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Abstract 

 
Fuzzy inclusion dependencies ( , [0,FID sα 1])α ∈  express subset-relationships between fuzzy databases and are 

thus important indicators for redundancies between fuzzy databases. In general, the discovery of FID sα  will be 

beneficial in any effort to integrate unknown fuzzy databases. The problem of searching FID sα  between two fuzzy 

relations is NP-hard. Therefore, we have mapped the FID sα  searching problem to a weighted hypergraph to reduce it 
to a clique finding problem in a collection of k-hypergraphs. Correctness and complexity of the algorithm are also 
discussed. By reducing the problem to a weighted hypergraph problem, we achieved a significant improvement in 
performance over the naive algorithm. Our algorithm uses a NP complete graph algorithm (clique-finding), but a test 
implementation shows that most of the real world problems can be solved with our approach.  

 © 2008 World Academic Press, UK. All rights reserved. 
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1 Introduction 
 
Usually, meta information about databases, such as the semantics of schema objects, functional dependencies, or 
relationships between different databases, is not explicitly available for database integration. A functional dependency 
is a constraint on a set of attributes ( ,1 2 , , )kA A A X  in a relation R , specifying that for any two tuples t  and t  

from 
1 2

R , the following conditions holds: 
1 1 2 2 1 2 1 2[ , , ] [ , , ] [ ] [ ]k kt A A A t A A A t X t X= ⇒ = . 

The derivation of functional dependencies through inference rules has been treated extensively by (Casanova et 
al., 1982), (Mitchell, 1983), (Missaoui, and Godin, 1990), and (Kantola et al., 1992). The problem of finding 
evidence for functional dependencies from the extent of relations has also been considered. Several projects deal with 
the question how to efficiently find candidates for functional dependencies from among the attributes of a relation 
(Savnik and Flach, 1993), (Bell and  Brockhausen, 1995). Functional dependencies and inclusion dependencies are 
related but have some important differences. In particular, functional dependencies generally are defined only within 
one relation, whereas the natural purpose of inclusion dependencies is to define relationships across two different 
relations. Mitchell (1983) also considers inclusion dependencies within one relation. Functional and inclusion 
dependencies are related in the sense that they both constrain possible valid database states and are thus helpful in 
database design. However, for our purpose of discovering information about relationships across unknown fuzzy 
relational databases the case of fuzzy inclusion dependencies is more useful. A reliable algorithm to discover FID sα  
will enable an integration system to incorporate new fuzzy relational databases that would not have been used 
previously since their relationships with existing fuzzy relational database was not known. A simple algorithm 
compares fuzzy attributes, compares fuzzy relations, and, finally, compares fuzzy databases to discover FID sα  

between them. We have already proposed the idea of FID sα  and a naive algorithm for its discovery in a pair of 

                                                      
* Corresponding author. Email: akscse@rediffmail.com (A.K. Sharma)

mailto:LNCS@Springer.com


Journal of Uncertain Systems, Vol.2, No.3, pp.212-222, 2008                                                                                                         213 

fuzzy relations, which has recently been published (Sharma et al., 2004). Since the problem is NP-hard, we propose 
an algorithm to map the problem to a graph problem. Further, we discuss searching for FID sα  using clique finding 
algorithms and propose an algorithm which uses those clique-finding algorithms (Bron/ Kerbosch and 
HYPERCLIQUE) to find fuzzy inclusion dependencies.  

Rest of the paper is organized as follows: Section 2 gives brief definitions of the concepts used in developing the 
algorithm in question. Section 3 introduces and discusses an algorithm to map the problem of Discovery of Fuzzy 
Inclusion Dependencies ( FID sα ) in Fuzzy Databases to the problem of Finding Cliques in Hypergraphs. The 

algorithm for the Discovery of FID sα  is developed and discussed in Section 4 and Section 5 concludes. 
 
2   Definitions, Concepts & Background 
 
Definition 2.1：Fuzzy Value Equivalent (FVEQ): Let A and B be two fuzzy sets defined on universe of discourse U, 
with their membership functions Aµ  and Bµ , respectively. A fuzzy value a A∈  is said to be equivalent to some 

other fuzzy value ,  iff ( )Bb B b xµ∈ ∈ , for some x S∈ , where S  is the set of crisp values that are returned by 

, where 1( )A aµ − 1
Aµ
−  is the inverse of the membership function of fuzzy set A. 

 
Example 2.1: Consider the Figure 1, where membership functions representing the fuzzy sets child, young, mid, and 
old are used to identify the age of a person in relations Emp and Staff. These relations are under different DBAs, 
hence, the membership functions that correspond to these relations are shown to be non-identical being designed by 
different domain experts. Now let Aµ  and Bµ  represent membership functions of the fuzzy set young used in fuzzy 

relations Emp and Staff respectively and Cµ  represent the membership function of the fuzzy set mid used in fuzzy 

relations Staff. Aµ  and Bµ  are not identical because of individual differences in domain experts. Let there be a fuzzy 
value (0 , then . If age x of a person is 25 years, then .5 / )young a A= ∈ 1( ) {25,35}A aµ − = S= ( ) (1.0 / )B x young b Bµ = = ∈ . 
Therefore, the fuzzy value (0.5=young) in fuzzy set A is said to be FVEQ to fuzzy value  in fuzzy set B. 
Similarly, if age x of a person is 35 years, then

(0.5 / )young
( ) (0.5 / )C x mid b Cµ = = ∈ , hence the fuzzy value (0.  in 

fuzzy set A is said to be FVEQ to fuzzy value  in fuzzy set C. 
5 / )young

(0.5 / )mid
 
2.1   Notations used for Fuzzy Relational Databases 
 
The fuzzy relational data model as given by Buckles & Petry (1982) and its derivatives are considered here, however, 
throughout these work notations similar to that in Casanova et al. (1982) will be used. Set variables will be denoted 
by capital letters and variables denoting elements of a set will be denoted by small letters. “k-subset of X" means a 
subset of X with cardinality k, while a "k-set" is simply a set with cardinality k. A fuzzy value is an element of data 
stored in a fuzzy relation's extent. Examples include .6/good, .5/old, or .8/high etc. A domain D is a finite set of fuzzy 
values. A fuzzy attribute is a bag (multiset) of fuzzy values. A fuzzy relational schema is a pair (Rel,U) where Rel is 
name of the fuzzy relation and  is a finite ordered n-tuple labels, that is known to be fuzzy attribute 
names. A fuzzy relation is a 3-tuple R = (Rel,U,E) with Rel and U as above and 

1 2( , , , )nU a a a=

1 2 nE D D D⊆ × × ×  the fuzzy relation 
extent. The sets 

1 2, , , nD D D  are called the domains of R’s fuzzy attributes. A fuzzy tuple in fuzzy relation R is an 
element of E. An operator  returns the projection t on the fuzzy attributes named . 

1 2[ , , , ]nt a a a 1 2, , , na a a
 
2.2   Fuzzy Inclusion Dependencies (FIDs) 
 
Fagin R. (1981) introduced and formally defined the inclusion dependency (IND) that can be derived across two 
relations. Similarly, fuzzy inclusion dependency (FID) (Sharma et al. (2004)) has been introduced and formally 
defined that can be derived across two fuzzy relations as given below. 
 
Definition 2.2 (FID): Let  and  be (projections on) two fuzzy relations. Let X be a 
sequence of k distinct fuzzy attribute names from R, and Y be a sequence of k distinct fuzzy attribute names from S, 

1 2[ , , , ]nR a a a 1 2[ , , , ]mS b b b
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)mwith 1 m . Then, fuzzy inclusion dependency FID is an assertion of the form in( ,k n≤ ≤ [ ] [ ]R X S Y⊆ , where all 
the Fuzzy Values under all the attribute names in [ ]R X  are Fuzzy Value Equivalent to some Fuzzy Values under 
respective attribute names in , however, the vice versa may not hold. [ ]S Y
 
Remark: The assertion [ ] [ ]R X S Y⊆  in the above definition indicates ( ) ( ),X Yu u u Uµ µ⊆ ∀ ∈  which may not be 
fully satisfied because, two different database designers may be having different perceptions about the same object, 
and may have used different membership functions to represent the same fuzzy set. Say for example in following 
Figure  uses a fuzzy set "mid" with support (35-55) to identify the middle aged persons, whereas 

 uses a fuzzy set "mid" with support (30-50) in the same context. This leads to the definition of partial 
fuzzy inclusion dependency 

[Emp Age]
][Staff Age

FIDα  as follows. 
 
2.2.1 Definition Partial Fuzzy Inclusion Dependency ( FIDα )  
 
Let  and  be (projections on) two fuzzy relations. Let X be a sequence of k distinct 
fuzzy attribute names from R, and Y be a sequence of k distinct fuzzy attribute names from S, with 1 m . 
Then, a partial fuzzy inclusion dependency 

1 2[ , , , ]nR a a a 1 2[ , , , ]mS b b b
in( ,k n≤ ≤ )m

FIDα  is an assertion of the form [ ] [ ]R X S Y⊆ , such that the fuzzy subset-

hood ( [ ], [ ]) | [ ] [ ] | / | [ ] |
f

R X S Y R X S Y R X α= ≥∩S , where α  is specified in the interval [0,1] and most of the Fuzzy 
Values under all the attribute names in  are Fuzzy Value Equivalent (FVEQ) to some Fuzzy Values under 
respective attribute names in , however, the vice versa may not hold. 

[ ]R X
[ ]S Y

 

 
Figure 1: Fuzzy relations with respective membership functions & mappings 
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Definition 2.3 (Valid FID): A FIDα  
1 2 1 2

( [ , , , ] [ , , , ])
ki i i i i ik

R a a a S b b bρ = ⊆  is valid between two relations 

 and  if the sets of fuzzy tuple in 1 2( , ( , , , ), )n RR r a a a E= 1 2( , ( , , , ), )n SS r a a a E= RE  and  satisfy the 

assertion given by 
SE

ρ . Otherwise, FIDα  is called invalid for R and S. In other words, FIDα  is said to be valid if 

( [ ], [ ]) | [ ] [ ] | / | [ ] |
f

R X S Y R X S Y R X α= ≥∩S  holds. 
 
Example 2.2: Consider the fuzzy relations each belonging to different fuzzy relational databases and their respective 
membership functions & mapping as given in the Figure 1. It is observed that: 
Emp[Age]={.9/mid, .9/mid, .4/mid, .9/mid, .9/mid} 
Emp[Pay]={7/mod, .75/low, .4/high, .7/mod, .7/mod} 
Staff[Age]={.6/mid, .9/old, .1/old} 
Faculty[Salary]={.5/mod, .8/low, .4/high, .3/high} 
 

Valid fuzzy inclusion dependencies ( FIDα ) 

[ ] [ ]                                for 1.0

[ ] [ ]                            for =0.75

[ , ] [ , ]          for 1.0

[ , ] [

f

f

f

f

Staff Age Emp Age

Faculty Salary Emp P

Staff Name Age Emp Name Age

Faculty Name Salary Emp Nam

α

α

α

⊆ =

⊆

⊆ =

⊆ , ]  for =0.75e Pay α  
Since the fuzzy subset-hood , where all 

elements of the fuzzy set Staff[Age] are Fuzzy Value Equivalent to some element of fuzzy set Emp[Age], therefore,  
( [ ], [ ]) | [ ] [ ] | / | [ ]

f

Staff Age Emp Age Staff Age Emp Age Staff Age= ∩S |

[ ] [ ]
f

Staff Age Emp Age∩ = , [ ]Staff Age
thus,  

|{.6 / ,.9 / ,.1/ } | 3( [ ], [ ])
|{.6 / ,.9 / ,.1/ } | 3

mid old oldStaff Age Emp Age
mid old old

1= = =S . 

Hence the fuzzy inclusion dependency  

FID = [ ] [ ]
f

Staff Age Emp Age⊆  
is valid. 
Similarly, the fuzzy subset-hood  

| [ ] [( [ ], [ ])
| [ ] |

f

] |Faculty Salary Emp PayFaculty Salary Emp Pay
Faculty Salary

=
∩S

. 
As indicated in the Figure, all elements (except one “.4/high") of the fuzzy set Faculty[Salary] are Fuzzy Value 
Equivalent to some element of fuzzy set Emp[Pay], therefore,  

[ ] [ ] {.5 / mod,.8 / ,.3 / }
f

Faculty Salary Emp Pay low high=∩  
Thus,  

|{.5 / mod,.8 / ,.3 / } | 3( [ ], [ ]) .75
|{.5 / mod,.8 / ,.4 / ,.3 / } | 4

low highFaculty Salary Emp Pay
low high high

= = =S

]

,  

hence, partial fuzzy inclusion dependency  
.75 [ ] [FID Faculty Salary Emp Payα= = ⊆  

is valid. 
A fuzzy inclusion dependency is merely a statement about two fuzzy relations that may be true or false. A valid 

FID describes the fact that a fuzzy projection of one fuzzy relation R forms a fuzzy subset of another fuzzy projection 
(of the same number of fuzzy attributes) of a fuzzy relation S. Note that FIDs are defined over sequences of attributes, 
not sets, since the order of attributes is important (FIDs are not invariant under permutation of the attributes of only 
one side) and concept of Fuzzy Value Equivalent is used to measure the equality of two fuzzy values or two fuzzy 
tuples. 
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Definition 2.4 (Arity of a FID): Let X, Y be sequences of k fuzzy attributes, respectively and  be a 
FID. Then k is the arity of 

[ ] [ ]
f

R X S Yρ = ⊆
ρ , denoted by | ρ |, and ρ  is called a k-ary FID. A similar definition holds for partial FID. 

 
Example 2.3: In Figure 1, the partial fuzzy inclusion dependency  

[ , ] [ ,
f

Faculty Name Salary Emp Name Pay⊆ ]

]

 
has the arity 2, hence it is said to be a binary , whereas, the fuzzy inclusion dependency  .75FIDα =

[ ] [
f

Staff Age Emp Age⊆  
has got the arity 1, hence it is said to be an unary FID. 
 
2.3   Inference Rules for FIDs 
 
Casanova et al. (1982) have provided some important insights into the IND problem. They have described a complete 
set of inference rules for INDs, in the sense that repeated  application of their rules will generate all valid INDs that 
can be derived from a given set of valid INDs (i.e., those rules form an axiomatization for INDs). Those rules will be 
redefined from the view point of FIDs as given below. 
 

Axiom 1: (Refexivity) , if X is a sequence of distinct fuzzy attributes from R. Similarly, [ ] [ ]
f

R X R X⊆
( [ ], [ ])R X R X α≥S  holds. 

 
Axiom 2: (Projection and Permutation)  hold for both FID and Partial FID (i.e. FIDα ).  

If 
1 1

 is valid, then  is valid for any sequence  of 
distinct integers from (1 . 

[ , , ] [ , , ]
m m

f

i i i iR A A S B B⊆
1 1

[ , , ] [ , , ]
k k

f

i i iR A A S B B⊆ i

f

⊆

1( , , )ki i
, )m

Note that permutation refers to "synchronous" reordering of attributes on both sides, i.e., 

[ , ] [ , ] [ , ] [ , ] but, ( [ , ] [ , ] [ , ] [ , ])
f f f f

R X Y S X Y R Y X S Y X R X Y S X Y R Y X S X Y⊆ ⇒ ⊆ ¬ ⊆ ⇒ ⊆ . 
 

Axiom 3: (Transitivity) holds for . If  are both valid, then 1FIDα = [ ] [ ] and S[ ] [ ]
f

R X S Y Y T Z⊆ [ ] [ ]
f

R X T Z⊆  is 
valid. 
Proof: It is sufficient to show that if a Fuzzy Values x is Fuzzy Value Equivalent to some Fuzzy Values y and the 
Fuzzy Value y is Fuzzy Value Equivalent to a Fuzzy Value z then x is Fuzzy Value Equivalent to z. 

1

1

1

( [ ] [ ] , ( ) for some  where ( ) and 

S[ ] [ ] , ( ) for some  where ( ))

( , ( ) for some  where ( ))
 is Fuzzy Value Equivalent to .

f

Y X
f

T Y

T X

R X S Y x X y q q Q Q x

Y T Z y Y z q q Q Q y

x X z q q Q Q x
X Z

µ µ

µ µ

µ µ

−

−

−

⊆ ⇔∀ ∈ ∈ ∈ =

⊆ ⇔∀ ∈ ∈ ∈ =

⇔ ∀ ∈ ∈ ∈ =
⇔  
 (Transitivity) may not hold for . 1FIDα<

( ( [ ], [ ])  and ( [ ], [ ]) ) ( [ ], [ ])R X S Y S Y T Z R X T Zα α α≥ ≥ ⇒S S S ≥  

Definition 2.5 (Derived FID): A valid FID ρ  can be derived from a set 
f

Σ  of valid FIDs, denoted by 
f

Σ ρ , if ρ  

can be obtained by repeatedly applying the above axioms on some set of FIDs taken from
f

Σ . 

Similarly, a valid partial inclusion dependency FIDα ρ  can be derived from a fuzzy set 
f

Σ  of valid FIDα  

denoted by 
f

Σ ρ , if ρ  can be obtained by repeatedly applying the above axioms on some set of FIDs taken from 
f

Σ . 

The membership function of the fuzzy set 
f

kΣ  may be given as follows: 
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1 2 1 2

1 2

| [ , , , ] [ , , , ] |
( ) .

| [ , , , ] |
k k

f

k
k

f

i i i j j j

i i i

R a a a S b b b
R a a a

µ ρ α
Σ

= ≥
∩

 

where 
1 2 1 2

 and [ , , , ] [ , , , ]
k k

f

i i i j j jR a a a S b b bρ = ⊆ 1,2, ,min( , )k n m= , n and m are the cardinality of sets of fuzzy 
attribute names belonging to fuzzy relations R and S respectively. For example a fuzzy set of valid  of arity k 
may be given as, 

.6FIDα=

1 2 3{.66 / ,.77 / , , }.
f

k ρ ρ ρΣ =  
Fuzzy inclusion dependency (FID) is a special case of partial fuzzy inclusion dependency ( 1FIDα= ). Therefore 

partial fuzzy inclusion dependency is a generalized approach that shall be used in further discussions. 
Since FIDs are invariant under synchronous permutation of both sides (by Axiom 2), now equality of FIDs 

(which applies to both valid and invalid FIDs) will be defined. 
 

Definition 2.6 (Equality of FIDs): Two FIDs 
1 1

 and [ , , ] [ , , ]
m m

f

i i i iR a a S b b⊆
1 1

[ , , ] [ , , ]
m m

f

i i i iR c c S d d⊆  are equal 
iff there is a sequence  of distinct integers 1, , such that  1( , , )mi i , m

1 1 1 1
( )i i i ia c b d= ∧ = ∧ ∧  ( )

m m m mi i i ia c b d= ∧ = . 
A similar definition holds for the equality of partial fuzzy inclusion dependencies too. Note that equality 

according to this definition is an equivalence relation on FIDs. It is also clear that equivalence preserves validity, i.e., 
in a set of equal FIDs, the elements are either all valid or all invalid. 

One very important observation on FID is that a k-ary FID with k > 1 naturally implies a set of unary FID. Let  

 be a k-ary FID. Let there be unary [ ] [ ]
f

R X S Yρ = ⊆ [ ] [ ]
f

R x S y⊆  with x X∈  and y Y∈ . Then, there exist a close 

relationship between ρ  and 1

f

Σ , as formalized in following Corollary. 
 

Corollary 2.1: Let 
f

kΣ  be the set of all possible k-ary FIDα  between two given fuzzy relations R and S. Let 
1

f
kΣ  be 

the fuzzy set whose elements are all k-sets of unary FIDα  between R and S. Then, there is an isomorphism between 
f

kΣ  and 1

f
kΣ . It is said that 1

f
kΣ  is implied by 

f

kΣ . 
This isomorphic mapping is possible since FIDα  are invariant under permutations of their attribute pairs (such 

that there are exactly as many k-ary FIDα  as there are k-subsets of unary FIDα ), and each pair of single attributes in a 
k-ary FIDα  ρ  corresponds to one unary FIDα  implied by ρ . Note that the isomorphism does not hold for valid 
FIDα since clearly the existence of k unary valid FIDα  does not imply the existence of any higher-arity valid FIDα  

(i.e., only the direction 1

ff
k

kΣ ⇒ Σ  holds for valid FIDα , not the converse). 
Validity of FIDα  is preserved under projections and permutation, by Axiom 2. In order to describe all fuzzy 

inclusion dependency information between two fuzzy relations it is, therefore, not necessary to list all FIDα  between 
two fuzzy relations. Rather, a small set of FIDα  from which all others can be generated will suffice, as formalized 
with the following definition.  

 
Definition 2.7 (Generating set of FIDα ): Consider a fuzzy set of valid partial fuzzy inclusion dependencies 

{ 1 2 2 2, , ,
f

n nv v v },ρ ρΣ = ρ . A generating set of 
f

Σ , denoted by ( )
f

ΣG , and is a set of valid FIDα  with the 
following properties:  

(1) : ( )
f f

ρ∀ ∈Σ ΣG ρ , 

 (2) ( ): (( ( ) )
f f f

ρ ρ∀ ∈ Σ ¬ Σ −G G ρ ), 

 where the symbol ’ ’ stands for “fuzzy set-difference”. 
f

−
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In words, the generating set ( )
f

ΣG  contains exactly those valid FIDα from which all valid FIDα  in 
f

Σ  can be 

derived. The set is not empty for any 
f

Σ , since it can be constructed by first including all 
f

ρ ∈Σ  into ( )
f

ΣG  and then 

removing all ρ  for which property 2 does not hold. The set is minimal since removing any FIDα  ρ  from a ( )
f

ΣG , for 
which property 2 holds would by definition violate property 1. Therefore, generating sets contain all information 
about fuzzy inclusion dependencies between fuzzy relations in a minimal number of FIDα . 

 
Definition 2.8:  A k-uniform hypergraph (or a k-hypergraph) is a pair ( , )G V E= of the set V of nodes and the set E of 
edges. An element e  is a set with cardinality k of pair-wise distinct elements from V, denoted by . 
An element e is called a -hyperedge. is called the rank of graph G . 

E∈ 1 2{ , , , }kv v v
E∈ k k

 
Definition 2.9: Let  be a graph. A clique of G is a set C such that ( , )G V E= V⊆ 1 2 1 2, :{ , }v v C v v E∀ ∈ ∈ . A single 
node with no adjacent edges is a clique of cardinality 1.  
 
Definition 2.10: Let  be a k-hypergraph. A hyperclique of G is a set C  such that for each k-subset S of 
distinct nodes from C, the edge implied by S exists in E. The cardinality of a hyperclique C is the number of nodes in 
C. A single node with no adjacent edges is a hyperclique of cardinality 1. 

( , )G V E= V⊆

 
Definition 2.11: The degree of a node v  in a k-hypergraph V∈ ( , )G V E=  is the number of edges that have v as 
element. i.e. de . g( ) |{ | } |v e E v e= ∈ ∈
 
Example 2.4: Figure 2 gives an illustrative example of a 3-hypergraph with five nodes and six number of 3-
hyperedges, viz {1,2,3}, {2,3,4}, {3,4,5}, {1,2,4}, {1,2,5}, {1,3,4}. Here, a node is represented as a numbered circle 
and a 3-hyperedge is represented as three different lines connected to a small black circle • . 

1 2

34

5

1 node

3−hyperedge

 
 

Figure 2:  A 3-hypergraph with 5 nodes & 6 edges 
 
3   Mapping to a Graph Problem 
 
Let R and S be two fuzzy relations with  and Sk Rk  attributes such that R Sk k< . Then an algorithm to map the set of 

FID sα  of the form  that may exist between the fuzzy relations  and [ ] [ ]
f

iR a S b⊆ i Sk Rk  is as follows. 
 
Algorithm 3.1: FIDα  -TO-GRAPH 

Create a fuzzy set V corresponding to the fuzzy set 1

f

∑  of all valid unary FID sα  between R and S such that 

 correspond to . v V∈ 1

f

ρ ∈∑
Create a weighted graph (2-Hypergraph) as follows: 
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Create a fuzzy set 2E  corresponding to the fuzzy set 2

f

∑  of all valid binary FID sα  between R and S such that 

 correspond to 2e E∈ 2

f

ijρ ∈∑ . Each ijρ  can be seen as 1,
f

i jρ ρ ∈∑  that corresponds to where 

 by corollary 2.  

,i jv v V∈ ,
}

2

, {1,2, ,| |i j V∈
Create a weighted graph  such that 2 ( , )G V E= v V∀ ∈  there exists a valid unary FIDα  ρ  between R and S 

whose membership grade 
1

( )fµ ρ
∑

 correspond to the weight of the node  and ( )w v 2e E∀ ∈  there exists a valid 

binary FIDα  ijρ  between R and S whose membership grade 
2

( )f ijµ ρ
∑

 correspond to the weight of the edge 

, where  . ( ) min( ( ), ( ))i jw e w v w v= , {1, 2, ,| |i j V∈ }
Create Hypergraphs as follows: 

Create a fuzzy set  corresponding to the fuzzy set kE
f

k∑  of all valid k-ary FID sα  between R and S such that 

the  corresponds to  for ke E∈
1 k

f

ki iρ ∈∑ {1,2, ,| |}k V∈ . 

Create a weighted k-Hypergraph  for each ( , )kG V E= k V{1,2, ,| |}k∈  such that  there exists a k-

ary 
ke E∀ ∈

FIDα  
1 ki iρ  between R and S whose membership grade 

1
(f k

k
i i )µ ρ

∑
 correspond to the weight of the k-

Hyperedge , where   
1

( ) min( ( ), , ( ))
kiw e w v w v= i 1, , {1, 2, ,| |}ki i V∈

Now the FIDα -finding problem may be viewed as a problem of constructing the above graphs. 
 

Lemma 3.1: A k-ary valid FIDα  implies  m-ary valid ( )k
m FID sα , for any 1 m k≤ ≤ . 

The following theorem is observed by Lemma 3.1: 
 

Theorem 3.1: Given the two fuzzy relations R and S with  and attributes, respectively, consider a collection of 

k-Hypergraphs representing the FID
Rk Sk

2{ , , }
skG G sα between R and S (as defined in Algorithm 3.1). Furthermore, 

let kρ be a k-ary valid FIDα  between R and S. For a number m, with m k< , construct a fuzzy set of all the m-

ary 
mE

FID sα implied by kρ , which are all m-Hyperedges in . Then the set of all nodes that are elements of any 

edge in  forms an m-Hyperclique in , or alternatively,  is the set of edges of an m-Hyperclique in . 
mG

mE mG mE mG
Proof: By Definition 2.10, the set of edges of a hyperclique C in a m-hypergraph  correspond to 

exactly all m -subsets of nodes from C . Also, the m-ary 

( , )mG V E= m

FID sα  implied by a FIDα  kρ  (with m ) are exactly 

all m-subsets of the set of nodes implied by 

k<

kρ . If C is the set of nodes implied by kρ , clearly there is a trivial 

isomorphic mapping between the edges of C and the m-ary FID sα  implied by kρ . q.e.d. 

The problem of searching for FID sα  is now reduced to the problem of finding hypercliques in a collection of k-
hypergraphs.  
 
4   An Algorithm to Search for FID sα  
 
We now present the algorithm  which uses those clique-finding algorithms (Bron/Kerbosch and 

HYPERCLIQUE) to find fuzzy inclusion dependencies.  takes as input two relations R and S with  

and attributes, respectively and returns a generating set of fuzzy inclusion dependencies between attributes from R 
and S. The schema of both relations must be known, and it must be possible to perform a test for validity for any 
fuzzy inclusion dependency between two given sets of attributes from R and S. R and S do not necessarily have to 
have the same number of attributes.  

2GSEARCH

2GSEARCH Rk

Sk
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We first establish the relationship between hypercliques and the generating set of FID sα  that we are trying to 
find. Intuitively, Theorem 4.1 shows that a clique-finding algorithm is a sensible approach to finding maximal 
FID sα between relations. More specifically, we show that the FID sα  generated through a clique-finding algorithm 

are a (relatively small) superset of the generating set ( )
f

G ∑  and are thus a starting point for a complete and fast 
solution of the FID sα finding problem. 

Theorem 4.1: Consider the FID sα searching problem between relations  and  with solution [ ]R A [ ]S B ( )
f

G ∑  (i.e., 
generating set of valid FID sα ). Let V be the set of unary valid FID sα between R and S. Let  with 

, be the set of k-ary valid 
kE

1 min(| |,|k A< ≤ |)B FID sα  between R and S. Recall that the elements of  can then be 
seen as edges in a k-Hypergraph  by Theorem 3.1. Now consider the set C of all maximal cliques in the 
k-hypergraph , obtained by the above clique-finding algorithms (Bron/Kerbosch and HYPERCLIQUE).  

kE
( , )kG V E= k

kG
The following properties hold for any c : C∈

(1)  If  cρ  corresponding to c is valid, then it is part of the generating set ( )
f

G ∑  of FID sα  between R and S. 

(2)  If cρ  is invalid, then some of its subsets are in ( )
f

G ∑ . 

Furthermore, all ( )
f

Gρ ∈ ∑  are subsets of or equal to some cρ  as above. 
Proof: By Theorem 3.1, a valid FIDα  implies a k-hyperclique in a k-hypergraph  constructed for this kG FIDα -
finding problem. Also, a correct clique finding algorithm returns a set of maximal cliques. Property (1) must hold 
since if there was an FIDα  larger than cρ , a clique corresponding to that larger FIDα  would have been found. 

Property (2) is true since we assumed valid unary and k-ary FID sα  to make up graph . If  kG cρ  is not valid but its 

unary and binary sub- FID sα  are, then some sub- FID sα  of cρ  must be part of ( )
f

G ∑ . Property (3) holds since any 
FIDα implies some (not necessarily maximal) complete subgraph of , and by the definition of a clique, all such 
complete subgraphs are subsumed by the set of cliques found in . 

kG

kG
Algorithm 4.1:  2GSEARCH
INPUT: Relations R and S with attributes Rk  and  (Sk R Sk k≤ ), [0,1]α ∈ . 
OUTPUT: Set result, containing a generating set of FID sα  for R and S. 
1: Set ( , , )V generateValidUnaryFID s R Sα α← , ( , , , )E generateValidBinaryFID s R S Vα α← ; 
2: Set Graph , 2 ( , )G V E← 2( , )F generateCliquesAndVerifyAsFID s Gα α← , { | | | 1}result c c F c← ∈ ∧ = ; 
3: for , KHyergraph 3 Sm ← k ( , )mG V φ= ; 
4: Set tmpC φ= ; 
5: for all c , if F∈ (  is valid |c| ( 1))c m result result c∧ ≥ − ← ∪ ) , if (  is invalid |c| ) tmp tmpc m C C c∧ ≥ ← ∪

mp

; 
6: ( , , )m tE generateKAryFID sFromCliques m Cα α= ; 

7: If ( mE )φ=  return ; result
8: Set ; ( 1, ,mresult result generateSubFID s m E resultα← ∪ − )

)9: Set KHypergraph , ( , ( ))m mG V ValidFID s Eα= ( ,mF generateCliquesAndVerifyAsFID s Gα α← ; 
10: Return . result
  
Algorithm 4.2 ( , , , , )VERIFY R S A B α , where are attribute lists from fuzzy relations ,A B ,R S . 

Query : select c  from1Q
1 2

( . , .i iount distinct R A R A ,) R S , where  FV   and 
1

. iR A EQ
1

. iS B
2 2

. .i iR A FVEQ S B . 

Query : select  from 2Q
1 2

( , )i icount distinct A A R ; 

Step 1: Execute Query ; 1c ← 1Q
Step 2: If return 1( 0c = ) false ;  // FIDα does not exist 



Journal of Uncertain Systems, Vol.2, No.3, pp.212-222, 2008                                                                                                         221 

Step 3: Execute Query ; 2c ← 2Q

Step 4: 1 2Mu c c= ;   // ( )f

k

Mu µ ρ
∑

= , where, 
f

k∑ is fuzzy set of k-ary FID sα  

Step 5: If ( )Mu α≥ return ( , )Mu true , // FIDα  is valid 

else return ( , )Mu false // FIDα  is invalid.  
 
Subroutines of  2GSEARCH
 

( , , )generateValidUnaryFID s R Sα α : This function generates all R Sk k⋅  unary FID sα  and verifies their 

validity against the database. It returns the set V of the FID sα  valid in the database, which are the nodes for all 
subsequent graphs and hypergraphs. 

( , , )generateValidUnaryFID s R Sα α : This function generates all those FID sα whose implied binary 

FID sα are elements of E . The function then checks all those FID sα  against the database and returns the set E of 

all those valid binary FID sα . 

( , )kgenerateCliquesAndVerifyAsFID s Gα α : This function accepts a k-hypergraph. It returns a set of all 

hypercliques in , together with a Boolean value for each element in the set in the following manner: kG
For , this function calls algorithm HYPERCLIQUE on k. If 2k > 2k = , the Bron/ Kerboschalgorithm is run. The 
function then tests each generated (hyper) cliques implied FIDα  against the database. It returns a set of all those 

FID sα  with more than k nodes (i.e., at most one FIDα for each clique discovered), regardless of their validity, but 

marks each FIDα  as valid or invalid according to its state in the database and computes its membership grade to 

respective class of set of FIDα . 

( , , )tmpgenerate K Ary FID s From Cliques k Cα α : This function accepts a number k and a set of 

FID sα . Input set E is assumed to be composed of invalid FID sα  and to correspond to cliques found by a clique 

finding algorithm on a ( -Hypergraph. This function now generates all k-ary 1k − ) FID sα  implied by each FIDα  in 

, tests each one of them, and returns the union of those FIDE sα  for all elements of E. Similarly to function 

( , )kgenerate Cliques and Verify as FID s Gα α , both valid and invalid FID sα  are returned, and each 

FIDα  is marked as valid or invalid according to its state in the database. 

( 1, ,k )generate SubFID s k E resultα − : This function accepts a number k, a set of (valid or invalid) 

FID sα , and set result, which is the set of FID sα  already included in the solution earlier (lines 5 and 10). The 

function now generates all FID sα that satisfy the following three conditions: 

1. ρ  is a k-subset of an invalid FIDα  from E . 

2. ρ  is not a subset of any valid FIDα  from E . 

3. ρ  is not a subset of any FIDα  already in result. 
The function returns the set of all ρ  that meet the above conditions. 

( )kValid FID s Eα
: Given a set of FID sα

 marked as valid or invalid, this function simply returns the valid 

FID sα
 from 

kE . 
 
5   Conclusions 
 
The discovery of inclusion dependencies is a hard problem, with an inherent NP-complexity (Kantola et al, 1992), 
and so is the case with discovery of fuzzy inclusion dependencies. By reducing the problem to a weighted graph 
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problem, we achieved a significant improvement in performance over the na¨ıve algorithm. Our algorithm uses an 
NP-complete graph algorithm (clique-finding), but a test implementation shows that most of the real world problems 
can be solved with our approach. Application of fuzzy inclusion dependencies lies for example in fuzzy schema 
integration, an important phase of fuzzy database integration process. As our algorithm discovers interrelationships 
between fuzzy relational databases, it helps in the identification of fuzzy relational databases that are useful for a 
variety of purposes, such as the identification of fuzzy relational database duplicates, system integration support, or 
the purpose of identifying backup fuzzy data. 
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