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Abstract 

 
In some previous works the authors showed the advantages in coding and decoding images in the YUV space by 

using fuzzy relation equations. Indeed the images in the Y band were less compressed than in the U, V bands and a 
better Peak Signal to Noise Ratio was obtained with respect to that deduced by coding and decoding the same images 
in the RGB space. In another foregoing paper we used the fuzzy transform compression method for gray images and 
we compared the results with those ones obtained by using the fuzzy relation equations and JPEG compression 
methods: we concluded that the fuzzy transform method produces good results with respect to the fuzzy relation 
equations method under any compression rate and with respect to the DCT method (used in JPEG) for high 
compression rates. In this stream of investigations, here we test the fuzzy transform method for coding and decoding 
color images in the YUV space under high compression rates in the U, V bands. We compare the results with those 
ones obtained by using the fuzzy transforms and the standard JPEG compression method in the RGB space.  

 © 2009 World Academic Press, UK. All rights reserved. 
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1 Introduction 
 
The YUV model defines a color space in terms of the brightness component (the Y band) and the two chrominance 
components (the U and V bands).  The YUV color model is used in the JPEG color images compression process and 
in the NTSC, PAL, and SECAM composite color-video standards.  

The study of the YUV space is interesting because the resolution of an image in the Y band is visible to the 
human eye much more than that one visible in the bands U, V while there is no difference of perception in the 
classical three color bands R, G, B. In  [15, 16] the compression method based on fuzzy relation equations (for short, 
FRE)  in the YUV space was applied to gray and color images. Indeed any image was divided in blocks of equal sizes 
and each block was coded with a low (resp. high) compression rate in the band Y (resp. U, V). 

Since we also work with the standard JPEG image compression method [24] which manages color images in the 
YUV space, here we schematize in Figure 1 this coding/decoding process. 

If the source image is represented in the RGB space, it is converted in the YUV space. In the coding process the 
source image is divided into blocks of sizes 8×8 and each block is transformed, via the forward Discrete Cosine 
Transform (for short, DCT), into a set of 64 values called DCT coefficients. Each coefficient is then transformed by 
using only one of the 64 corresponding values from a quantization table which is carried along with the compressed 
file. After this quantization, the coefficients are ordered for increasing frequency,  prepared for the entropy coding 
process and hence converted into a one-dimensional zig-zag sequence. 

In the decompression procedure each step performs essentially the inverse of its corresponding  process realized 
during the coding procedure. Indeed the entropy decoder transforms the zig-zag sequence of the quantized DCT 
coefficients. After the de-quantization, the DCT coefficients are transformed in a block of sizes 8×8 with the inverse 
DCT. 
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In this work we take advantage of the properties of the YUV space above described by using the Fuzzy 
TRansform (for short, FTR) method [18, 19, 20, 21, 23] for compressing images strongly in the bands U, V and softly 
in the band Y. 
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Figure 1.  The JPEG coding/decoding process 

 
An FTR [19] is an operator which transforms a continuous function over the interval [a,b] in a n-dimensional 

vector. Viceversa, an inverse FTR operator converts an n-dimensional vector into a continuous function which 
approximates the original function up to a small quantity ε. Thus it is possible to avoid complex computations since 
we translate the functional problem into the respective linear problem which is more simple to manipulate because 
one is faced with numerical vectors. By discretizing these processes, in [5,6] the authors showed that the FTR method 
gives better results with respect to the FRE and DCT methods and it is comparable with the coding/decoding JPEG 
standard method for high compression rates. In Figure 2 we show the schema of the process used for coding/decoding 
color images. 

In the coding process we use a compression rate ρU = ρV in the planes U, V and a compression rate ρV>ρU in the 
plane Y. After the decompression process we obtain a decoded image with components Y , U~ ~ ,V~  in the YUV space, 
converted into an image with components ,~R  G~ , in the RGB space. B~

We analyze the quality of our results by evaluating the Peak Signal to Noise Ratio (for short, PSNR) obtained by 
using the FTR method in RGB and YUV spaces for several values of the compression rate. In the RGB space we 
practically assume ρR = ρG = ρB. In RGB (resp. YUV) space we define as compression rate the quantity ρRGB = (ρR + 
ρG + ρB)/3 = ρR (resp. ρYUV = (ρU + ρV + ρY)/3 = (ρU + 2·ρV)/3). Further we assume and we operate in such a way the 
difference |ρRGB - ρYUV| assumes a small negligible value (which achieves 0.002296 as maximum value as shown in 
Table 3), so that we can suppose ρRGB≅ ρYUV without loss of generality. In Section 2 we recall the concepts of FTR 
of a function in one and in two variables in the continuous and discrete cases. In Section 3 we show how the 
techniques based on the discrete FTR and its inverse are used for coding/decoding processes of images. In Section 4 
we describe how to convert our images from RGB to YUV space and conversely, furthermore we give the several 
compression rates used in our tests. In Section 5 we present the results of our tests by comparing them with the 
analogous ones deduced by adopting the FTR method over images in RGB space and the standard JPEG method 
under several compression rates. The final Section 6 contains the concluding comments. 

 
2  FTR in One and Two Variables 

 
Let {x1, x2,…,xn} be a set of points of [a,b] such that x1 = a < x2 <…< xn = b and A1,…,An : [a,b] → [0,1] be fuzzy sets 
forming a fuzzy partition of [a,b], that is  the following conditions hold  [19]:  
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(1) Ai(xi) =1  for every  i = 1,2,…,n; 
(2) Ai(x) = 0 if  x∉(xi-1, xi+1) for each i = 2,…, n-1; 
(3) Ai(x)  is a continuous function over [a,b]; 
(4) Ai(x) is strictly increasing in [xi-1, xi] for  i = 2,…, n+1 and strictly decreasing  in [xi, xi+1]  for  i = 1,…, n-1; 
(5)  for every x∈[a,b]. 

1
( ) 1n

ii
A x

=
=∑

   Moreover  the fuzzy partition {A1,…, An} is called uniform if  
(6)  n≥3 and xi =a+h·(i-1), for every i = 1, 2, …, n, where h = (b-a)/(n-1); 
(7) Ai(xi – x) = Ai(xi  + x)  for every  x∈[0,h]  and  i = 2,…, n-1;  
(8)  Ai+1(x) = Ai(x - h) for every  x∈[xi, xi+1]  and  i = 1,2,…, n-1.   
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Figure 2.  Schema of coding/decoding  process from RGB to YUV space and conversely 

  
Let  f(x)  be a  continuous function over [a,b] and {A1, A2, …, An} be a fuzzy partition of [a,b]. The n-tuple F 

=  is called the FTR of  f  with respect  to {A],...,,[ 21 nFFF 1, A2, …, An}  if  the following holds for every i = 1,…,n: 
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∫

∫
.                                                                                      (1) 

The Fk’s are called the components of the FTR of f and if {A1, A2, …, An} is uniform, then  we have that (cfr. [19, 
Lemma 1]): 
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We can also define the following function  by setting for every x∈[a,b]: nFf ,

,
1

( ) ( )
n

F n i i
i

f x F A
=

= ∑ x                                                                                           (3) 
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defined as the inverse FTR  of  f  with respect to {A1, A2, …, An} and the following theorem (cfr. [19, Theorem 2]) 
holds. 
Theorem 1. Let f(x) be  a continuous function over [a,b]. For every ε > 0, then there exist an integer n(ε) and a related 
fuzzy partition {A1, A2, …, An(ε)} of [a,b] such that for all  x∈[a, b], 

                                                , ( )| ( ) ( ) |F nf x f xε ε− <                                                                                          (4) 
holds, fF, n(ε) (x) being the inverse FTR of f  with respect to {A1, A2,…, An(ε)}. 

We note that such a fuzzy partition  {A1, A2, …, An(ε)}  of [a,b]  is  not  necessarily uniform. Now we discretize 
the continuous case, that is we assume that the function f assumes determined values in a finite number of points 
p1,...,pm ∈[a,b], which are sufficiently dense with respect to the fixed partition, that is for every  i = 1,…,n  there exists  
an index j∈{1,…,m}  such that Ai(pj) > 0. Thus we can define the n-tuple F =  as the discrete FTR of f 
with respect to {A

],...,,[ 21 nFFF
1, A2, …, An }, being 

1
i

1

( ) ( )

( )

m

j i j
j

m

i j
j

f p A p
F

A p

=

=

=
∑

∑
                                                                                     (5) 

for every i = 1,…,n. Then we can also define the discrete inverse FTR of f with respect to {A1, A2,…, An}  as the 
function  by setting for every pnFf , 1,...,  pm ∈[a,b]: 

,
1

( ) ( )
n

F n j i i j
i

f p F A
=

= ∑ p .                                                                                  (6) 

Of course we have the following “discrete” approximation theorem (cfr. [19, Theorem 5]). 
Theorem 2. Let f(x) be a function assuming values over a set of points P={p1,...,  pm}⊆[a,b]. Then for every ε > 0, 
there exist an integer n(ε) and a related fuzzy partition  {A1, A2, …, An(ε)}  of [a,b] with respect to which P is 
sufficiently dense and such that the inequality 

                                                  , ( )| ( ) ( ) |F nf p f pε ε− <                                                                                       (7) 
holds for every j = 1,…,m. 

By extending the above concepts to functions in two variables and limiting ourselves to the discrete case, let n, m 
≥ 2,  x1, x2, …, xn ∈  [a,b]  and  y1,y2, …, ym ∈[c,d]  be  n + m assigned  points such that x1 = a < x2 <…< xn = b and  
y1 = c < y2 <…< ym = d. Moreover, let A1,…,An : [a,b] → [0,1] be a fuzzy partition of [a,b], B1,…,Bm : [c,d] → [0,1] 
be a  fuzzy partition of [c,d] and  f(x,y) be a function assuming  values in some given points (pj,qj)∈[a,b]×[c,d], 
where  i = 1,…,N and j = 1,…,M.  Suppose that the sets P={p1, … , pN} and Q={q1, … ,qM} are sufficiently dense 
with respect to the chosen partitions and then we can define the matrix [Fkl] as the discrete FTR of f with respect to 
{A1,…, An} and {B1,…,Bm} by setting for each k = 1,…,n and  l = 1,…,m: 

1 1
kl

1 1
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M N

k i l j
j i

f p q A p B q
F
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∑∑
.                                                                      (8) 

Now we define the discrete inverse FTR of f with respect to {A1, A2, …, An} and {B1,…,Bm} as the function 
 by setting for any (i,j)∈{1,…,N}×  {1,…,M} as F

nmf

1 1

( , ) ( ) ( )
n m

F
nm i j kl k i l j

k l

f p q F A p B q
= =

=∑∑ .                                                                          (9) 

It is plain that the following generalization of Theorem 2  holds. 
Theorem 3. Let f(x,y) be a function assigned over the sets P×Q ⊆ [a,b] ×[c,d], where P={p1, … , pN} and 
Q={q1, … ,qM}. Then for every ε > 0, there exist two integers n(ε), m(ε) and related fuzzy partitions  {A1, A2, …, An(ε)} 
of  [a,b]  and  {B1, B2, …, Bm(ε)} of [c,d]  with respect to which P and Q are sufficiently dense and such that the 
inequality  
                                            εεε <− ),(),( )()( ji

F
mnji qpfqpf                                                                                 (10) 

holds for every i∈{1,…,N} and  j∈{1,…,M}. 
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3  The FTR for Coding/Cecoding  Images 
  
 Let R be a gray image divided in N × M pixels. By normalizing the value of each pixel P(i, j) in [0,1] (for example,  
R(i,j) = P(i,j)/255 for 256 gray levels), we can consider R as a  fuzzy relation R: (i, j)∈{1,…,N} ×{1,…,M} → 
R(i,j)∈[0,1]. In [5, 6]  the image R is compressed by using a discrete FTR [Fkl] defined as: 

1 1
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                                                                             (11) 

for every (k,l)∈{1,…,n}×{1,…,m}, where we have assumed that pi = i, qj = j,  a = c = 1, b = N, d = M. Of  course, 
{A1,…,An} (resp. B1,…,Bm)), with n « N (resp. m « M)  forms a fuzzy partition of  [1,N]  (resp. [1,M]). The 
compressed image is decoded by using an inverse discrete FTR defined as  

1 1

( , ) ( ) ( )
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F
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= =

= ∑∑                                                                              (12) 

for every (i, j)∈{1,…,N}×{1,…, M}. The image R is subdivided in small images called blocks [5, 6] and let B any 
such block. Let RB the corresponding fuzzy relation (submatrix of R) of sizes N(B)×M(B), coded to a block FB of 
sizes n(B) × m(B) (with 3 ≤ n(B) « N(B), 3 ≤ m(B) « M(B)) via the discrete FTR  defined as  ][ B

klF
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for every (k,l)∈{1,…,n(B)}×{1,…,m(B)}. As in [5], here we use the following functions {A1,…,An(B)} and 
{B1,…,Bm(B)} defined as 
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where  n = n(B), k = 2,…, n, h = (N(B) - 1)/(n - 1), xk = 1+ h·(k-1)  and 
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where  m = m(B), t = 2,…, m, s = (M(B) 1)/(m− − 1), yt = 1+ s·(t− 1). The fuzzy sets (14) and (15) form an uniform 
fuzzy partition of  [1,N(B)]  and [1,M(B)], respectively. Each compressed block FB is decoded to a block of 
sizes N(B)

F
BmBnR )()(

 × M(B)  by using the inverse discrete FTR defined as 

)()(),(
)(

1

)(

1
)()( jBiAFjiR l

Bn

k
k

Bm

l

B
kl

F
BmBn ∑∑

= =

=                                                                          (16) 

for every (i, j)∈{1,…,N(B)}×{1,…,M(B)}. For every block B and for every ε, Theorem 3 guarantees the existence of 
two integers (say) n(B) = n(B,ε) « N(B), m(B) = m(B,ε) « M(B) and of two fuzzy partitions {A1,…,An(B)} and 
{B1,…,Bm(B)}  such that the inequality ε<− ),(),( )()( jiRjiR F

BmBnB   holds true. Unfortunately Theorem 3 is not 

constructive, that is it does not give a practical method for building such integers n(B,ε) and  m(B,ε) and the above 
fuzzy partitions. After some preliminary tests, we have seen that the functions defined from (14) and (15) give the 
best results and, by simplicity, we have considered all the images as square matrices R (hence N=M), subdivided in 
square submatrices RB with N(B) = M(B), in turn compressed to square blocks FB with sizes n(B) = m(B) and decoded 
to blocks . For every block B, then the related compression rate ρ(B) is given from ρ(B) = 
(n(B)×n(B))/(N(B)×N(B)), thus we can evaluate the quality of the reconstructed image via the PSNR given by 

F
BmBnR )()(

RMSE
PSNR 255log20 10= ,                                                                                            (17) 

where RMSE (Root Mean Square Error) is given by 

2

1 1
( ( , ) ( , ))

N M
F
N M

i j
R i j R i j

R M SE
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= =

−
=

×

∑ ∑
                                                           (18) 

being  the image obtained from the composition of the submatrices  calculated with (16). In the sequel, 
the above concepts shall be used in each band R, G, B and Y, U, V of the corresponding spaces with the symbols ρ

F
NMR F

BmBnR )()(

R = 
ρR(B), (PSNR)R, (PSNR)G, (PSNR)B, (PSNR)Y,  (PSNR)U, (PSNR)V. Of course we define the overall (PSNR)RGB and 
(PSNR)YUV) with the following formulas: 

                                        ( ) ( ) ( ) ( )
3

BGR
RGB

PSNRPSNRPSNR
PSNR

++
=                                                                 (19) 

                                        ( ) ( ) ( ) ( )
3

VUY
YUV

PSNRPSNRPSNR
PSNR

++
= .                                                               (20) 

       Finally the PSNR’s calculated via the DCT and JPEG methods are denoted with (PSNR)DCT and (PSNR)JPEG, 
respectively. 
 
4  By Coding/Decoding in RGB and YUV Spaces 

 
We suppose to have a color image in the RGB space with pixel normalized  in [0,1]. Then we convert it from RGB to 
YUV space via the following formula  [24]: 

0.299 0.587 0.114 0
0.169 0.332 0.500 0.5

0.500 0.419 0.0813 0.5

Y R
U
V B

G
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 .                                                   

In accordance to [15, 16] we compress the converted image by using two compression rates: ρY in the plane Y, 
and ρU = ρV < ρY  in the planes U, V. We use the discrete FTR method in coding/decoding images in the YUV space 
and we convert the decoded image in the RGB space by using the following formula [24]: 

1 0 1.4075 1.4075 0.5
1 0.3455 0.7169    1.0624 0.5
1 1.7790 0 1.7790 0.5

R Y
G U
B V

− ⋅⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − + ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 .                                              

In our tests we compare the results obtained with the FTR method on images in the YUV space with those ones 
obtained by using the same method on images in the RGB space and by using the standard JPEG compression method. 
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We compare also our results with the images obtained from the DCT coding/decoding method, which is used in the 
first phase of the JPEG coding/decoding process. 

In these comparisons we use a compression rate ρ ≈ ρYUV=(ρY + 2 · ρU. )/3, ρYUV being the average of the 
compression rates ρY, ρU, ρV used in the single bands of the YUV space, respectively. In Table 1 (resp. Table 2) are 
reported the sizes N(B)×N(B) of each square block RB, the sizes n(B)×n(B) of the compressed square block FB and the 
relative compression rates used by applying the FTR method in the YUV (resp. RGB) space.  

  
Table  1.  Sizes of the blocks used for the images in YUV space 

Band    Y Bands   U  and   V 
N(B) × N(B) n(B) × n(B) ρY N(B) ×  N(B) n(B) × n(B) ρU  = ρV

11 × 11 10 × 10 0.826446 4 × 4 2 × 2 0.250000 
14 × 14 13 × 13 0.862245 16 × 16 2 × 2 0.015625 

4 × 4 3 × 3 0.562500 16 × 16 2 × 2 0.015625 
8 × 8 5 × 5 0.395625 16 × 16 2 × 2 0.015625 
5 × 5 2 × 2 0.160000 16 × 16 2 × 2 0.015625 
8 × 8 2 × 2 0.062500 16 × 16 2 × 2 0.015625 

  
Table  2.  Sizes of the blocks used for the images in RGB space 

N(B) × N(B) n(B) ×  n(B) ρR = ρG = ρB

3 × 3 2 × 2 0. 444444 
11 × 11 6 × 6 0. 297521 

9 × 9 4 × 4 0. 197531 
8 × 8 3 × 3 0. 140625 

13 × 13 3 × 3 0. 06250 
16 × 16 2 × 2 0. 033058 

 
In Table 3 are reported the compression rates used in our experiments by applying the FTR method in YUV and 

RGB spaces and the JPEG/DCT compression method. The quality of the reconstructed images are evaluated by 
determining the PSNR mean value for the image decoded in each band. In our comparisons we calculate the percent 
gain, denoted by Gain(YUV/RGB) (resp. Gain(YUV/DCT)) of  the PSNR obtained  by using the FTR method in the 
YUV space with respect to the PSNR obtained with the FTR method in the RGB space (resp. the DCT method) and 
the percent gain, denoted by Gain(JPEG/YUV), of  the PSNR obtained by using the JPEG method with respect to the 
PSNR obtained by using the FTR method in the YUV space. Thus we have  

      [(PSNR of FTR in YUV space) - (PSNR of FTR in RGB space)] 100Gain(YUV/RGB) 
(PSNR of FTR in RGB space)

⋅
= ,                          (21)   

[(PSNR of FTR in YUV space) - (PSNR  in DCT)] 100   Gain(YUV/DCT) 
(PSNR in DCT)

⋅
= ,                                      (22) 

[(PSNR in JPEG) - (PSNR of FTR in YUV space)] 100   Gain(JPEG/YUV) 
(PSNR of FTR in YUV space)

⋅
= .                                     (23) 

 
Table  3.  Compression rates used in the coding processes 

ρY ρU ρYUV=(ρY+2·ρU)/3 ρRGB=ρR ρJPEG = ρDCT

0.826446 0.250000 0.442148 0.444444 0.444444 
0.862245 0.015625 0.297832 0.297521 0.297521 
0.562500 0.015625 0.197917 0.197531 0.197531 
0.395625 0.015625 0.140625 0.140625 0.140625 
0.16000 0.015625 0.063750 0.06250 0.06250 

0.062500 0.015625 0.031250 0.033058 0.035160 
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In order to have an exhaustive point of view, we have considered 100 color images of sizes 256 × 256 extracted 
from the well known image database of the University of Southern California at http://sipi.usc.edu/database but, for 
brevity, we only give the results for the following four images downloaded from the volume “Miscellaneous” of this 
database: “Girl 4.1.01” (Figure 3),  “Couple 4.1.02” (Figure 4), “Girl 4.1.04” (Figure 5) and  “Tree 4.1.06” (Figure 6). 
 

                
Figure 3. Girl  4.1.01                        Figure  4.  Couple  4.1.02 

                
       Figure  5.  Girl  4.1.04                       Figure  6.  Tree  4.1.06 

 
5. Comparisons 
 
In Table 4 we show the compression rates used in the bands Y, U, V, the PSNR’s obtained for these bands, the mean 
PSNR obtained for the image “Girl 4.1.01” decoded via FTR method in YUV space and the mean PSNR obtained for 
the images decoded after the conversion in RGB space. 
 

Table 4.  Values of  PSNR for the image “Girl 4.1.01”  via  the FTR method in YUV space 

ρY (PSNR)Y ρU = ρV (PSNR)U (PSNR)V

 
ρYUV

 
(PSNR)YUV (PSNR)RGB

0.826446 38.7531 0.250000 48.0623 45.9190 0.442148 44.2448 38.3390 
0.862245 39.2747 0.015625 38.9115 34.9604 0.297832 37.7155 34.9274 
0.562500 36.2639 0.015625 38.9115 34.9604 0.197917 36.7119 33.3630 
0.395625 34.3987 0.015625 38.9115 34.9604 0.140625 36.0902 32.1001 
0.160000 30.0654 0.015625 38.9115 34.9604 0.063750 34.6458 29.5185 
0.062500 27.1773 0.015625 38.9115 34.9604 0.031250 33.6831 27.4558 

 
In Table 5 we show the compression rate used for the three bands R, G, B, the PSNR obtained by using the FTR 

method for the images decoded in each band and the mean PSNR.  Moreover, in Table 6 we present the compression 
rate and the related PSNR obtained by using the DCT and the JPEG methods. 

In Figure 7 we show the trends of the PSNR with respect to the compression rate ρ in all the methods considered 
here. 

Figure 8 contains the percent gains Gain(YUV/RGB), Gain(YUV/DCT)) and Gain(JPEG/YUV) defined from 
(21) ÷ (23). 
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Table 5. Values of  PSNR for the image “Girl 4.1.01” via  the FTR method in RGB space 
ρRGB          (PSNR)R (PSNR)G (PSNR)B (PSNR)RGB

0.444444          34.2886 34.6155 34.9373 34.6138 
0.297521          33.1792 33.4456 33.7657 33.4635 
0.197531          31.0877 31.5139 31.8775 31.4930 
0.140625          29.5117 29.9524 30.3874 29.9505 
0.06250          26.8332 27.4686 28.1287 27.4768 

0.033058          24.7486 25.6123 26.3812 25.6807 
 

Table 6.  Values of  PSNR for the image “Girl 4.1.01” via  the DCT and  JPEG methods 
ρDCT = ρJPEG (PSNR)DCT (PSNR)JPEG

0.444444 32.9555 39.4559 
0.297521 30.9780 39.0397 
0.197531 30.0026 37.9548 
0.140625 28.2056 37.4974 
0.06250 26.1011 34.4941 

0.035160 23.8803 32.4817 
 

Table  7.  Values of  PSNR for the image “Couple 4.1.02”  via  the FTR method in YUV space 

ρY (PSNR)Y ρU = ρV (PSNR)U (PSNR)V

 
ρYUV

 
(PSNR)YUV (PSNR)RGB

0.826446 38.0049 0.250000 49.3317 48.2004 0.442148 45.1790 38.4378 
0.862245 38.4138 0.015625 40.0967 38.0575 0.297832 39.1528 35.6056 
0.562500 35.9046 0.015625 40.0967 38.0575 0.197917 38.6164 34.3362 
0.395625 33.7564 0.015625 40.0967 38.0575 0.140625 37.6003 32.9114 
0.16000 29.5091 0.015625 40.0967 38.0575 0.063750 36.1845 29.5677 

0.062500 26.9052 0.015625 40.0967 38.0575 0.031250 35.3166 27.4240 
 

Table  8.  Values of  PSNR for the image “Couple 4.1.02”  via  the FTR method in RGB space 
ρRGB            (PSNR)R (PSNR)G (PSNR)B (PSNR)RGB

0.444444 34.0102 32.1927 34.3828    34.1952 
0.297521 32.3370 32.4518 32.5935    32.4608 
0.197531 30.6446 30.8797 31.0866    30.8703 
0.140625 28.9953 29.2564 29.4748    29.2422 
0.06250 26..220 27.0635 27.4077    27.0311 

0.033058 24.8723 25.4277 25.8977    25.3992 
 

The PSNR trends of Figure 7 and the percent gain trends of Figure 8 show that the results obtained by using the 
FTR method in YUV space are better than the results obtained by using the FTR method in the RGB space and the 
DCT method essentially for strong compressions while the Gain(JPEG/YUV) trend shows that the results obtained by 
using the FTR method in YUV space are well comparable with those ones obtained by using the JPEG method  for 
low compression rates. Tables 7, 8, 9 show the PSNR obtained for the color image “Couple 4.1.0.2” compressed by 
using the FTR method in YUV space, in RGB space, in DCT and JPEG methods, respectively. 

In Figure 9 we show the trends of the PSNR with respect to the compression rate ρ in all the methods and in 
Figure 10  we presents the percent gains  Gain(YUV/RGB), Gain(YUV/DCT)) and Gain(JPEG/YUV). Then the 
results, in terms of PSNR and percent gains for the image “Couple 4.1.02”, confirm those ones obtained for the image 
“Girl 4.1.01”. 
 
 
 



20                          F. Di Martino, V. Loia, and S. Sessa：Direct and Inverse Fuzzy Transforms                                                           

 
 
 
 45

 
 
 
 
 
 

 
 
 
 
 
 
 
 

40

35

30  PSNR 
25

  YUV
  RGB
  DCT
  JPEG

20

15

10

5

0
 0.0 0.1 0.2 0.3 0.4 0.5

 ρ
 

Figure 7.  PSNR trends obtained in all methods for the image “ Girl 4.1.01” 
 
Table  9.  Values of  PSNR for the image “Couple 4.1.02”  via  the DCT and  JPEG methods 
ρDCT = ρJPEG (PSNR)DCT (PSNR)JPEG

0.444444 33.0293 42.1601 
0.297521 31.0977 41.9259 
0.197531 29.3218 41.4370 
0.140625 28.5088 39.8658 
0.062500 25.8877 36.7028 
0.035160 24.0588 34.2571 

 
In Figure 9 we show the trends of the PSNR with respect to the compression rate ρ in all the methods and in 

Figure 10  we presents the percent gains  Gain(YUV/RGB), Gain(YUV/DCT)) and Gain(JPEG/YUV). Then the 
results, in terms of PSNR and percent gains for the image “Couple 4.1.02”, confirm those ones obtained for the image 
“Girl 4.1.01”. 

In Tables 10, 11, 12 we show the PSNR obtained for the color image “Girl 4.1.04” compressed by using the FTR 
method in the YUV space, in RGB space and in the DCT and JPEG methods, respectively. 

Figure 11 contains the trends of the PSNR with respect to the compression rate ρ in all the methods. Figure 12 
contains the percent gains  Gain(YUV/RGB), Gain(YUV/DCT)) and Gain(JPEG/YUV). The results are similar to 
those ones obtained for the images “Girl 4.1.01” and “Couple 4.1.02”. 
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Figure 8.  Trends of the percent gains obtained for the image “Girl 4.1.01” 

 

 
Figure 9.  PSNR trends obtained in all methods for the image “Couple 4.1.02” 

 
Table 10.  Values of  PSNR for the image “Girl 4.1.04”  via  the FTR method in YUV space 

ρY (PSNR)Y ρU = ρV (PSNR)U (PSNR)V

 
ρYUV

 
(PSNR)YUV (PSNR)RGB

0.826446 39.4809 0.250000 47.1007 44.6199 0.442148 43.7338 37.8675 
0.862245 39.6136 0.015625 36.3692 33.4217 0.297832 36.4682 36.4682 
0.562500 36.2842 0.015625 36.3692 33.4217 0.197917 35.3584 35.3584 
0.395625 33.6135 0.015625 36.3692 33.4217 0.140625 34.4681 34.4681 
0.16000 29.4108 0.015625 36.3692 33.4217 0.063750 33.0672 33.0672 

0.062500 25.7537 0.015625 36.3692 33.4217 0.031250 32.1815 32.1815 
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Table 11.  Values of  PSNR for the image “Girl 4.1.04”  via  the FTR method in  RGB space 
ρRGB            (PSNR)R (PSNR)G (PSNR)B        (PSNR)RGB

0.444444 34.6447 34.4998 35.0771        34.7405 
0.297521 33.1316 33.0268 33.3919   33.1834 
0.197531 30.9807 30.9112 31.4261   31.1060 
0.140625 28.5130 28.1548 28.9723   28.5467 
0.06250 26.9491 26.8349 27.7917   27.1919 

0.033058 23.7524 23.5312 24.6985   23.9940 
 

Table 12.   Values of  PSNR for the image “Girl 4.1.04”  via  the DCT and JPEG methods 
    ρDCT = ρJPEG (PSNR)DCT   (PSNR)JPEG

0.444444 32.4751                  35.2751 
0.297521 32.2877                  35.2460 
0.197531 30.2129                  35.0274 
0.140625 27.6067                  34.1589 
0.062500 25.3262                  32.8795 
0.035160 22.7105                  31.4897 

 
Table  13.  Values of  PSNR for the image “Tree 4.1.06”  via  the FTR method in YUV space 

ρY (PSNR)Y ρU = ρV (PSNR)U (PSNR)V

 
ρYUV

 
(PSNR)YUV (PSNR)RGB

0.826446 32.7784 0.250000 47.3167 43.0456 0.442148 41.0469 32.6760 
0.862245 33.0496 0.015625 36.6848 31.2216 0.297832 36.4682 29.7371 
0.562500 29.7449 0.015625 36.6848 31.2216 0.197917 35.3584 28.1302 
0.395625 27.6596 0.015625 36.6848 31.2216 0.140625 34.4681 27.0294 
0.16000 24.0636 0.015625 36.6848 31.2216 0.063750 33.0672 24.2024 
0.062500 20.8604 0.015625 36.6848 31.2216 0.031250 32.1815 21.6241 
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Figure 10.  Trends of the percent gains obtained for the image “Couple 4.1.02” 
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Figure 11.  PSNR trends obtained in all methods for the image “Girl 4.1.04” 
 

Table  14. Values of  PSNR for the image “Tree 4.1.06”  via  the FTR method in  RGB space 
ρRGB           (PSNR)R (PSNR)G (PSNR)B (PSNR)RGB

   0.444444 28.8505 28.4319 28.7840 28.6888 
0.297521 27.4117 27.1262 27.3625 27.3001 
0.197531 25.6100 25.1470 25.5391 25.4320 
0.140625 23.6062 23.0617 23.5330 23.4003 
0.06250 21.9725 21.0418 21.8198 21.6114 

0.033058 20.3843 19.1253 20.2157 19.9084 
 

In Tables 13, 14, 15 we show the PSNR obtained for the color image “Tree 4.1.06” compressed by using the 
FTR method in YUV space, in RGB space and in DCT and JPEG methods, respectively. 

In Figure 13 we show the trends of the PSNR with respect to the compression rate ρ in all the methods. Figure 
14 contains the percent gains Gain(YUV/RGB), Gain(YUV/DCT)) and Gain(JPEG/YUV). The results are similar to 
those ones obtained for the images “Girl 4.1.01”, “Couple  4.1.02” and “Girl 4.1.04”. 

For sake of completeness, we limit ourselves to show only  the image “Girl 4.1.01”  in  Figures 15 ÷ 26 and the 
image  “Tree 4.1.06” in Figures 27 ÷ 38 reconstructed under the FTR method in the YUV space (and converted to 
RGB space) and JPEG method. using  various compression rates. The reconstructed color images show that the FTR 
method in the YUV space is well comparable with the JPEG method for weak compressions whereas the images 
compressed under the JPEG method with compression rates 0.035 and 0.062 have better quality in comparison to the 
those ones compressed using  the FTR method in the YUV space. 
 

Table 15.   Values of  PSNR for the image “Tree 4.1.0.6”  via  the DCT and JPEG methods 
 ρDCT = ρJPEG  (PSNR)DCT   (PSNR)JPEG

0.444444 27.6782 35.9372 
0.297521 26.3944 35.6501 
0.197531 24.1773 34.9764 
0.140625 22.2296 32.9186 
0.062500 20.3810 29.3296 
0.035160 17.8499 27.1698 
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                 Figure 12.  Trends of the percent gains obtained for the image “Girl 4.1.04” 
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                   Figure 13.  PSNR trends obtained in all methods for the image “Tree 4.1.06” 
 

 
Figure 14.  Trends of the percent gains obtained for the image “Tree 4.1.06” 
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Figure 15.  FTR in YUV space, ρ = 0.444                   Figure 16.  JPEG, ρ = 0.444       

 

             
Figure 17.  FTR in YUV space, ρ = 0.297                   Figure 18.  JPEG, ρ = 0.297 

 

            
Figure 19. FTR in YUV space, ρ = 0.197                   Figure 20.  JPEG, ρ = 0.197 
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Figure 21.  FTR in YUV space, ρ = 0.140                 Figure 22.  JPEG, ρ = 0.140 

 

            
Figure 23.  FTR in YUV space, ρ = 0.062                 Figure 24.  JPEG, ρ = 0.062 

 

          
Figure 25.  FTR in YUV space, ρ = 0.035              Figure 26.  JPEG, ρ = 0.035 
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Figure 27. FTR in YUV space, ρ = 0.444                  Figure 28.  JPEG, ρ = 0.444 

 

           
Figure 29.  FTR in YUV space,  ρ = 0.297                Figure 30.  JPEG, ρ = 0.297 

 

           
Figure 31.  FTR in YUV space, ρ = 0.197                  Figure 32. JPEG, ρ = 0.197 
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Figure 33.  FTR in YUV space, ρ = 0.140                  Figure 34.  JPEG, ρ = 0.140 

 

           
Figure 35.  FTR in YUV space, ρ = 0.062                 Figure 36.  JPEG, ρ = 0.062 

 

           
Figure 37. FTR in YUV space, ρ = 0.035                Figure 38.  JPEG, ρ = 0.035 

 
Figure 39 shows how the mean percent gains, that is the mean of all the Gain(YUV/RGB), Gain(YUV/DCT) and 

Gain(JPEG/YUV) calculated for each image of the sample considered from the above database, vary with respect to 
the compression rate ρ: the color images compressed by using the FTR method in  YUV space are always better than 
those ones obtained by using the FTR method in RGB space and the DCT method, essentially for low and high 
compression rates, and they are comparable with those  ones obtained by using the JPEG compression method for 
high compression rates (ρ > 0.3). 
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Figure 39. Trends of the percent gains of the images in the sample 

 
6  Conclusions 
 
In previous works [15, 16] the authors showed the advantages in coding/decoding images in YUV space by using 
fuzzy relation equations. The authors [5] showed that gray image decoded after a compression made by using the 
FTR method are better than those ones obtained with the FRE method  [1, 2, 7, 8, 11, 12, 14, 17] and well comparable 
with the same images obtained by using the DCT method. 

In this work we show that the color images reconstructed after a compression obtained by using the FTR method 
in YUV space are better then those ones obtained with the FTR method in RGB space and DCT method; furthermore 
the PSNR of the image deduced with the FTR method in YUV space gives PSNR values close to the PSNR obtained 
using the standard JPEG method under high compression rates.       

Future researches on the usage of the FTR method in YUV space shall be made in other contexts like high 
resolution of very large images, image information retrieval [3], watermarking [4] and video compression [8, 9, 10, 
22, 25]. 
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