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Abstract

In addition to the four axioms of uncertainty theory, this paper presents the fifth axiom called product
measure axiom. This paper also gives an operational law of independent uncertain variables and a concept
of entropy of continuous uncertain variables. Based on the uncertainty theory, a new uncertain calculus is
proposed and applied to uncertain differential equation, finance, control, filtering and dynamical systems.
Finally, an uncertain inference will be presented.
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1 Introduction

Fuzziness is a basic type of subjective uncertainty. The concept of fuzzy set was initiated by Zadeh [15] via
membership function in 1965. In order to measure a fuzzy event, Liu and Liu [7] introduced the concept of
credibility measure in 2002. Credibility theory was founded by Liu [8] in 2004 and refined by Liu [9] in 2007
as a branch of mathematics for studying the behavior of fuzzy phenomena.

However, a lot of surveys showed that the subjective uncertainty cannot be modeled by fuzziness. This
means that some real problems cannot be processed by credibility theory. In order to deal with this type
of uncertainty, Liu [9] founded an uncertainty theory that is a branch of mathematics based on normality,
monotonicity, self-duality, and countable subadditivity axioms.

This paper will review the uncertainty theory and propose some further research problems. Section 2
presents a product measure axiom. Section 3 gives a definition of independence and an operational law of
independent uncertain variables. Section 4 proposes an identification function to describe uncertain variables
and proves a measure inversion theorem. Section 5 presents a new definition of entropy for continuous
uncertain variables. An uncertain calculus is given in Section 6, including canonical process, uncertain integral
and chain rule. Section 7 gives a concept of stability of solution of uncertain differential equation. After that,
we discuss the applications in finance, control, filtering and dynamical systems. An uncertain inference will
be provided in Section 12.

2 Uncertain Measure

Let T' be a nonempty set, and let £ be a g-algebra over I'. Each element A € L is called an event. In order
to present an axiomatic definition of uncertain measure, it is necessary to assign to each event A a number
M{A} which indicates the level that A will occur. In order to ensure that the number M{A} has certain
mathematical properties, Liu [9] proposed the following four axioms:

Axiom 1. (Normality) M{I'} = 1.
Axiom 2. (Monotonicity) M{A1} < M{A2} whenever Ay C As.
Axiom 3. (Self-Duality) M{A} + M{A°} =1 for any event A.

Axiom 4. (Countable Subadditivity) For every countable sequence of events {A;}, we have

M{GAi} < iM{Ai}. (1)

i=1
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The law of contradiction tells us that a proposition cannot be both true and false at the same time, and the
law of excluded middle tells us that a proposition is either true or false. Self-duality is in fact a generalization
of the law of contradiction and law of excluded middle. In other words, a mathematical system without
self-duality assumption will be inconsistent with the laws. This is the main reason why self-duality axiom is
assumed.

Definition 1 (Liu [9]) The set function M is called an uncertain measure if it satisfies the normality, mono-
tonicity, self-duality, and countable subadditivity axioms.

Let (T'g, Lk, Mi) be uncertainty spaces for k = 1,2,--- n. Write ' = T'y x Ty x -+ x I, and L =
Ly x Lo x - x L,. It is easy to verify that

sup min Mp{Ar} + sup min Mp{Ax} <1. (2)
A1 XAz X XA, CA1SESn Ay XAy XX A, CAc 1<k<n

Based on this inequality, we may accept the following product measure axiom.

Axiom 5. (Product Measure Axiom) Let T'y, be nonempty sets on which My, are uncertain measures, k =

1,2,--- ,n, respectively. Then the product uncertain measure on I is
sup min Mg{Ar}, if sup min Mg{Az} > 0.5
Ay XAg XX, CA1<k<n { } A1 xAax--xA, CAISk<n { }
M{A}=¢ 1-— sup min Mg{Ar}, if sup min Mg{Ax} > 0.5 (3)
A1 XAax--xA,CAc 1<k<n A1 XxAox--x A, CAc 1<k<n
0.5, otherwise

for each event A € L.

Remark 1: In fact, the product measure axiom may also be defined in other ways. For example,

sup H Mi{Ar}, if sup H Me{Ar} > 0.5
A1><A2><-~~><A7LCA1§kgn A1><A2><~--><AncA1SkSn
MA=4q 1- sup H Me{Ag}, if sup H Me{Ar} > 0.5 (4)
Ar XAz XX Ay CAC 1<k<n Ay XAg XX A, CAc 1<h<n
0.5, otherwise.

3 Uncertain Variables

Definition 2 (Liu [9]) An uncertain variable is a measurable function from an uncertainty space (I',L,M)
to the set of real numbers, i.e., for any Borel set B of real numbers, the set {~ € T'|{(y) € B} is an event.

Definition 3 The uncertain variables &1,&o, - , &y are said to be independent if

M{ﬂ{fz € BZ}} = mlgan{fl S Bl} (5)

1<i
i=1 =
for any Borel sets By, Bs, - -+ , B,, of real numbers.
Theorem 1 The uncertain variables &1,&s,- -+ , &y are independent if and only if

M{U {& € Bi}} = 1212.?;3\/[{& € Bi} (6)

i=1

for any Borel sets By, Ba, -+, By, of real numbers.
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Proof: It follows from the self-duality of uncertain measure that &;,&s, - -+ , &, are independent if and only if

M{U {& € Bi}} =1 _M{ﬂ{gi € Bg}} =1- min M{¢ € Bf} = max M{¢ € B} .
=1 i=1 = 1>

Thus the proof is complete.

Theorem 2 (Operational Law) Let &1,&2,- -+ ,&, be independent uncertain variables, and f : R* — R a
measurable function. Then & = f(&1,&2, -+, &) is an uncertain variable such that
sup min My {& € B}, if sup min M{& € B} > 0.5
f(B1,Bz, - ,B,)CB 1Sk<n #(B1,Ba,-- ,Bn)CB L1<k<n
M{eB}=¢ 1—- sup min Mg{& € Bi}, if sup min My {& € B} > 0.5
f(B1,By, -+ ,By)CBe 1Sk<n f(B1,Ba,-,By)CBe 1Sksn
0.5, otherwise,
where B, By, Bs,- -+, B, are Borel sets of real numbers.

Proof: It follows from the product measure axiom immediately.

4 Identification Function

A random variable may be characterized by a probability density function, and a fuzzy variable may be
described by a membership function. This section will introduce an identification function to characterize an
uncertain variable.

Definition 4 An uncertain variable £ is said to have an identification function (X, p) if (i) A(x) is a nonneg-
ative function and p(x) is a nonnegative and integrable function such that

sup A(x) +/ p(x)dx > 0.5 and/or sup A(z) +/ plx)dx > 0.5 (7)
zEB B reB*° c

for any Borel set B of real numbers; (ii) we have

sup A(z) + /B p(x)dz, if sup A(z) + /B p(x)dz < 0.5

r€EB zEB
M{ge By =9 | _ sup A(x) — / p(x)dz, if sup A(x) —|—/ p(x)dx < 0.5 (8)
re B¢ c reBe¢ c
0.5, otherwise.

Remark 2: Some uncertain variables do not have their own identification functions. In other words, it is
not true that every uncertain variable may be represented by an appropriate identification function.

Theorem 3 Suppose X\ is a nonnegative function and p is a nonnegative and integrable function satisfying
(7). Then there is an uncertain variable & such that (8) holds.

Proof: Let R be the universal set. For each Borel set B of real numbers, we define a set function

sup A\(x) —|—/ p(x)dz, if sup A(x) —|—/ plx)dx < 0.5
z€B B z€B B

M{B} = 1— sup A() _/ p(x)dz, if sup )\(x)+/ p(z)dz < 0.5
z€B° c zEB® ¢

0.5, otherwise.

It is clear that M is normal, increasing, self-dual, and countably subadditive. That is, the set function M
is indeed an uncertain measure. Now we define an uncertain variable £ as an identity function from the
uncertainty space (R, A, M) to R. We may verify that £ meets (8). The theorem is proved.
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5 Entropy

This section provides a definition of entropy to characterize the uncertainty of uncertain variables resulting
from information deficiency. Note that the discrete case has been defined by Liu [9].

Definition 5 Suppose that £ is a continuous uncertain variable. Then its entropy is defined by

+o0
H[E) = / SOM{E < 2))da, (9)

where S(t) = —tlnt — (1 —¢)In(1 — ¢).

It is easy to verify that when a continuous uncertain variable tends to a crisp number, its entropy tends to
the minimum 0. In addition to the development of entropy itself, we also need a maximum entropy principle
for uncertain variables.

6 Uncertain Calculus

Uncertain calculus, initialized by Liu [10] in 2008, is composed of canonical process, uncertain integral and
chain rule. This paper would like to revise those concepts as follows.

Definition 6 An uncertain process Cy is said to be a canonical process if

(i) Co =0 and Cy is sample-continuous,

(ii) Cy has stationary and independent increments,

(iii) every increment Csyy — Cy is a normal uncertain variable with expected value 0 and variance t2, whose

uncertainty distribution s
-1
O(z) = (1 + exp (—2)) , zeRN (10)

Let C be a canonical process, and dt an infinitesimal time interval. Then dCy = Ci4q¢ — C; is an uncertain
process with E[dCy] = 0 and dt?/2 < E[dC?] < dt?.

Definition 7 Let X; be an uncertain process and let Cy be a canonical process. For any partition of closed
interval [a,b] with a = t1 < tg < -+ < tp41 = b, the mesh is written as A = maxi<;<g [tiy1 — t;|. Then the
uncertain integral of uncertain process Xy with respect to Cy is

b k
/a X:dCy = ilinoz_;xh ’ (Ct'i+1 - Ctb) (11)

provided that the limit exists almost surely and is an uncertain variable.

Theorem 4 Let C; be a canonical process, and let h(t,c) be a continuously differentiable function. Define
X = h(t,Cy). Then we have the following chain rule

oh oh

Proof: Since the function h is continuously differentiable, by using Taylor series expansion, the infinitesimal
increment of X; has a first-order approximation
oh oh

AXt == a(t, Ct)At + a(t Ct)ACt

Hence we obtain the chain rule because it makes

XSZXo-i-/ al(t,ct)dt+/ Oh
o Ot 0

3 (t,Cy)dCy

C

for any s > 0.
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7 Uncertain Differential Equation

Suppose C; is a canonical process, and f and g are some given functions. Liu [10] presented the following
uncertain differential equation,

dX, = f(t, Xy)dt + g(t, X;)dC;. (13)

An existence and uniqueness theorem is needed for the solution of uncertain differential equations.

Definition 8 (Stability) An uncertain differential equation is said to be stable if for any given € > 0 and
e > 0, there exists 6 > 0 such that for any solutions X; and Y;, we have

M{X:—Yy >e}l<e, VE>0 (14)
whenever | X — Yp| < 4.

We should develop different types of stability, and discuss their relationship as well as their applications.

8 Uncertain Finance

If we assume that the stock price follows some uncertain differential equation, then we may produce a new
topic of uncertain finance. As an example, let stock price follow geometric canonical process. Then we have
a stock model in which the bond price X; and the stock price Y; are determined by

dXt = ’I"Xtdt
(15)

dY; = eYidt + oY dC,y

where 7 is the riskless interest rate, e is the stock drift, o is the stock diffusion, and C} is a canonical process.

European Option Prices

A FEuropean call option gives the holder the right to buy a stock at a specified time for specified price.
Assume that the option has strike price K and expiration time s. Then the payoff from such an option is
(Y, — K)*. Considering the time value of money resulted from the bond, the present value of this payoff is
exp(—rs)(Y; — K)T. Hence the European call option price should be

fe = exp(—rs)E[(Y; — K)*]. (16)

It is easy to verify the European call option price formula

. = exp(—rs)Yo /1:: <1 T exp (%))1 dy. (17)

A European put option gives the holder the right to sell a stock at a specified time for specified price.
Assume that the option has strike price K and expiration time s. Then the payoff from such an option is
(K — Ys)*. Considering the time value of money resulted from the bond, the present value of this payoff is
exp(—rs)(K — Ys)*. Hence the European put option price should be

fp = exp(=rs) E[(K - Ys)"]. (18)

It is easy to verify the European put option price formula

£, = exp(—rs)Yo /OK/YO (1 +exp <”(€\"”/§_(:y>>)_l dy. (19)
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Multi-factor Stock Model

Now we assume that there are multiple stocks whose prices are determined by multiple canonical processes.
For this case, we have a multi-factor stock model in which the bond price X; and the stock prices Y;; are
determined by

dXt = TXtdt
i 20
AV = e;Yudt + > 07;YdCjy, i =1,2,-+ ,m (20)
j=1
where 7 is the riskless interest rate, e; are the stock drift coefficients, o;; are the stock diffusion coefficients,
C;¢ are independent canonical processes, t =1,2,---,m, 7 =1,2,--- ,n.

Portfolio Selection

For the stock model (20), we have the choice of m + 1 different investments. At each instant ¢ we may choose
a portfolio (B, Bit, -+« , Bme) (i-€., the investment fractions meeting B, + B1; + - -+ Bme = 1). Then the wealth
Z; at time t should follow uncertain differential equation

AZy =B Zedt + Y eiBuZedt + Y > 0B ZdCje. (21)

i=1 i=1 j=1

Portfolio selection problem is to find an optimal portfolio (8, Bit,- - , Bme) such that the expected wealth
E[Z;] is maximized and variance V[Z,] is minimized at terminal time s. In order to balance the two objectives,
we may, for example, maximize the expected wealth subject to a variance constraint, i.e.,

max E[Z]
subject to: (22)
VIZ] <V

where V is a given level. This is just the so-called mean-variance model in finance.

No-Arbitrage

The stock model (20) is said to be no-arbitrage if there is no portfolio (8¢, B1¢, -« , Bmt) such that for some
time s > 0, we have

M{exp(—7r8)Zs > Zp} =1, M{exp(—rs)Zs > Zp} >0 (23)
where Z; is determined by (21) and represents the wealth at time ¢t. We may prove that the stock model
(20) is no-arbitrage if and only if its diffusion matrix (¢;;)mxn has rank m, i.e., the row vectors are linearly
independent.

9 Uncertain Control

A control system is assumed to follow the uncertain differential equation
dX; = f(t, X¢, Ze)dt + g(¢, X, Z;)dC (24)

where X; is the state and Z; is a control. Assume that R is the return function and T is the function of
terminal reward. If we want to maximize the expected return on [0, s] by using an optimal control, then we
have the following control model,

mZaXE [/ R(t, Xt, Zy)dt + T'(s, Xs)
t 0

25
subject to: (25)

dXt = f(t, Xt, Zt)dt + g(t7 Xt, Zt)dCt
Hamilton-Jacobi-Bellman equation provides a necessary condition for extremum of stochastic control model,

and Zhu’s equation [16] provides a necessary condition for extremum of fuzzy control model. What is the
necessary condition for extremum of general uncertain control model? How do we find the optimal control?
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10 Uncertain Filtering
Suppose an uncertain system X; is described by an uncertain differential equation

dX; = f(t, X¢)dt + g(t, X¢)dC, (26)
where C} is a canonical process. We also have an observation )A(t with

dX, = f(t, X,)dt + §(t, X;)dC, (27)

where ét is another canonical process that is independent of C;. The uncertain filtering problem is to find the
best estimate of X; based on the observation Xj;.

One outstanding contribution to stochastic filtering problem is Kalman-Bucy filter. How do we filter the
noise away from the observation for general uncertain process?

11 Uncertain Dynamical System

Usually a stochastic dynamical system is described by a stochastic differential equation, and a fuzzy dynamical
system is described by a fuzzy differential equation. Here we define an uncertain dynamical system as an
uncertain differential equation. Especially, a first-order uncertain system is a first-order uncertain differential
equation

Xe = f(t, Xe) +g(t, X2)C, (28)

and a second-order uncertain system is a second-order uncertain differential equation

X = f(t, Xe, X¢) + g(t, Xz, X0)Ct, (29)
where )
. dX - dX s (0
Xt - dt 9 Xt — dt ) Ot - dt . (30)

We should develop a new theory for uncertain dynamical systems.

12 Uncertain Inference

Uncertain logic was designed by Li and Liu [5] in 2009 as a generalization of logic for dealing with uncertain
knowledge. A key point in uncertain logic is that the truth value of an uncertain proposition is defined as
the uncertain measure that the proposition is true. One advantage of uncertain logic is the well consistency
with classical logic. This paper proposes a framework of uncertain inference for uncertain propositions.
Assume that we have two universal sets X and Y. An uncertain relation between X and Y is a function that
takes“uncertain variable” values and is written as y = g(x) which is called an uncertain relation equation
between X to Y. First we have the following inference rule:

Relation: y = g(z)
Fact: Xis & (31)
Infer: Y is g(§).

Sometimes, instead of knowing the perfect relation between X and Y, we only have a rule “if X is ¢ then
Y is n”. For this case, we have the following inference rule:

Rule: If X is £ then Y is n
Fact: X is &* (32)
Infer: Y is n*.

The key problem is to construct an uncertain relation equation y = g(x) between X and Y from the rule “if
X is € then Y is n”. This paper suggests that the uncertain relation equation is defined as the conditional
uncertain variable of n given { = « (Liu [11]), i.e., y = g(z) = 1]¢=,. Based on the uncertain relation equation
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y = g(z) and inference rule (31), from £* we infer n* = g(£*). Perhaps this method is too complex. This
paper also suggests that n* is the conditional uncertain variable of n given £ = £*, and denoted by

N = nle=¢~ (33)

Remark 1: The uncertain relation equation may also be defined as uncertain variable such that T'(g(z) =
H=TE#x)VT(n=t)or T(g9(x)=1t) =T #z) V(T =x)ANT(n=t)). Those two methods have been
used in fuzzy inference by L.A. Zadeh.

Remark 2: The inference rule (33) is also applicable to fuzzy inference, random inference and hybrid inference
provided that the conditional uncertain variable is replaced with conditional fuzzy variable, conditional random
variable and conditional hybrid variable, respectively.

13 Conclusion

Uncertainty theory is a branch of mathematics for studying the behavior of subjective uncertainty. The
essential differentia between fuzziness and uncertainty is that the former assumes

M{AU B} = M{A} v M{B}

for any events A and B no matter if they are independent or not, and the latter assumes the relation only for
independent events. However, a lot of surveys showed that

M{AU B} £ M{A} v M{B}

when A and B are not independent events. Perhaps this relation was abused in the fuzzy world. This is the
main reason why we need the uncertainty theory.
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