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Abstract 
 

Complex technical systems may fail unexpectedly leading to process disruption and may bring a safety-hazard 
situation. The system failure is an outcome of failure dependency among subsystems where the degradation process 
of subsystems/components is random and uncertain process. Hence, reliability assessment of complex systems is of 
paramount importance. Quantitative reliability assessment needs failure data, which is scarce and/or not well-
recorded, thus statistically inconsistent in process industry.  Most often, in such industries, the reliability is expressed 
linguistically (like Good, OK, Bad, etc.,) rather than quantitatively. This paper proposes an approach for quantitative 
reliability estimation considering failure dependency among subsystems using fuzzy failure possibility instead of 
failure probabilities. Condition monitoring data is used to estimate the failure possibilities with fuzzy sets. Fault tree 
analysis is applied to arrive at system failure possibility. The proposed approach is applied on large electric motor 
(2300 kW) by treating it as a system of subsystems. An order of 50% variation is found in the failure possibility 
estimates between with and without dependencies considerations. This approach not only helps the maintenance 
engineer to assess reliability but also assist in timely scheduling of suitable maintenance task.  

 © 2008 World Academic Press, UK. All rights reserved. 
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1   Introduction 
 
Process equipment falls into category of large and complex technical systems, which is an assembly of many 
subsystems.  Process equipment (blowers, pumps, compressors and motors etc.,) operate on continuous mode. 
Unexpected failure of such equipment leads to process disruption and raises safety concerns (Sevenson, 1989). 
Survey conducted by the authors in an integrated steel plant on failures of large systems, revealed that the 
considerable number of failures are dependency failures, i.e., the system failure is a consequence of one of the 
subsystem failure which could not be detected in time with Condition Monitoring (CM) in spite of periodical 
preventive maintenance actions. Scheduling of preventive tasks is usually based on Reliability Centered Maintenance 
(RCM) Strategy (Moubray, 1997), but it does not envisage dependency during the reliability assessment. RCM 
focuses mainly on identification of the equipment failure modes and failure causes with reference to operating context 
(Knezevic, 1997, Hubert et al., 2002) and schedules ‘On Condition’ (Condition Monitoring) tasks. 

The Condition Monitoring (CM) data analysis primarily concentrates on raising an early warning about an 
impending failure and identification of root cause. CM generates huge amount of data on equipment degradation and 
many researchers like Wang et al. (2001), Jardine (2002), Carnero (2003), Brown et al. (2004). Dong et al. (2005) 
etc., have used the CM data to develop models for testing, optimization, scheduling and repair polices etc. But, 
authors could not find a remarkable work in modelling system reliability with subsystem failure dependency using 
CM data. Misra & Weber (1989), Onisawa (1993) and Soman (1993) have done some pioneering work in the area of 
dependency modelling using fuzzy sets and fault tree. In their propositions, they have dealt with subjective 
unreliability purely in the form of expert domain knowledge and engineering judgement. Vagueness and imprecision 
are inherently associated with engineering judgements. Instead of relying purely on qualitative domain 
knowledge/engineering judgement, authors propose an approach which uses effectively CM data (quantitative data) to 
estimate the component/subsystem failure possibilities using fuzzy sets.  
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Dependency is often neglected in reliability estimation due its complexity and lack of data to substantiate 
dependency. In fault tree (FT) approach, while modelling the dependency of the top event on basic events, basic event 
uncertainties (probabilities) propagate to the top event (TE) through logic gates. Due to imprecise failure probabilities 
obtained using scarce/inconsistent failure data, many a times TE probability becomes unrealistic. Possibility theory 
based on fuzzy sets offers an alternate way to express TE occurrence in term of possibility rather than probability.  

This paper proposes an approach to obtain failure possibility with CM data and use the same to model 
dependency of subsystems. System failure possibility is estimated in the form possibility fuzzy set F(x), 0<x<1 and 
μR(x)=[0, 1]. This approach offers relief to maintenance engineer from collecting troublesome failure data.  

This paper is organized into four sections. Section 2 outlines the degradation process and uncertainty in failure of 
component/subsystem along with fuzzy representation of failure probabilities and fault tree analysis. Section 3 
proposes dependency modelling with fault tree using fuzzy failure possibility. Section 4 deals with application of the 
proposed approach on large electric motor with four subsystems using CM data. Section 5 concludes.  

 
2   Brief Review on Prerequisites 
 
While dealing with the process equipment as complex technical systems, the operating context has tremendous effect 
on degradation process leading to failure. The CM indicators have ability to indicate degradation quantitatively and 
map degradation with failure. Therefore, the degradation is tackled with Condition Monitoring techniques either to 
get rid of a failure or mitigate the risk associated with it. Attributes of the CM data and its fault mapping ability in the 
system are outlined with Fuzzy set modelling. Some salient points, which enhance the readability of the paper, are 
presented in the following subsections.  
 
2.1    Degradation Process – Uncertainty in Failures - Condition Monitoring  
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Figure 1: Degradation -condition indicator trend-reliability 

Equipment degrades with use, which is a continual and irreversible process, and pulls down reliability. Degradation is 
measured in terms of level of condition indicators and can be considered as an indirect measure of reliability. The 
success of the CM program strongly relies on detection of failure progression. Normally, the failure of the equipment 
occurs due to interaction of many failure causes and the most predominant failure mode accelerates the degradation. 
Occurrence of the system failure due to interaction and dependency of various failure events can be better modelled 
with Fault Tree Analysis (FTA) (Misra, 1992). A comprehensive review on methods of selection and application of 
CM techniques can be found in (Jardine et al., 2005). 



282                                                                E.V. Kumar and S.K. Chaturvedi: Reliability Estimation of Complex Technical Systems 

Condition monitoring strategy raises an early warning about impending failure and accordingly a preventive 
maintenance task gets scheduled. With the CM, the equipment is withdrawn from service when degradation level is 
unacceptable in a planned way for a brief period for renewal, and will be put back into service. The CM continues till 
the next warning arises. The cyclic actions of this nature do not allow equipments to fail functionally, hence number 
of failure are less. Therefore, the reliability estimation becomes imprecise and far from reality with limited failure 
data. Randomness exists with the time for reaching the unexpected level of the condition indicator. The Potential-
Functional (P-F) failure interval also is uncertain and varies widely with operating contexts as depicted in Fig.1. 
Evidently, the location of P-F Interval depends on the degradation pattern, which may follow pattern 1, 2 or 3 as 
bounded by shaded area shown in Fig. 1. 

From Fig.1, it can be seen that the time to reach functional failure (t1 or t1
1) is not certain and precise. Therefore, 

the failure probability can be represented by a fuzzy set with lower and upper bound probabilities. The simple and 
more appropriate membership functions would be a triangular membership functions as shown in Fig.2. The support 
for the fuzzy set is defined by the lower and upper bound probabilities and core would be a single point with a 
membership grade (μ) equals to 1. The triangular membership functions can be used to approximate a gradual change 
of membership grade on either side of the mean probability, and the same can be decided by the engineering 
reasoning or domain expert knowledge as shown in Fig.2 (a), (b) and (c), respectively. 
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Figure 2: Triangular membership functions of failure probabilities 
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  Fuzzy Fault Tree Analysis with Failure Possibility 
 
There are two approaches used with Fault Tree Analysis (FTA). One is failure probability and other one is failure 
possibility. The Possibility theory proposed by Zadeh (1976) is a mathematical formulation complementary to 
probability theory, i.e., when the information is either inadequate to qualify the uncertainty of the event in terms of 
probability or does not satisfy the characteristics of probability; the better expression can be done with event 
possibility. Like probability, possibility is also defined the interval [0, 1], but does not hold all the characteristics of 
probability. In the case of CM data, it is frequently felt that, the information is not adequate to assign probability of 
occurrence of an event, but can be expressed in linguistic terms like less possible, highly possible, not possible etc. 
This can be best understood with the ‘Consistency Principle’, which states 1) whatever is possible, may not be 
probable and what is improbable need not be impossible; 2) Whatever is impossible is certainly improbable. Hence 
the possibility of the event is greater than or equal to its degree of probability. 

Basic event probabilities can be expressed as triplet such as, {pL,   pM,   pU },  where,  pL ,  pU   are lower bound, and 
upper bound probabilities, respectively and pM  is the  mean (expected) value of the failure probabilities (fig.2). These 
probabilities can be estimated using equipment withdrawal times based on condition indicator levels monitored in 
CM. Since the degradation, data measurement and time of measurement are fuzzy in nature (Fig.1), the fuzzy failure 
probabilities can be expressed [14] by suitable membership functions. The measure of fuzziness, ‘k’ can be expressed 
as the ratio of pM /pU   or  pM / pL..   

In light of this, Dubois et al. (1988) has suggested transformation of fuzzy probability to possibility and vice 
versa. Therefore, fuzzy failure possibility is a better measure to deal with condition monitoring data and can be 
expressed with a membership grade in a generalized form as:  

mxox
xF

)mod(201
1)(

−+
=                                                                    (2) 

where, 0< x < 1 and xo = subjective failure possibility which helps in normalizing. F(0) ≠ 0 and F(1) ≠ 1, therefore, it 
satisfies the condition that there exists a possibility that a system may fail certainly and there exists also a possibility 
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that the system may not fail at all. Hence this representation helps in dealing with random failure of equipment in a 
more realistic manner (Onisawa et al. (1993)). 

For transformation of probability to possibility, the following approximation was suggested by Misra and Weber 
(1989), xo  is derived as function of pM  , such as  

0 M 3

1x =  f(p )
1 ( (1/ ))MKLog p

=
+

                                                               (3) 

where,  pM  ≠ 0 and xo = 0 when  pM = 0 , 1/ (1/ )sK Log p= ,  ‘ps’ is the subjective standard failure probability and 
parameter, m (expression of fuzziness) obtained from mapping table for various degrees of fuzziness as expressed in 
Table 1  in terms of  ‘k’ [Onisawa and Misra (1993)] .  
 

Table 1: Correspondence between parameters k and m 
  

Range of Parameter ‘k’ Parameter ‘m’

k ≤ 3 2.0 

3< k ≤ 5 2.5 

5 < k ≤ 10   3.0 

10 < k 3.5 

 
Basic events in a fault tree are related to the top event with the combination of logic gates such as, AND and OR 

gates. The dependency of failure of higher level component/subsystem on lower levels can be modelled with 
PRIORITY AND gate and EXCLUSIVE OR gates.  The top event probability is obtained as a combination of 
‘Union’ and ‘Intersection’ operators used on probabilities. The same can be used with the fuzzy probabilities also, but 
with extension principle of fuzzy arithmetic (Soman et al., 1993). When the basic event fuzzy failure probabilities are 
transformed to fuzzy failure possibilities, to use with FTA, the Union and Intersection operators can be expressed as 
following functions (Dombi, 1982), which are approximation to AND (min) and OR (max) operations such as, 
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where 0 < x, y < 1, and H(0, y) = H(x, 0) = 0. 
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where 0≤ x, y<1, and G(1,y)= G(x, 1) = 1.  
The functions H and G are used with extension principle as the AND and OR operations in the fault tree analysis 

with fuzzy failure possibilities.  
 
 3   Failure Dependency Modelling with Failure Possibility  
 
The level of dependency among components/subsystems is not same and depends on the functional and 
constructional configuration of the system. It the case of process industries, it depends on the operating context and 
can be expressed in linguistic terms like ‘Highly Dependent’, ‘Less Dependent’ and ‘Moderately Dependent’ etc. 
Therefore, probability of dependency cannot be estimated in this regard, but possibility can be expressed in terms of 
failure possibility. Once expert opines, the level of dependency is of particular level and its fuzziness is also 
approximated, the fuzzy dependency possibility can be expressed as, 

m
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=                                                                          (6) 

where ‘ro’ is subjective dependency at normalized possibility, and ‘m’ is the degree of dependency with fuzziness. A 
suitable value of ‘m’ can be selected from the range 1< m < 3. Higher the value of ‘m’, dependency is strong.  The 
fuzzy number so obtained is used to define the dependency relation between the components/sub-systems. 

Dependency exists in the following forms (Misra, 1993): 
♦ Inter Dependency of component failures, i.e., if a component/sub-system ‘A’ fails, Component/sub-

system ‘B’ also fails, but failure of component/sub-system ‘B’ may not lead to failure of  component/sub-system  ‘A’. 
Dependency of this type is called Type-1 dependency. 
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♦ Component/sub-system ‘A’ fails, and does not contribute to failure of system, but influences the failure 
of component/sub-system ‘B’ and then system fails. This is called dependency of Type- II.  

Considering a system as shown in Fig.3, with two components ‘A’ and ‘B’, the system reliability can be 
evaluated in the following way.  The failure of sub-system ‘A’ alone can not lead to failure of the system, but 
accelerates the failure of sub-system ‘B’ and finally leads to failure of the system. The fuzzy dependency possibility 
is defined in terms of fuzzy number ‘R’. 
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Figure 3: System configuration for type-II dependency. 

 

Therefore, two events are to be considered for explaining the system failure, i.e. 

Event #1: Failure of Sub-system A ‘AND’ then leads to failure of Sub-system B, then system fails and can be 
obtained as, 

),(' RFHF AB = (min operation)                                                                           (7) 
Event #2:  Failure of Sub-System B itself, which can lead to failure of the system, i.e., FB   

Failure Possibility of System ‘F’ =   (max operation).                                          (8) ),( '
BB FFG

Using this methodology any complex system consisting of large number of components/sub-systems can be 
evaluated with the help of CM data with defined dependency relations using failure possibility.  The case study in the 
following section describes the dependency and methodology in detail.  

 
4   Case Study: Dependency Modelling of Large Electric Motor  
 
An electric motor of capacity, 2300 kW, 6.6 kV, 1480 RPM squirrel cage type is cooled with closed air and closed 
water (CACW) system. The motor is horizontally mounted and supported by three layers structure, base frame (steel), 
common base (steel-concrete) and reinforced concrete columns. The motor is covered under the CM program 
monitored periodically with the help of condition indicators (some online and some off-line), such as vibration, 
temperature, rotor condition etc.  The motor is coupled to a compressor through a gear box, which runs at 16, 800 rpm. 
The motor reliability is vital, as unexpected stoppage not only hampers the production, but leads to a major safety 
concern of imbalance of (liquid oxygen) in the pipe line system. The motor failure possibility need to be assessed 
separately to integrate with other reliability estimates of gearbox, compressor and pipelines to arrive a total risk 
involved in operation of the compressor. The motor (system) is analyzed by considering its four major sub-systems, 
viz., 1) Electromagnetic system (EMS): winding and insulation etc., 2) Power Transmission System (PTS): shaft, 
bearings, housing etc., 3) Ventilation System (VS): cooler, coolant system, etc., 4) Support systems (SS): Base frame, 
foundation, anchoring etc. The fault tree of motor failure is as shown in Fig. 4. 
 
The dependency relationship among sub-systems of large motor is as follows: 

1. The ventilation system supplies cool air to motor stator and rotor windings (Electromagnetic system). The 
failure of ventilation system does not immediately cause failure of motor, but body temperature rises, which is 
monitored online. Rise of temperature of windings leads to failure of insulation, as for every 10oC rise in temperature, 
the dielectric strength reduces to half the value. Once the ventilation system is failed, there is no heat removal from 
the motor and it leads to winding failure. The time between the ventilation system failure and motor failure may vary 
depending on the loading and ambient temperature conditions. But the dependency is very strong and certainly leads 
to motor failure sooner or later.  
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2. The Support system, which is made up of different materials and varies construction wise from point to 
point, offers both dynamic dampening and stiffness besides providing a base rigidity.  The failure of support structure, 
such as development of cracks, disintegration, etc., do not offer the required dampening and stiffness to the motor 
bearing housings/bearings and motor as a whole. This leads to higher vibration levels (monitored offline) and higher 
stress at bearing housing etc., which in turn leads to failure of bearings due to high vibration or looseness.  This is a 
gradual and continuous process of degradation and takes a long time to drive the motor power transmission system to 
failure zone. This dependency can be expressed as moderate and failure of support structure is relatively less possible 
than failure of ventilation system. Motor failure may be due to either of the above two events or one of the individual 
failure of Electromagnetic /power transmission sub-systems. As described earlier, ventilation system failure and 
subsequent failure of electromagnetic system in sequence are represented using PRIORITY AND, its failure 
possibility is obtained using ‘H’ operator and (9),   

'0 . 5 ( . )V EP H F F=                                                  （9）
where Fv and FE are fuzzy possibilities of ventilation and electromagnetic systems, respectively. The fuzzy failure 
probabilities of basic events using CM data on the motor are shown in Table 2.  The lower and upper bound 
probability and standard failure probability are estimated from the group of six such motors working under same load 
and operating context.     

 
Table 2: Fuzzy failure probabilities of sub-systems 

 

Sub-Systems 
Lower 
bound 

Prob.  (pL) 

Mean Prob. 
(pM) 

Upper bound  
Prob. (pU) 

Fuzziness 
(k) 

pM/ pL

K 
1/Log(ps) 

xo

Electromagnetic 
system 0.0092 0.03960 0.0700 4.30 0.715 0.498

Power Transmission 
System 0.0100 0.03100 0.0520 3.10 0.548 0.616

Ventilation System 0.0030 0.00415 0.0053 1.38 0.396 0.528
Support System 0.0010 0.00200 0.0030 2.00 0.376 0.492

 
Referring to Fig.4, the dependency of two subsystems, i.e., 1) Dependency of EMS on VS and 2) Dependency of 

PTS on SS are with m= 3.0 and m=2.0, respectively using (7). The dependencies fuzzy possibilities obtained using (6) 
are shown in Fig.5. And from the Fig.5, the plot shows the variation of the dependency with increase in degradation 
level of the system, which is measured in terms ‘Equipment Health Index’ (EHI) computed from condition indicators. 
EHI = 1 represents a healthy system and zero indicates a failed one (Kumar and Chaturvedi et al. (2005)). The 
subjective unreliability is a measure of equipment health indicated by EHI, which is computed periodically. The 
failure possibility of Electromagnetic system is high in the event of failure of ventilation system. The dependency of 
the EMS on VS does not decrease with time or ageing/usage.  The dependency of the PTS on SS decreases after 
certain level of equipment degradation. This can be explained, since the SS cannot continue to support the system 
beyond a certain level of degradation and functional failure becomes imminent. 

The motor failure (Top Event) failure possibility is obtained using the relations mentioned from (1) to (8) for 
which the plot is as shown in Fig.6. Using this approach, the motor failure possibility over a period of time can be 
approximately assessed to draw either a production schedule or a maintenance tasks.  Even though the methodology 
offers approximate estimates, it reduces computational complexity and providing a natural language representation of 
failure scenario. 

From the results shown in Fig.6, the membership grade variation in failure possibility with and without 
dependency are compared and found to be 0.77 and 0.51, respectively.  The failure possibility estimated with 
dependency among EMS &VS and PTS &SS show that the motor failure possibility (TE) is increased by 50% than 
the estimate, which does not consider the dependencies. At health index 0.78 itself, there is a large variation in the 
failure possibility estimates. As the approaches to 0.50, the unreliability increases and system fails unexpectedly. 
Therefore, the approach of considering the dependency while estimating the system reliability is vital and cannot be 
ignored. 
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Figure 4:  Fault tree of motor failure with ‘dependency’ consideration 
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Figure 5: Dependency possibility of EMS and PTS. 

 



Journal of Uncertain Systems, Vol.2, No.4, pp.280-288, 2008                                                                                                          287 

 

0.0 0.5 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

subjective unreliability - EHI (x)

Fa
ilu

re
 P

os
si
bi
lity

 - 
M
em

. G
ra

de

Xo=0.498 Xo=0.616

with out Dependencywith dependency

0.118

Fs
Fr

(EHI = 0.0)(EHI=1.0)

 
 
 

 

 
 
 
 
 
 
 
 
 
 

Figure 6: Motor failure possibility and subjective unreliability 
  
  
5 Conclusions 
 
The dependency modelling with fuzzy failure possibility approach offers flexibility in dealing with the CM data in 
terms of equipment health index. It is more advantageous to use the CM data rather than purely relying on subjective 
expert/domain knowledge. The method presented in this paper offered a technique to integrate, various conditions 
monitoring indicators (quantitative data) and domain knowledge/engineering judgement (qualitative information) 
through fault tree analysis. Otherwise FTA with individual condition indicator levels is difficult and may lead to 
contradictory analysis. The proposed method is more useful, where failure causes are monitored with the help of CM 
techniques. The application of this approach on large critical process equipment in a steel plant has shown 
encouraging results. Therefore, the same can be extended to other equipment for a quantitative assessment of 
reliability. The authors feel that the methods is a ‘look forward’ approach, since the equipment present condition is 
used to estimate future unreliability of the equipment, instead of using equipment failure history.  
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