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Abstract

A method for solving a multi-criteria decision problem in the frameworks of analytic hierarchy process
and Dempster-Shafer theory under condition that the groups of experts and decision makers supply com-
parisons of arbitrary groups of decision alternatives and criteria is proposed in the paper. An algebra of
comparative preferences with the corresponding set-theoretical operations is developed. A rule for com-
bining the preferences for alternatives and for criteria by using sets of probability distributions and the
total probability theorem is proposed. The cautious decisions with using the imprecise Dirichlet model
are used for some cases of initial data. Numerical examples explain and illustrate the proposed method.
c©2008 World Academic Press, UK. All rights reserved.
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1 Introduction

One of the most well-established and frequently used method for solving a multi-criteria decision problem is
the analytic hierarchy process (AHP) proposed by Saaty [9]. In the AHP, the decision maker (DM) models
a problem as a hierarchy of criteria and decision alternatives (DA’s). After the hierarchy is constructed, the
DM assesses the importance of each element at each level of the hierarchy. This is accomplished by generating
entries in a pairwise comparison matrix where elements are compared to each other. For each pairwise
comparison matrix, the DM uses a method to compute a priority vector that gives the relative weights of the
elements at each level of the hierarchy. Weights across various levels of the hierarchy are then aggregated
using the principle of hierarchic composition to produce a final weight for each DA.

The strength of AHP is that it organizes various factors in a systematic way and provides a structured
simple solution to decision making problems. However, additional to the fact that the AHP method must
perform very complicated and numerous pairwise comparisons amongst DA’s, and it is also difficult to obtain
a convincing consistency index with an increasing number of attributes or DA’s. Moreover, the method uses
precise estimates of experts or the DM. This condition can not be satisfied in many applications because
judgments elicited from experts are usually imprecise and unreliable due to the limited precision of human
assessments.

In order to overcome some difficulties and to extend the AHP on a more real elicitation procedures, Beynon
et al. [3, 4] proposed a method using Dempster-Shafer theory (DST) and is called the DS/AHP method. The
method was developed for decision making problems with a single DM, and it applies the AHP for collecting
the preferences from a DM and for modelling the problem as a hierarchical decision tree. An extension of the
method was proposed by Tervonen et al. [12]. It should be noted that the main excellent idea underlying
the DS/AHP method is not applying Dempster-Shafer theory to the AHP. Beynon et al. [3, 4] proposed to
compare groups of DA’s by means of their separate comparisons with the set of all DA’s and assignments
different rates to the comparisons. The such type of comparisons is equivalent to the preferences stated by
the DM. The DS/AHP method has many advantages. However, it does not allow us to take into account
possible comparisons of groups of DA’s each other. The second shortcoming is that weights of criteria in
the DS/AHP method are obtained by using the standard comparison procedure used in the AHP. The third
disadvantage concerns the procedure of computing the basic probability assignments. The fourth problem is
that it is difficult to assign a numerical value of the favorable opinion for a particular group of DA’s.

Therefore, we propose a method for solving a multi-criteria decision problem in the framework of AHP
under condition that the groups of experts and DM’s supply comparisons of arbitrary groups of DA’s and
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criteria. Moreover, we use this approach for obtaining preferences sets on all levels of the hierarchy in
AHP, i.e., for criteria and DA’s. We develop an algebra of comparative preferences with the corresponding
set-theoretical operations. At that, the comparisons consisting of single DA’s produce a universal set, the
incomplete preferences are represented by set of simplest preferences, and, hence, the comparisons consisting
of groups of DA’s can be processed in the framework of DST.

The paper is organized as follows. Some definitions and elements of DST are given in Section 2. A
very short description of the AHP can be found in Section 3. The main idea of the method for processing
incomplete preferences is discussed in Section 4. In this section, the set-theoretic operations with preferences
are introduced and it is shown how DST can be applied for processing the comparative expert judgments. A
rule for combining the preferences for DA’s and for criteria by using sets of probability distributions and the
total probability theorem is considered in Section 5. Some extreme cases of initial data concerning the criteria
are analyzed in this section. The cautious decisions with using the imprecise Dirichlet model are considered
in Section 6. A decision problem is numerically solved under different initial data for illustrative purposes in
Section 7.

2 Dempster-Shafer Theory

Let U be a universal set under interest, usually referred to in evidence theory as the frame of discernment.
Suppose N observations were made of an element u ∈ U , each of which resulted in an imprecise (non-specific)
measurement given by a set A of values. Let ci denote the number of occurrences of the set Ai ⊆ U , and
Po(U) the set of all subsets of U (power set of U). A frequency function m, called basic probability assignment
(BPA), can be defined such that [5, 11]:

m : Po(U) → [0, 1], m(∅) = 1,
∑

A∈Po(U)

m(A) = 1.

Note that the domain of BPA, Po(U), is different from the domain of a probability density function, which is
U . According to [5], this function can be obtained as follows:

m(Ai) = ci/N. (1)

If m(Ai) > 0, i.e. Ai has occurred at least once, then Ai is called a focal element.
According to [11], the belief Bel(A) and plausibility Pl(A) measures of an event A ⊆ Ω can be defined as

Bel(A) =
∑

Ai:Ai⊆A

m(Ai), Pl(A) =
∑

Ai:Ai∩A 6=∅
m(Ai). (2)

As pointed out in [6], a belief function can formally be defined as a function satisfying axioms which can
be viewed as a weakening of the Kolmogorov axioms that characterize probability functions. Therefore, it
seems reasonable to understand a belief function as a generalized probability function [5] and the belief Bel(A)
and plausibility Pl(A) measures can be regarded as lower and upper bounds for the probability of A, i.e.,
Bel(A) ≤ Pr(A) ≤ Pl(A).

Let us explain the belief and plausibility functions in terms of a multivalued sampling process. Consider a
probability measure P (ω) defined on a universal set Ω (which can be thought of as the set of our observations)
related to U (the set of the values of our measurements) through a multivalued mapping G : Ω → Po(U).
Then the BPA is [5]:

m(Ai) = P (ωi) = ci/N, ωi ∈ Ω.

Let A be a subset of U . If we define X∗ as the subset of Ω whose elements must lead to A:

X∗ = {ω ∈ Ω : G(ω) ⊆ A},
then the lower probability of A, according to Dempster’s principle of inductive reasoning, is defined by

P (A) = Bel(A) = P (X∗).

If we define X∗ as the subset of Ω whose elements may lead to A:

X∗ = {ω ∈ Ω : G(ω) ∩A 6= ∅},
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then the upper probability of A is given by

P (A) = Pl(A) = P (X∗).

3 The AHP Method

Briefly, the AHP decomposes a decision problem into elements, according to their common characteristics,
and levels, which correspond to the common characteristic of the elements. The topmost level or “focus” of
the problem is the main goal; the intermediate levels correspond to criteria, while the lowest level contains
the DA’s. For simplicity, we assume that there are only one level of DA’s and one level of criteria (see fig. 1
for example). The AHP is based on paired comparisons and the use of ratio scales in preference judgements.
The scales used in the AHP allow to convert the qualitative judgments into numerical values. The DA’s are
compared pairwise with respect to a specific criteria. The criteria are also compared pairwise. At that, the
DM is asked to give the ratio of alternatives’ weight a

(k)
ij which represents the pairwise comparison rating

between the element i and element j of a level with respect to a criterion, say the k-th criterion. The results
of paired comparisons are presented in a comparison matrix Ak = [a(k)

ij ]. The entries a
(k)
ij are governed by the

following rules:
a
(k)
ij > 0; a(k)

ij = 1/a
(k)
ij ; a(k)

ii = 1

for all i and j.
The priorities or weights of the elements can be estimated by finding the principal eigenvector Wk of the

matrix Ak, that is AkWk = λmaxWk. Here λmax is the largest eigenvalue of the matrix Ak. When the vector
Wk is normalized, it becomes the vector of priorities of DA’s with respect to the k-th criterion. In the same
way, criteria are compared and the normalized principal eigenvector V as the vector of weights of criteria is
computed.

Once the local priorities of DA’s with respect to all criteria are available and the weights of criteria are
obtained, in order to obtain final priorities of the DA’s, the priorities are aggregated as follows:

wi =
∑

k

vkw
(k)
i .

Here vk is the weight the k-th criterion (the k-th element of the vector V ); w
(k)
i is the priority of the i-th DA

with respect to the k-th criterion.
The main virtues and shortcomings of the AHP have been pointed out in the introductory section. There-

fore, we do not consider them here.

4 Algebra of Preferences

We suppose that there is a set of DA’s A = {A1, ..., An} consisting of n elements and a set of criteria
C = {C1, ..., Cr} consisting of r elements. Denote the set of all subsets of A (the power set) by Po(A) and the
set of all subsets of C by Po(C). Let Bk be the short notation of a subset of A, i.e., Bk ⊆ A or Bk ∈ Po(A).
Let Dk be the short notation of a subset of C, i.e., Dk ⊆ C or Dk ∈ Po(C). Here the index k is an order
number of the corresponding subset of A or C. For example, the possible correspondences between subsets of
DA’s and Bk for n = 3 are given in Table 1.

An expert chooses some subset Bk ⊆ A of DA’s from the set A and compares this subset with another
subset Bi ⊆ A of DA’s with respect to a certain criterion. In other words, experts set up the preferences
Bk º Bi. If Bk or Bi in the supplied preference Bk º Bi are not single elements of A, then we will say that
there is an incomplete preference. In the same way, the DM chooses some subset Dk ⊆ C of criteria from
the set C and compares this subset with another subset Di ⊆ C of criteria. In other words, DM’s set up the
preferences Dk º Di. Every expert choice adds “1” to the corresponding preference, i.e. the preference rate
is 0 or 1.

For example, if A = {A1, A2, A3}, Bk = {A3}, and Bi = {A1, A3}, then the preference Bk º Bi means that
an expert chooses the DA A3 from DA’s A1 and A3. This is equivalent to the preference {A3} º {A1} which
means that the DA A3 is more preferable than A1. If Bk = {A2} and Bi = {A1, A3}, then the preference
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Table 1: The extended matrix of pairwise comparisons of DA’s
{A1} {A2} {A3} {A1, A2} {A1, A3} {A2, A3} {A1, A2, A3}
B1 B2 B3 B4 B5 B6 B7

B1 - a12 a13 a14 a15 a16 a17

B2 a21 - a23 a24 a25 a26 a27

B3 a31 a32 - a34 a35 a36 a37

B4 a41 a42 a43 - a45 a46 a47

B5 a51 a52 a53 a54 - a56 a57

B6 a61 a62 a63 a64 a65 - a67

B7 a71 a72 a73 a74 a75 a76 -

Table 2: The extended matrix of pairwise comparisons of criteria
{C1} {C2} {C1, C2}
D1 D2 D3

D1 - c12 c13

D2 c21 - c23

D3 c31 c32 -

Bk º Bi means that the DA A2 is more preferable than A1 or A3. In such the way, experts compare groups
of DA’s from the set A and DM’s compare groups of criteria from the set C.

The extended matrix of pairwise comparisons of DA’s in this case has 2n−1 columns and rows (the empty
element of Po(A) is not considered here). An example of such the matrix by n = 3 is shown in Table 1.
Similarly, the extended matrix of comparisons of criteria has 2r − 1 columns and 2r − 1 rows. An example of
such the matrix by r = 2 is shown in Table 2. It is supposed that experts and DM’s compare only subsets
of DA’s and criteria, but they do not provide preference values or weights. At that, if an expert supplies the
comparison assessment Bk º Bi, then the value 1 is added to the corresponding cell in the comparison matrix
(k-th row and i-th column). In this case, the preference value aki can be regarded as the number of experts
chosen the comparison assessment Bk º Bi. The same can be said about criteria where cki is the number of
expert judgments concerning the preference Dk º Di. It should be noted that experts or DM’s do not need
to fill all cells of the extended matrices. An extreme case is when one of the matrices is empty, i.e., all aki or
cki are 0.

First of all, we consider how to process the extended matrix of pairwise comparisons for DA’s. We define
the set L of basic preferences of DA’s

L = {{Ai} º {Ak}, ∀i, k ∈ {1, 2, ..., n}, i 6= k}.
One can see that L consists of preferences between single DA’s. We also define the set M of basic preferences
of criteria

M = {{Ci} º {Ck}, ∀i, k ∈ {1, 2, ..., r}, i 6= k}.
Note that the preferences {Ai} º {Ak} and {Aj} º {Ak} follow from the preference {Ai, Aj} º {Ak} if

i 6= k and j 6= k. By generalizing the above and assuming that Bk = {Av, ..., Aw} consists of nk DA’s and
Bi = {At, ..., Al} consists of ni DA’s such that Bk ∩Bi = ∅, we can say that the preference Bk º Bi implies
nk · ni basic preferences of the form:

Av º At, Av+1 º At, ..., Av º Al, ..., Aw º At, ..., Aw º Al.

At the same time, the preference {Aj} º {Ak} follows from the preference {Ak, Aj} º {Ak} if j 6= k.
It can be seen from the above that the comparison of common parts of subsets Bk and Bi makes no sense.
Experts have to compare different subsets of DA’s, i.e., Bk∩Bi = ∅ for all k and i. Nevertheless, we would not
like to restrict experts to supply only “permitted” judgment. However, by processing the preference Bk º Bi

with Bk∩Bi = B̃ki 6= ∅, we will replace them by the following two preference Bk º Bi\B̃ki and Bk\B̃ki º Bi.
For instance, the preference {A1, A2} º {A1, A2, A3} can be represented as the preference {A1, A2} º {A3}
(Bk º Bi\B̃ki, B̃ki = {A1A2}), which can be represented as the subset of the set L consisting of the basic
preferences {A1} º {A3}, {A2} º {A3}.
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In sum, we can represent every preference by the set of simplest preferences of the from {Ai} º {Ak} from
the set L with the corresponding operations.

The set L and all intersections of its elements can be regarded as the universal set. At the same time,
we can not precisely assign probabilities to elements of the universal set because it is necessary to take into
account the so-called incomplete preferences or estimates concerning the groups of DA’s. We do not have
complete probabilistic information about basic preferences from the set L in this case. For instance, by having
the probability p for the incomplete preference {A2} º {A1A3} and by representing this preference as a subset
of two basic preferences {A2} º {A1} and {A2} º {A3}, we do not know how the probability p is distributed
among the preferences {A2} º {A1} and {A2} º {A3}. In this case, we can apply the framework of DST to
the considered preferences.

For brevity, we will denote the preferences Bk º Bi and Dk º Di by Bki and Dki, respectively. For every
pairwise comparison in the extended comparison matrix, we define its BPA as follows:

m(Bk º Bi) = m(Bki) =
aki

N
, N =

∑

k,i∈{1,2,...,n},k 6=i

aki

or
m(Dk º Di) = m(Dki) =

cki

M
, M =

∑

k,i∈{1,2,...,r},k 6=i

cki.

Since every preference Bk º Bi (Dk º Di) is represented by a set of basic preferences, we denote this set
of basic preferences Lki ⊆ L (Mki ⊆M). Now we can define some rules of set-theoretic operations.

We will say that the preference Bj º Bl is a subset of the preference Bk º Bi or Bk º Bi includes Bj º Bl

if there holds Ljl ⊆ Lki. This means that the set of basic preferences Ljl produced by Bj º Bl is a subset of
basic preferences Lki produced by Bk º Bi.

We will also say that the preference Bj º Bl intersects the preference Bk º Bi if there holds Lki∩Ljl 6= ∅.
This means that the sets Ljl and Lki produced by Bj º Bl and Bk º Bi have common basic preferences.

Then the belief and plausibility functions for the preference Bk º Bi can be defined as follows:

Bel(Bki) =
∑

j,l:Ljl⊆Lki

m(Bjl), Pl(Bki) =
∑

j,l:Ljl∩Lki 6=∅
m(Bjl). (3)

The belief and plausibility functions for the preference Dk º Di can be defined in the same way

Bel(Dki) =
∑

j,l:Mjl⊆Mki

m(Djl), Pl(Dki) =
∑

j,l:Mjl∩Mki 6=∅
m(Djl). (4)

Note that the plausibility functions Pl(Bki) and Pl(Dki) can be expressed through the belief functions of
complementary preferences Bc

ki and Dc
ki, respectively, i.e.

Pl(Bki) = 1− Bel(Bc
ki)

and
Pl(Dki) = 1− Bel(Dc

ki).

5 Combination of DA’s and Criteria

By introducing the special algebra of sets of preferences, we have to define a rule for combining the preferences
for DA’s and for criteria. First of all, let us write the initial information we have after elicitation procedures.

Experts provide comparison judgments concerning the DA’s with respect to the j-th criterion Cj , j =
1, ..., r. As a result, we can compute the conditional BPA’s m(Bki | Cj) = a

(j)
ki /N (j), j = 1, ..., r, where a

(j)
ki is

the number of experts supplied the preference Bki with respect to the j-th criterion, N (j) is the total number
of experts supplied the preferences with respect to the j-th criterion.

Then DM’s provide comparison judgments concerning the criteria. As a result, we can compute the BPA’s
m(Dki) = cki/M , j = 1, ..., r, where cki is the number of DM’s supplied the preference Dki, M is the total
number of DM’s supplied the preferences.
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The first difficulty here is that we have preferences concerning criteria and groups of criteria instead of
single ones. Therefore, our first task is to find a way for replacing the preferences by separate criteria.

One of the possible solutions of this task is to use a nice idea of Beynon et al. [3, 4] in the DS/AHP
method. According to this idea, the comparison of groups of objects with a whole set of objects, say C, is
equivalent to the identification of the most favorable objects from the set C. This idea applied by Beynon
et al. to DA’s can be used for processing the criteria. For instance, if C = {C1, C2}, then the preference
{C1} º {C1, C2} means that the DM chooses C1 from all criteria {C1, C2}. So, by computing the belief and
plausibility functions of the preference Dk º C, we determine the lower and upper probabilities of the group
Dk of criteria or one criterion Ck if Dk consists of one element Ck. So, we have to compute the belief and
plausibility functions of all possible preferences Dk º C, k = 1, ..., 2r − 1, by using (4).

Suppose that C\Dk = {Ci1 , ..., Civ
}. It is very important to point out here that the preference Dk º C

means Dk º Ci1 and Dk º Ci2 and, ..., and Dk º Civ . In other words, by dealing with preferences Dk º C
below, we should consider the intersection of the above basic preferences, but not their union.

The second task is how to use the belief Bel(Dk º C) and plausibility Pl(Dk º C) functions of preferences
Dk º C for combining the DA’s and criteria. Suppose that the j-th criterion is chosen with the probability
pj such that

∑r
j=1 pj = 1. Then the probabilities of criteria satisfy the following system of inequalities

Bel(Dk º C) ≤
∑

j:Cj∈Dk

pj ≤ Pl(Dk º C), k = 1, ..., 2r − 1. (5)

By viewing the belief and plausibility functions as lower and upper probabilities, respectively, we can say that
the set of the above inequalities produces a set P of possible distributions p = (p1, ..., pr) satisfying all the
inequalities (5). Let us fix a distribution p from P. Then, by applying the total probability theorem, we can
write the combined BPA’s of preferences Bki as follows:

mp(Bki) =
r∑

j=1

m(Bki | Cj) · pj , p ∈ P.

It should be noted that the obtained BPA depends on the probability distribution p ∈ P and can not be
considered as a final result. We return to the question what to do with these BPA’s later.

After the BPA’s of all possible preferences depending on p ∈ P are computed, we have to choose the “best”
DA. Therefore, the third task is to choose the “best” DA depending on p ∈ P. This task can be solved by
using the same idea of Beynon et al. [3, 4] applied to DA’s. In other words, we have to find the belief and
plausibility functions of preferences Bk º A by using (3)

Belp(Bk º A) =
∑

i,l:Lil⊆LkL

mp(Bil) =
r∑

j=1

pj ·

 ∑

i,l:Lil⊆LkL

m(Bil | Cj)


 ,

P lp(Bk º A) =
∑

i,l:Lil∩LkL 6=∅
mp(Bil) =

r∑

j=1

pj ·

 ∑

i,l:Lil∩LkL 6=∅
m(Bil | Cj)


 ,

L = 2n − 1.

Note that the obtained belief and plausibility functions linearly depend on p. Therefore, we can compute
the lower belief and upper plausibility functions by solving the linear programming problems

Bel(Bk º A) = inf
p∈P

r∑

j=1

pj ·

 ∑

i,l:Lil⊆LkL

m(Bil | Cj)


 ,

Pl(Bk º A) = sup
p∈P

r∑

j=1

pj ·

 ∑

i,l:Lil∩LkL 6=∅
m(Bil | Cj)




subject to
∑r

j=1 pj = 1 and (5).
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When we do not have information about criteria at all, then the set of constraints to the above linear
programming problems are reduced to one constraint

∑r
j=1 pj = 1. Note that the optimal solutions to the

linear programming problem can be found at one of the extreme points of the convex sets of distributions
produced by the linear constraints. Since we remain only one constraint

∑r
j=1 pj = 1 which forms the unit

simplex, then its extreme points have the form

(1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1).

Hence, it is obvious that the optimal belief and plausibility functions can be computed as follows:

Bel(Bk º A) = min
j=1,...,r

∑

i,l:Lil⊆LkL

m(Bil | Cj), (6)

Pl(Bk º A) = max
j=1,...,r

∑

i,l:Lil∩LkL 6=∅
m(Bil | Cj). (7)

It is interesting to note that the belief function of the optimal DA in the case of prior ignorance about
criteria is computed by using the “maximin” technique, i.e., we first compute the minimal “combined” belief
function of every DA over all criteria in accordance with (6). Then we compute the maximal belief function
among the obtained “combined” belief functions. The plausibility function of the optimal DA is computed
by using the “maximax” technique in accordance with (7).

By having the belief and plausibility functions of all preferences Bk º A, k = 1, ..., 2n−1, we can determine
the “best” DA. The choice of the “best” DA is based on comparison of intervals produced by the belief and
plausibility functions. There exist a lot of methods for comparison of intervals. We propose to use the most
justified method based on the so-called caution parameter [10, 18] or the parameter of pessimism η ∈ [0, 1]
which has the same meaning as the optimism parameter in Hurwicz criterion [7]. According to this method,
the “best” DA from all possible ones should be chosen in such a way that makes the convex combination
η·Bel(B) + (1 − η)Pl(B) achieve its maximum. If η = 1, then we analyze only belief functions and make
pessimistic decision. This type of decision is very often used [1, 8]. If η = 0, then we analyze only plausibility
functions and make optimistic decision.

6 Cautious Decision Making with the Imprecise Dirichlet Model

One of the main difficulty of the proposed method is the possible small number of experts. Expression (1)
can be used when the number of expert judgments is rather large. In order to overcome this difficulty, the
imprecise Dirichlet model (IDM) [17] can be applied to extend belief and plausibility functions such that a
lack of sufficient statistical data can be taken into account [13, 14].

For brevity, we will not consider in detail what this model is and how to obtain it. The interested reader
should refer to [2, 17] and [13, 14, 15, 16]. We point out only that using the imprecise Dirichlet model leads
to the extended belief and plausibility functions of the form:

Bels(A) =
N · Bel(A)

N + s
, Pls(A) =

N · Pl(A) + s

N + s
. (8)

Here the hyperparameter s > 0 determines how quickly upper and lower probabilities of events converge
as statistical data accumulate; N is the number of expert judgments. Smaller values of s produce faster
convergence and stronger conclusions, whereas large values of s produce more cautious inferences. Walley [17]
and Bernard [2] argue that the parameter s should be taken to be 1 or 2.

It should be noted that the simple modification of the belief and plausibility functions with using the
IDM has a number of nice properties [14]. For example, if we have N identical estimates, then the belief and
plausibility functions are the same Bel(A) = Pl(A) = 1. This implies that the belief and plausibility functions
do not depend on the value N while Bels(A) and Pls(A) are N/(N +s) and 1, respectively. However, the main
advantage of the IDM is that it produces the cautious inference. In particular, if N = 0, then Bels(A) = 0
and Pls(A) = 1. In the case N →∞, it can be stated for any s: Bels(A) =Bel(A), Pls(A) = Pl(A).

The extended belief and plausibility functions are obtained from the BPA’s m∗(A) = c/(N + s) for every
A and the additional BPA m∗(A º A) = s/(N + s), i.e., Bels(A) and Pls(A) can be obtained as standard
belief and plausibility functions under condition that there are s additional observations A = A º A. This
fact allows us to change the BPA’s of Bi and to make the cautious decision.
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Figure 1: A hierarchical decision tree

7 Numerical Examples

Let us study a decision problem where the DM has to choose which one of three types of transport to use.
Three alternatives (rail transport (A1), motor transport (A2), water transport (A3)) are evaluated based on
two criteria: reliability of delivery (C1) and freight charge (C2). Here A = {A1, A2, A3} and C = {C1, C2}. A
hierarchical decision tree of the problem is depicted in Fig.1.

Five experts provide the following preferences with respect to the first criterion:
two experts (a16 = 2): {A1} º {A2A3} = B16,
three experts (a47 = 3): {A1A2} º {A1A2A3} = B47.
The same experts provide the following preferences with respect to the second criterion:
one expert (a52 = 1): {A1, A3} º {A2} = B52,
three experts (a37 = 3): {A3} º {A1, A2, A3} = B37,
one experts (a13 = 1): {A1} º {A3} = B13.
Note that the condition

{A1A2} º {A1A2A3}
is equivalent to

{A1A2} º {A3},
and the preference

{A3} º {A1A2A3}
is equivalent to

{A3} º {A1A2},
i.e.,

B47 = B43

and
B37 = B34.

The BPA’s of all preferences are:

m(B16 | C1) = 0.4, m(B43 | C1) = 0.6,

m(B52 | C2) = 0.2, m(B34 | C2) = 0.6, m(B13 | C2) = 0.2.

Two DM’s provide their preferences related to criteria:
The first DM (c21 = 1): {C2} º {C1} = D21. The BPA of D21 is m(D21) = 0.5.
The second DM (c33 = 1) could not compare the criteria, i.e. the second DM provides preference D33 =

C º C and m(D33) = 0.5.
The belief and plausibility functions of preferences Dk º C are

Bel(D1 º C) = 0,

P l(D1 º C) = m(D33) = 0.5,
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Bel(D2 º C) = m(D21) = 0.5,

P l(D2 º C) = m(D21) + m(D33) = 1,

Bel(D3 º C) = 1,

P l(D3 º C) = 1.

Now we define the sets Lki for every criterion.
Criterion C1:

L16 = {{A1} º {A2}, {A1} º {A3}},
L43 = {{A1} º {A3}, {A2} º {A3}}.

Criterion C2:
L52 = {{A1} º {A2}, {A3} º {A2}},
L34 = {{A3} º {A1}, {A3} º {A2}},

L13 = {{A1} º {A3}}.
By having the above information, we can write the combined belief and plausibility functions of preferences

Ak º A:
Belp(B1 º A) = m(B16 | C1)p1 + 0 · p2 = 0.4p1 + 0 · p2,

Plp(B1 º A) = 1p1 + (1−m(B34 | C2)) p2 = p1 + 0.4p2,

Belp(B2 º A) = 0p1 + 0p2 = 0,

Plp(B2 º A) = m(B43 | C1)p1 + (1−m(B13 | C2)) p2 = 0.6p1 + 0.2p2,

Belp(B3 º A) = 0p1 + m(B34 | C2)p2 = 0.6p2,

Plp(B3 º A) = 0p1 + (1−m(B13 | C2)−m(B52 | C2)) p2 = 0.8p2.

Every function above is the objective function for a linear programming problem with the following con-
straints:

0 ≤ p1 ≤ 0.5,

0.5 ≤ p2 ≤ 1,

p1 + p2 = 1.

After solving the corresponding linear programming problems, we get

Bel(B1 º A) = 0, Pl(B1 º A) = 0.5 + 0.4 · 0.5 = 0.7,

Bel(B2 º A) = 0, Pl(B2 º A) = 0.6 · 0.5 + 0.2 · 0.5 = 0.4,

Bel(B3 º A) = 0.6 · 0.5 = 0.3, Pl(B3 º A) = 0.8 · 1 = 0.8.

In the same way, we can compute the combined belief and plausibility functions of all preferences Bk º A,
but it is not necessary because our main aim is to choose one of the DA’s. Finally, we can conclude that the
third DA is the “best” one.

It should be noted that the number of experts and DM’s is rather small. Therefore, we apply the IDM for
making the cautious decision. The modified BPA’s by s = 1 are

m∗(B16 | C1) = 0.333, m∗(B43 | C1) = 0.5, m∗(B77 | C1) = 0.167,

m∗(B52 | C2) = 0.167, m∗(B34 | C2) = 0.5,

m∗(B13 | C2) = 0.167, m∗(B77 | C2) = 0.166.

Here
B(1)

77 = B(2)
77 = A º A.

The belief and plausibility functions of preferences Dk º C are

Bel1(D1 º C) = 0,
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Pl1(D1 º C) = m(D33) = 0.666,

Bel1(D2 º C) = m(D21) = 0.333,

P l1(D2 º C) = m(D21) + m(D33) = 1,

Bel1(D3 º C) = 0.666,

P l1(D3 º C) = 1.

The combined belief and plausibility functions of preferences Ak º A are:

Belp,1(B1 º A) = 0.333p1 + 0p2,

P lp,1(B1 º A) = p1 + 0.5p2,

Belp,1(B2 º A) = 0p1 + 0p2 = 0,

P lp,1(B2 º A) = 0.667p1 + 0.333p2,

Belp,1(B3 º A) = 0.5p2,

P lp,1(B3 º A) = 0p1 + 0.833p2.

Note that the above belief and plausibility functions can be obtained without using the modified BPA’s,
but by means of (8). Every function above is the objective function for a linear programming problem with
the following constraints:

0 ≤ p1 ≤ 0.666,

0.333 ≤ p2 ≤ 1,

p1 + p2 = 1.

Hence
Bel1(B1 º A) = 0, P l1(B1 º A) = 0.833,

Bel1(B2 º A) = 0, P l1(B2 º A) = 0.555,

Bel1(B3 º A) = 0.167, P l1(B3 º A) = 0.833.

It can be seen from the results that the fact that the third DA is optimal is not so clear here. This implies
that additional judgments are required for reducing the risk of decision making.

Let us consider an extreme case when the DM can not to choose a preferable criterion or a group of
criteria. In this case, we have m(Dki) = 0 for all k and i except for (k, i) = (3, 3), m(D33) = 1. Hence, the
set of constraints for the distribution p is reduced to one constraint p1 + p2 = 1. This leads to the pessimistic
decision. In particular, by taking s = 0, we get the following belief and plausibility functions:

Bel(B1 º A) = 0, P l(B1 º A) = 1,

Bel(B2 º A) = 0, P l(B2 º A) = 0.6,

Bel(B3 º A) = 0, P l(B3 º A) = 0.8.

It can be seen from the above results that the first DA is optimal. If s = 1, then there hold

Bel1(B1 º A) = 0, P l1(B1 º A) = 1,

Bel1(B2 º A) = 0, P l1(B2 º A) = 0.667,

Bel1(B3 º A) = 0, P l1(B3 º A) = 0.833.

We again have the same optimal DA.
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8 Conclusion

The method for solving a multi-criteria decision problem in the frameworks of the AHP and DST has been
proposed in the paper. The method can be regarded as a generalization of the DS/AHP method. It signif-
icantly extends the procedure of the expert elicitation in the AHP. The proposed method does not require
hard computations. Moreover, the optimization problem for computing the lower belief and upper plausibility
functions is linear and can simply be solved by means of well-known methods, for instance, by means of the
simplex method.

It should be noted that the method is not changed if experts provide not only preferences, but also some
rates of preferences by using a m-point scale (1−m) for the pairwise comparisons. If the j-th expert provides
the preference rate x

(j)
ki ∈ {0, 1, ..., m} (the value 0 is used if the corresponding preference was not chosen by

experts) for DA’s, then the BPA of the preference Bki is computed as

m(Bki) =
aki∑

j=1

x
(j)
ki / N,

where N is the total sum of the preference rates of all preferences with respect to a criterion.
The same procedure can be applied to criteria.
At the same time, we have to point out that there are many combination rules used in DST in addition to

the linear rule used in the paper and based on the total probability theorem. However, these rules can lead to
the non-linear optimization problems whose solution might be complicated. Therefore, algorithms for using
other combination rules and their comparative analysis are questions for further research.
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