1 ( 1) 1
,

m m m m
m

m mn m n m n m

dx t
B x h t a

dt

X Z B

+ × × ×
×

+ ×− × − × + − ×

⎧
= +⎪

⎪
⎨
⎪ = + Ε⎪⎩

b
                                             (9) 

where Eq. (9a) is called a (multivariate) associated differential equation system and  Eq. (9b) will be called a coupled 
multivariate regression model. The first-order vector differential equation in Eq. (9a) is 

( )

( )

( )

( )

( )
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1
11 01 21 1
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02 22 2 12

2
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# # % ##
#"

. 

In general, a multivariate regression model addresses the relationship between m response variables Y1,Y2,…,Ym 
and a single set of explanatory variables  z1, z2, …, zm. Each response variable is assumed to follow its own regression 
model so that 

1 01 11 1 1 1

2 02 12 1 2 2

0 1 1

 
.

p m

p m

m m m pm m

Y z z
Y z z

Y z z m

β β β ε
β β β ε

β β β

= + + + +
= + + + +

= + + + +

"
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#
" ε

 

The error term ( 1 2, , ,T
m )ε ε ε ε= "  is assumed to follow [ ] [ ]1E 0  and Var = .m mε ε× ×= Σ m  
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However, in the coupled multivariate regression model (8), the response variable Yi is not an arbitrary one, but 
( )
( )

, 1, 2, ,i

X i
Y i

t i
Δ

= =
Δ

" m , which involves the original observations. The explanatory variables ( )1 2, , , T
mZ Z Z Z= "  

are not arbitrarily chosen but are discretized approximate values of the related primitive functions 
( ) ( ) ( ) ( )( )1 1 2 1

1 2, , ,
T

mX X X X= " , i.e.,  
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#

( ) ( )1 1 ,  1,2,k kx x kΔ ≡ = " n .  Accordingly the approximate values of primitive functions are calculated
 

 as 
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It is necessary to point out that in seeking a solution to Eq. (9a), it is inevitable that we invoke the finite term 

approximation of matrix Bte : 

( ) ( ) ( )( ) ( )( )2 1
0 1 2 1

nBt
ne t I t Bt t Bt t Btκ κ κ κ −
−= + + + + . 

To determine the functions ( ) ( ) ( ){ , let us define a function }0 1 1, , , nt t tκ κ κ −"

( ) ( ) ( ) ( ) ( )2 1
0 1 2 1

n
nr t t t tλ κ κ λ κ λ κ λ −
−= + + + +  .                                  (10) 

Now let λ  be an eigenvalue of matrix , i.e., Bt 0Bt Iλ− = . Then ( )i
ie rλ λ= . 

Furthermore, if iλ  is an eigenvalue of multiplicity j , then the following equations hold 
( ) ( )

,  1, 2, ,i

i

k

k

d r
e k

d
λ

λ λ

λ
λ

=

⎡ ⎤
= =⎢ ⎥
⎢ ⎥⎣ ⎦

" j . 

When the equation system is established for each eigenvalue of matrix , which comprises n linear equations, 

all including e

Bt
iλ on the left side, then we can solve the linear equation system for ( ) ( ) ( ){ }0 1 1, , , nt t tκ κ κ −" . 

Section 6 details a special case. 
 

6  A Bivariate DEAR Model Example 
 

It is difficult to discuss the high-dimensional DEAR model in detail. However, a bivariate DEAR model is a quite 
manageable example for revealing the fundamental features.  
 
6.1 Formation of General Bivariate DEAR Model 

 
A bivariate DEAR model takes the form 
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( ) ( ) ( ) ( )

( )( ) ( )( ) ( ) ( )( )

1
1

3 21 2 1 (3) 1 2

( )

, ( )
n n n

dx t
Bx h t a

dt
F Z

×− × − × − ×

⎧
= +⎪

⎨
⎪ = Λ + Ε
⎩

b
                                                                     (11) 

where 

( ) ( )
( ) ( )
( ) ( )

1
1

1
.

x t
x t

y t

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

                                                                                      (12) 

The first vector-differential equation Eq. (11a) is called the bivariate associated differential equation system, 
while the second equation Eq. (11b) is called the coupled bivariate regression model. 

 
6.2 Bivariate Differential Equation System 

 
To obtain insight into the bivariate DEAR model, we start with a bivariate associated differential equation system in 
the same form in Eq. (11a) 

( ) ( ) ( ) ( )
1

1 .
dx t

Bx h t
dt

= +                                                                                   (13) 

A typical example is 

1 11 12

2 21 22 .

dx x y
dt

dy x y
dt

α β β

α β β

⎧ = + +⎪⎪
⎨
⎪ = + +
⎪⎩

                                                                              (14) 

Let 

11 12 1

21 22 2

= ,  =B a
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

β β α
β β α

. 

Then the bivariate differential equation system in Eq. (14) can be re-written in a matrix form 

.dx Bx a
dt

= +                                                                                   (15) 

A common geometric interpretation of bivariate differential equation Eq. (12) is that under a two-dimensional 
coordinate system, a curve can be defined as ( ) ( )( ){ }, ,x t y t t∈T . It is obvious that in Eq. (10) the vector function 

( )h t a=  is a constant vector. 
The differential equation system 

dx Bx
dt

=                                                                                          (16) 

is called the homogeneous version of  Eq. (13), and we investigate its solution matrix. 
Lemma 6.1: Let B be a matrix as 2 2×

11 12

21 22

b b
B

b b
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. 

Define function ( ) 0 1r λ γ γ= + λ , where iλ is an eigenvalue of  matrix Bt , then . Furthermore, 

if 
( ) ,  1,2i

ie r iλ λ= =

1 2λ λ= = λ , then  

( )1

1

de r
d

λ

λ λ

λ
λ =

= . 

Lemma 6.2: If the eigenvalues of the matrix Bt are 1 2λ λ≠ , then the equation system 
1

2

0 1 1

0 1 2

e

e

λ

λ

γ γ λ

γ γ λ

⎧ + =⎪
⎨

+ =⎪⎩
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defines functions and ( )0 tγ ( )1 tγ as 

( )

( )

1 2

2 1

0 2
2 1

1
2 1

1

1 ,

e e

e e

λ λ

λ λ

γ λ
λ λ

γ
λ λ

⎧ = −⎪ −⎪
⎨
⎪ = −
⎪ −⎩

1λ
                                                           (17) 

where 1λ and 2λ are eigenvalues of matrix Bt with 

( ) ( )( )
( ) ( )( )

( )

1 11 22

2 11 22

2
11 22 12 21

2

2

4

t b b t

t b b t

b b b b

λ

λ

⎧ = − + Δ⎪
⎪ = − − Δ⎨
⎪
⎪Δ = − +⎩

. 

If the eigenvalues of matrix Bt are ( ) ( ) ( )1 2t t= = tλ λ λ , then the equation system 

( ) ( ) ( ) ( )

( ) ( )
0 1

1

t

t

t t t e

t e

λ

λ

γ γ λ

γ

⎧ + =⎪
⎨

=⎪⎩
 

will define functions 0γ and 1γ  as 

( )0 1 ,e 1 eλ λγ λ γ= − =  ,                                                                 (18) 

respectively. Use of Lemmas 6.1 and 6.2, allow us to obtain a closed form expression for matrix Bte . We state the 
result as a theorem. 
Theorem 6.3: The homogeneous bivariate linear differential equation system in Eq. (16) has an elementary solution 
matrix  

( ) 0 1
BtX t e I Btγ γ= = + , 

where functions and ( )0 tγ ( )1 tγ  are defined in Eq. (17), or Eq. (18) respectively.  
We proceed to the solution for the nonhomogeneous bivariate differential equation system. 
Theorem 6.4: For the bivariate differential equation system in Eq. (13), the general solution to the non-homogeneous 
system takes the form 

( ) ( ) ( )
0

t
B t sBt

t

x t e c e h s ds−= + ∫ , 

where [ 1 2
Tc c c= ] is an arbitrary constant vector.  

Example 6.5: Let ( ) [ 1 2
Th t a α α= = ] . Then Eq. (13) becomes Eq. (15). The general solution becomes 

( ) ( )01 BtBt Btx t e c B e e−= + − a , 

where [ 1 2
Tc c c= ] is an arbitrary constant vector. However, for 2 2×  matrix Bt, 

( ) ( )0 1
Bte t I tγ γ= + Bt

2

. 

If 1λ λ≠ , then 

( ) ( ) ( )

( ) ( )( )( )

( ) ( )( )( )

0 0

0

0 0

-

0 1

0 1

 

       

       .

t t
B t s B t sBt Bt

t t

t
Bt

t

t t
Bt

t t

x t e c e ads e c e ds a

e c t s I t s t s B ds a

e c t s ds a t s t s ds Ba

γ γ

γ γ

−
⎛ ⎞

= + = + ⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
= + ⎜ − + − − ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛

= + ⎜ − ⎟ + ⎜ − − ⎟⎜ ⎟ ⎜
⎝ ⎠ ⎝

∫ ∫

∫

∫ ∫
⎞
⎟
⎠

 

Note that 
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( ) ( )( ) ( )( )1 0 2 0

0

2 1
0

1 2

1 1
t

t t t t

t

t s ds e eπ πθ θγ
π π

− −− = − + −∫  

and 

( )( ) ( )( ) ( )( )2 0 1 0

0

1
2 1

1 11 1
t

t t t t

t

t s t s ds e eπ πγ
π π

− −− − = − − + −
Δ Δ∫ , 

where 

( )( ) ( )( ) 1 2
1 11 22 2 11 22 1 22, 2, ,b b b b π ππ π θ= − + Δ = − − Δ = =θ

−Δ −Δ
. 

 
6.3 The Coupled Bivariate Regression Model 

 
In the bivariate DEAR model of Eq. (11), the second equation system in Eq. (11b) is just the coupled bivariate 
regression model by assuming equal-interval observation times), 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

0 1 1
1 11 1 12 2 1

0 1 1
2 21 1 22 2 2

2,3, ,k k k

k k k

x t z t z t k
for k n

y t z t z t k

α β β ε

α β β ε

⎧ = + + +⎪ =⎨
= + + +⎪⎩

" . 

In contrast to the univariate case, the observations are data pairs (X(0),Y(0))={(x(0)(i),y(0) )(i)}, i=1,2,…,n}. Then the 
approximate primitive function pairs will be generated in a manner similar to the univariate DEAR model case, 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 0

1

1 0

1
.

k

k i
i
k

i i
i

ix t x t

y k y t t

=

=

⎧ t= Δ⎪⎪
⎨
⎪ = Δ
⎪⎩

∑

∑
 

Thus, the mean pair sequence will be generated as 
( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

1 1 1
1

1 1 1
1

2
2,3, , .

2

x k k k

y k k k

z t x t x t
for k n

z t y t y t

−

−

⎧ = +⎪ =⎨
= +⎪⎩

"  

With the data as handled by linear transformation of the original data observation vector, we are ready to explain 
the discretization from the associated differential equation systems into the coupling multivariate regression model. 
The bivariate (coupling) regression model here suggests the relationship between bivariate responses, ( ) ( )0 0,x y  and a 

single set of bivariate predictors, ( ) ( )1 1
1 2,z z . Each response is assumed to follow its own regression model. 

In classical multivariate regression theory, the error term ( 1 2, T)ε ε ε= has [ ]E 0ε =  and [ ]Var ε = Σ , which 
indicates the error terms associated with different responses might be correlated. 

Let  be the values of the bivariate predictors for the  observed pair in a sequence, and  ( ) ( ) ( ) ( )1 1
1 2,z k z k⎡

⎣
⎤
⎦

thk

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )0 0
1 2, , ,

T T
f k x k y k k k kε ε ε= =  

the values of responses and errors in kth observation. Then in matrix notation, the “design matrix” takes the form 

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
1 2 2 2

1 1
1 3 2 3

1 3

1 1
1 2

1

1
            

1

n

n n

z t z t

z t z t
Z

z t z t

− ×

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

# % #
. 

The response matrix is 
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( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

0 0
2 2

0 0
0 03 3

1 2

0 0

            n

n n

x t y t

x t y t
F x

x t y t

− ×

⎡ ⎤
⎢ ⎥
⎢ ⎥ y⎡ ⎤= =⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎢ ⎥
⎣ ⎦

# #
. 

The parameter matrix is 
1 2

3 2 11 21 1 2

12 22

α α
β β β β
β β

×

⎡ ⎤
⎢ ⎥ ⎡ ⎤Λ = = ⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

, 

and finally the error matrix is 

( ) [ ]

( )
( )

( )

21 22

31 32
1 21 2

1 2

2
3

   

T

T

n

T
n n n

ε ε ε
ε ε ε

ε ε

ε ε ε

− ×

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥Ε = = = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

# # #
. 

Then the coupled bivariate linear regression model in matrix form is 

( )( ) ( )( ) ( ) ( )( )3 21 2 1 3 1 2n n n
F Z

×− × − × − ×
= Λ + Ε . 

It is obvious that the both response vector ( )0
1x Z 1β ε= +  and response vector ( )0

2y Z 2β ε= +  follow their own 
bivariate linear regressions respectively. 

Based the observed data sequence pair ( ) ( )0 0( ,X Y ) , the weighted least-squares estimates 1̂β  are obtained 

( ) ( )1 01 1
1̂

T TZ W Z Z W xβ
−− −= . 

Similarly,  

( ) ( )1 01 1
2

ˆ T TZ W Z Z W yβ
−− −= . 

We combine the two least-squares estimates as 
( ) ( ) ( ) ( )1 10 01 1 1

1 2
ˆ ˆˆ T T T T 1Z W Z Z W x y Z W Z Z W Fβ β

− −− − −⎡ ⎤⎡ ⎤Λ = = =⎣ ⎦ ⎣ ⎦
− . 

For any choice of parameter [ ]1 2b bΒ = , the matrix of weighted least-squared error is ( )G F Z− Β , where 

. Therefore, the error matrix for sum of squares and the cross-products is 1 TW G− = G

( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )

0 0 0 01 1
1 1 1

0 0 0 01 1
2 1 2

T T

T

T T

2

2

x Z b W x Z b x Z b W y Z b
G F Z G F Z

y Z b W x Z b y Z b W y Z b

− −

− −

⎡ ⎤− − − −⎢ ⎥− Β − Β = ⎢ ⎥
⎢ − − − − ⎥⎣ ⎦

. 

The estimate of parameter matrix Λ  actually minimizes the trace of the weighted matrix  
( ) ( )1TF Z W F Z−− Β − Β , 

i.e.,  
( ) ( ){ }1ˆ min tr T

B
F Z W F Z−Λ = − Β − Β  

 and it can be shown that the generalized variance ( ) ( )1TF Z W F Z−− Β − Β  is minimized by the weighted least-squares 

estimates . Then the predicted values are Λ̂

( ) 11 1ˆ ˆ T TF Z Z Z W Z Z W F
−− −= Λ = . 

As to the weighted matrix W , it is necessary to mention here that W depends upon the object function to be 
used.  

 
7  Conclusion 

 
In this paper, we propose a new modeling family, called the DEAR. We discuss the mathematical foundation for a 
DEAR model, which combines the (ordinary) differential equation theory, (statistical) linear model theory and 
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random fuzzy variable theory based on credibility measure and probability measure foundations, into a new small-
sample oriented prediction theory. The coupled regression component in a DEAR model is in nature a special random 
fuzzy regression model. The multivariate DEAR model is also introduced and as illustration, a bivariate DEAR model 
is explored in detail to offer further insight into multivariate DEAR modeling.  
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Appendix: A Review on Axiomatic Fuzzy Credibility Measure Theory 
 
A.1 Axiomatic Fuzzy Credibility Measure Theory 
 
Let Θ  be a nonempty set, and  the power set on 2Θ Θ . Each element, let us say, ,  is called an event. A 
number denoted as 

A ⊂ Θ 2A Θ∈
{ }Cr A , { }0 Cr 1A≤ ≤ , is assigned to event 2A Θ∈ , which indicates the credibility grade with 

which event  occurs. 2A Θ∈ { }Cr A satisfies the following axioms (Liu, 2004, 2007): 

Axiom 1: { }Cr 1Θ = . 

Axiom 2: {}Cr ⋅ is non-decreasing, i.e., { } { }Cr CrA B≤  whenever A B⊂ . 

Axiom 3: {}Cr ⋅  is self-dual, i.e.,  for any { } { }Cr Cr 1cA A+ = 2A Θ∈ . 

Axiom 4: { } { }Cr sup Cri i i
i

A A= ⎡⎣∪ ⎤⎦  for any { }iA  with { }sup Cr  < 0.5i
i

A⎡ ⎤⎣ ⎦ . 
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Axiom 5: Let set functions {} [ ]Cr : 2 0,1k
k

Θ⋅ → satisfy Axioms 1-4, and 1 2 pΘ = Θ ×Θ × ×Θ" , then 

{ } { } { } { }1 2 1 1 2 2Cr , , , Cr Cr Crp p pθ θ θ θ θ θ= ∧ ∧ ∧" "  

for each { } .  1 2, , , 2p
Θ∈θ θ θ

Definition A.1 ([13,14]):  Any set function  satisfies Axioms 1-4 is called a ([ ]Cr : 2 0,1Θ → ),∨ ∧ -credibility measure 

(or classical credibility measure). The triple ( ), 2 ,CrΘΘ  is called the ( ),∨ ∧ -credibility measure space. 

Definition A.2 ([13,14]): A fuzzy variable ξ  is a mapping from credibility space ( ), 2 ,CrΘΘ  to the set of real 
numbers. 

Similar to random variable, a fuzzy variable is fully specified by its distribution function. 
Definition A.3 ([13,14]): The credibility distribution [ ]: 0,Φ →R 1  of a fuzzy variable ξ  on ( ), 2 ,CrΘΘ  is 

( ) ( ){ }Crx xθ ξ θΛ = ∈ Θ ≤ .                                      

The credibility distribution ( )xΛ  is the accumulated credibility grade that the fuzzy variable ξ  takes a value 
less than or equal to a real-number .  x∈R
Definition A.4 [13,14]: Let Φ be the credibility distribution of the fuzzy variable ξ . Then function : [0, )λ → +∞R  
of a fuzzy variable ξ  is called a credibility density function such that 

( ) ( )d ,
x

x y y xλ
−∞

Λ = ∀ ∈∫ R . 

Zadeh [17] based his fuzzy set concept upon the membership function, which is intuitive and sounds very 
practical. However, the membership function is not the correct starting point for establishing a set-theoretical 
foundation of the fuzzy mathematics. Some later developments on possibility measure theory, which was assumed to 
be the counterpart of probability measure theory, however, failed to behave as expected by Zadeh [18]. In contrast, 
the axioms for the credibility measure proposed by Liu [13,14] have introduced a set-theoretical foundation. As a 
traditional treatment, whenever a fuzzy variable is involved, its membership function is given. One should be fully 
aware that this treatment may not be the natural way to deal with a fuzzy variable. On credibility measure theoretical 
grounds, a fuzzy variable should be characterized by its credibility distribution first. The corresponding membership 
is merely an induced function and a conventional and convenient mathematical language for describing the fuzzy 
phenomenon. The credibility measure of an event permits many developments related to the membership function. 
Definition A.5 ([13,14]): The (induced) membership function of a fuzzy variable ξ  on ( )  is , 2 ,CrΘΘ

( ) { }( )2Cr 1,x xμ ξ x= = ∧ ∈R . 
Conversely, for a given membership function the credibility measure is determined by the credibility inversion 

theorem.  
Theorem A.6 ([13,14]): Letξ be a fuzzy variable with membership function . Then for , μ B R∀ ⊂

{ } ( ) ( )1C r s u p 1 s u p ,
2 cx B x B

B x x Bξ μ μ
∈ ∈

⎛ ⎞∈ = + − ⊂⎜ ⎟
⎝ ⎠

R �. 

As an example, if the set B is degenerate at a point x, then 

{ } ( ) ( )1C r 1 sup ,
2 y x

x x y xξ μ μ
≠

⎛ ⎞= = + − ∀ ∈⎜ ⎟
⎝ ⎠

R . 

Theorem A.7 ([13,14]): Let ξ  be a fuzzy variable on (  with membership function μ. Then its credibility 
distribution is 

), 2 ,CrΘΘ

( ) ( ) ( )1 s u p 1 s u p ,
2 y x y x

x y yμ μ
≤ >

⎛ ⎞ xΛ = + − ∀⎜ ⎟
⎝ ⎠

R∈ . 

An important class of fuzzy variables is defined by a triangular credibility distribution with three parameters 
 ( ), ,a b c
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( )
( )

( )

0       i f  

 i f  
2

2 i f  
2

1          i f  .

x a
x a a x b
b a

x
x c b b x c

c b
x c

<⎧
⎪ −⎪ ≤ <

−⎪⎪Λ = ⎨ + −⎪ ≤ <
⎪ −
⎪

≥⎪⎩

 

 
A.2 Random Fuzzy Variable 

 
Liu [13,14] stated that a random fuzzy variable is a mapping from the credibility space ( ),2 ,CrΘΘ  to a set of random 
variables.  We present a constructive definition. 
Definition A.8: A random fuzzy variable, denoted as ( ){ },Xβ θξ = θ∈Θ , is a collection of random variables X β  

defined on the common probability space ( ), PrΩ A,  and indexed by a fuzzy variable ( )β θ  defined on the credibility 

space ( ) . , 2 ,CrΘΘ

A random fuzzy variable is a bivariate mapping from ( ), 2ΘΩ×Θ ×A  to the space ( ),R B . 
In Liu [13,14], random fuzzy variable theory, we may say that the average chance measure plays an equivalent 

role similar to that of a probability measure, denoted as , in probability theory. Pr
Definition A.9 ([15]): Let ξ  be a random fuzzy variable. Then the average chance measure denoted by , of a 

random fuzzy event {
{}ch ⋅

}xξ ≤ , is 

{ } ( ){ }{ }
1

0

ch Cr |Pr dx xξ θ ξ θ α≤ = ∈ Θ ≤ ≥∫ α . 

Then function ( )Ψ ⋅  is called as average chance distribution if and only if ( ) { }chx xξΨ = ≤ .                                                     

A function  such that :φ +→R R ( ) ( )
x

x u duφ
−∞

Ψ = ∫  is called the average chance density function of random 

fuzzy variable ξ . 
 

A.3 Normal Random Fuzzy Variable with Triangular Fuzzy Parameter 
 

Let  and  be the density and cdf of the standard normal random variable, respectively. Then, for a normal 
random fuzzy variable with a triangular fuzzy mean defined by parameters

φ Φ
( ), ,a b c , the average chance distribution 

for the mean is 
2( )

2 ( ) 2 ( )

( ) d ( ) d .
2 ( ) 2 ( )

x a x b

x b x c

x a x a x b x c b x b x cx
b a c b

x c u u u u u u
b a c b

σ σ

σ σ

σ σ σ σ

σ σφ φ
σ

− −

− −

− ⎛ − − ⎞ + − ⎛ − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛Ψ = Φ − Φ + Φ − Φ⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝⎝ ⎠ ⎝

−⎛ ⎞+ Φ − −⎜ ⎟ − −⎝ ⎠ ∫ ∫

⎞⎞
⎟⎟

⎠ ⎠

The average chance density is 
1( )

2 ( ) 2 ( )

1 2
2 ( ) 2 ( )

1 ( )
2 ( )

x a x b x a x a x bx
b a b a

1x b x c x c b x b x c x c
c b c b

x a x a x b
b a

ψ φ
σ σ σ σ σ

φ φ φ
σ σ σ σ σ σ σ

φ φ
σ σ σ

⎛ − − ⎞ − ⎛ − − ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= Φ − Φ + −⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝
⎛ − − ⎞ + − ⎛ − − ⎞ −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ Φ − Φ + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

− − −
− −

−

φ ⎟
⎠

1( ) ( ) (
2 ( )

)x b x b x b x c
c b

φ φ
σ σ σ σ
− − − −⎛ ⎞ ⎛− −⎜ ⎟ ⎜−⎝ ⎠ ⎝

x c
σ
− ⎞

⎟
⎠

 

from the differentiation formula of an integral 
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( )
( )

( ) ( )
( )

( )

( )( ) ( ) ( )( ) ( ),
, ,

b t b t

a t a t

,
f x t d b t d a td f x t d x d x f b t t f a t t

d t t d t d t

⎛ ⎞ ∂
⎜ ⎟ = + −
⎜ ⎟ ∂⎝ ⎠
∫ ∫ . 

Because sampling distributions are critical for the construction of hypothesis tests, we will address sampling of 
average chance distributions.  

The sample mean, denoted as 
1

n

i
i

x x nξ
=

= =∑ , is a normal random fuzzy variable and the average chance 

distribution of the sampling mean can be obtained by substituting / nσ  in place of σ . The reason is obvious 
because 

2( )
2 ( ) 2 ( )

( ) d ( ) d .
2 ( ) 2 ( )

x a x b
n n

x b x c
n n

x a x a x b x c b x b x cx
b a c bn n n n

x c n nu u u u u u
b a c bn

σ σ

σ σ

σ σ σ σ

σ σφ φ
σ

− −

− −

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛− − − + − − −
Ψ = Φ − Φ + Φ − Φ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝⎝ ⎠ ⎝ ⎠

⎛ ⎞−
+ Φ − −⎜ ⎟⎜ ⎟ − −⎝ ⎠

∫ ∫

⎞
⎟⎟
⎠

 




