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Abstract 
 

Generating multivariate random vectors is a crucial part of the input analysis involved in discrete-event stochastic 
simulation modeling of multivariate systems. The NORmal-To-Anything (NORTA) algorithm, in which generating 
the correlation matrices of normal random vectors is the most important task, is one of the most efficient methods in 
this area. In this algorithm, we need to solve the so-called correlation-matching problem in which some complicated 
equations that are defined to obtain the correlation matrix of normal random variables need to be solved. Many 
researchers have tried to solve these equations by three general approaches of (1) solving nonlinear equations 
analytically,  (2) solving equations numerically, and (3) solving equations by simulation. This paper suggests the use 
of artificial neural networks, called Perceptron, to solve the corresponding problem. Using three simulation 
experiments, the applicability of the proposed methodology is described and the results obtained from the proposed 
method to the ones from solving the equations numerically are compared. The results of the simulation experiments 
show that the proposed method works well.  

 © 2008 World Academic Press, UK. All rights reserved. 
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1 Introduction and Literature Review 
 
In many practical settings, there is a basic need to capture the dependence between random variables that serve as 
primitive inputs to stochastic models. For example, due to special characteristics of a particular product, the 
processing times at a series of k machining stations may be dependent. Similarly, the service times for a single 
customer at the order desk, cashier and loading dock of a store may be dependent. In financial engineering, Das et al. 
claim that the risk profile of credit portfolios cannot be understood if we ignore the correlations [6]. Further 
applications have been reported in cost analysis [21], market size and selling price in capital return models [15], 
correlated attributes in decision analysis [5], decision and risk analysis [4], and generation of test problems [13]. In all 
of these situations, if we apply a simulation study to analyze the systems, we are in need of an efficient method to 
generate samples from a joint distribution of some correlated random variables. 

There are numerous methods available in the literature to represent and generate random vectors with dependent 
components and marginal distributions from a common family. In general, we can classify these methods in three 
categories: (1) Analytical approaches that employ conditional distributions, (2) Numerical procedures using the 
acceptance/rejection methods, and (3) Simulation approaches that apply the partially specified property in 
transformation procedures. 

In the first category Johnson [16] generates from marginal distribution and generate from the conditional 
distribution for k=2, …, n. This approach may be difficult to apply because conditional distributions usually are not 
easy to derive except in special cases. In addition, in this approach, we assume that the joint distribution of the 
random vectors is known, the case does not often happen in practice. In other analytical approaches Moonan [23] 
proposes the generation of normal random vectors based on linear transformation of a set of independent standard 
normal random variables, Ronning [26], Schmeiser and Lal [27] and Lewis [18] propose generation models for the 
nonnegative correlated multivariate gamma, bivariate gamma, and negatively correlated multivariate gamma 
distributions, respectively. Moreover, Johnson [16]  developed a multivariate lognormal generation method, Parrish 
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[25] proposes a multivariate Pearson generation method, and Johnson [16] and Stanfield [31] develop a Multivariate 
Johnson generation procedure. 

In the second category, Johnson [16] and Devroye [7] use joint density functions to generate random vectors by 
the acceptance/rejection approach. In these methods, we select one of the joint probability density functions that 
dominate the original joint probability density function. Then we generate a random vector based on the selected joint 
density function. Finally, this random vector is accepted or rejected. Gilks and Wild [11], Hormann [14], and Leydold 
[19] suggest a transformed density rejection method to construct the dominating density function.  

Most of the proposed methods of random vector generation in the above two categories often have constraints on 
the size of the random vector and many of them are applicable only for bivariate distributions. Moreover, they are 
only utilizable to generate random vectors whose variables have a common distribution. For example, the method 
proposed by Johnson [16] generates random vectors of dependent variables with a common probability distribution. 

In the third category, the analyst is required to give up specifying a full joint probability distribution for the 
random vector to be sampled in favor of an appropriate set of marginal probability distributions and a correlation 
matrix (the partial specification). The NORmal-To-Anything (NORTA) transformation detailed by Cairo and Nelson 
[2], which is based on work by Marida [22] and Li and Hammond [20], is an example of the research in this category. 
Moreover, Song and Hsiao [29] and Song et al. [30] apply a similar concept to generate time series random variables.  

For those applications, where the partially specified approaches are acceptable, the payoffs can be large. The 
NORTA transformation demonstrates that we can obtain samples from the partially specified distribution by 
transforming the elements of a sample from a multivariate standard normal distribution according to the appropriate 
desired marginal distribution, where the correlations of the elements of the deriving normally distributed random 
vector are set to generate the desired correlations in the transformed random vector. Setting the correlation matrix 
appropriately amounts to solving a number of one-dimensional root finding problems corresponding to each desired 
pair-wise correlation value, each of which can be solved by bisection. Solving some complex nonlinear system of 
equations is the most important problem in partially specified approaches. 

In NORTA algorithm, we first generate a k-dimensional standard normal random vector and then we transform it 
into a vector of uniform random vectors. At the end by the inverse transformation technique, we transform back the 
uniform random vector into a random vector with target marginals. The initialization step in the NORTA algorithm 
requires finding the correlation matrix of the normal random vector such that it guarantees the last random vectors 
generated have specific correlation matrix (see [16, 23, and 17]). To reach this goal a number of one-dimensional 
simultaneous equations must be solved, which usually is analytically hard to do. Moreover, there are two 
complications in NORTA algorithm. The first is that a desired pair-wise correlation may not be feasible; that is, there 
may not exist a pair-wise correlation for the driving multivariate normal random vector such that the corresponding 
transformed elements have the desired correlation value. The second, that is more serious, is that even if all desired 
correlation values are feasible, the full correlation matrix for the driving multivariate normal random vector is not 
positive definite. This becomes an issue where the dimensionality of the random vector increases. Ghosh and 
Henderson [9 and 10] present the behavior of the NORTA method in higher dimensional cases and propose a 
procedure to modify NORTA in these cases. In addition, they studied the ability of the NORTA procedure to match 
any feasible correlation matrix for a given set of marginals. Stanhope [32] develops a more general framework for 
partially specified random vector generation and proposes several alternatives to NORTA algorithm.  

In this paper, we focus on the NORTA algorithm and propose a model to generate the correlation matrices of 
normal random vectors that are required in NORTA. We apply a Perceptron Neural Network (PNN) to estimate the 
correlation matrices of normal random vectors, ignoring the analytically complicated equations in NORTA algorithm. 

In Section 2, we briefly explain the NORTA algorithm and the approaches to solve some complicated equations. 
The concept of neural networks, its training phase, and the back propagation algorithm all come in Section 3. Section 
4 contains the proposed methodology to generate the correlation matrices of multi-normal random vectors used in the 
NORTA algorithm. To better describe and understand the proposed method, in Section 5 we present three numerical 
examples. Then in Section 6, we compare the results obtained from the proposed method to the ones from the 
research by Cairo and Nelson [2]. The conclusion and recommendations for future research come in Section 7. 
 
2   The NORTA Algorithm 
 

The goal of the NORTA algorithm is to generate a k-dimensional random vector [ ]1 2, ,..., T
kx x x=X  with the 

following properties: ~ , 1,2,...,
ii Xx F i k= , where 

iXF  is an arbitrary cumulative distribution function (cdf) and  

Corr[ ] XX = Σ , where  is given. XΣ
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We generate the vector X by a transformation of a k-dimensional standard multivariate normal (MVN) vector 
 with correlation matrix . Specifically, the NORTA vector  is: 1 2( , ,..., )T

kz z z=Z ZΣ X

( )1 2

1 1 1
1 2[ ( )], [ ( )], , [ ( )]

k

T

x x x kF z F z F z− − −= Φ Φ ΦX "                                                                       (1) 

where Φ  is the univariate standard normal cdf and { }1( ) inf : ( )x xF u x F x u− ≡ ≥  denotes the inverse cdf. We note that 
since the exact value of  1( ( ))xF z− Φ  for each distribution (especially for discrete distributions) may not be known, the 
infimum value of  x  that satisfies  is selected for x.  ( ) ( )xF x z≥ Φ

The transformation  ensures that 1[ (.)]
ixF − Φ ix  has the desired marginal distribution . Therefore, the general 

problem is to select the correlation matrix  that gives the desired correlation matrix . In fact, the NORTA 
transformation can be viewed as a two-step process. In the first step, a multivariate normal vector Z  is transformed 
into a multivariate uniform vector U . The second step involves transforming the multivariate uniform vector U  into 
the desired vector X . Then, the joint distribution of is known as copula and any joint distribution has a 
representation as a transformation of a copula [28]. 

ixF
ZΣ XΣ

U

 
2.1   Relationship Between  and  ZΣ XΣ
 
Each element of  such as ZΣ ( , ), ,z i j i jρ ≠  shows the correlation between  and . Similarly, iz jz ( , ), ,x i j i jρ ≠  

denotes the correlation between ix  and jx  in . That is, XΣ

{ }1 1( , ) [ , ] [ ( )], [ ( )]  ,    .
i jx i j x i x ji j Corr x x Corr F z F z i jρ − −= = Φ Φ ≠                                              (2) 

Since 
( ) ( ) ( )

( , ) ,
( ) ( )

i j i j
i j

i j

E x x E x E x
Corr x x

Var x Var x

−
=                                                                                (3) 

( )iE x , ,  and ( )jE x ( )iVar x ( )jVar x  are fixed by 
ixF  and 

jxF , and ( ,  has a standard bivariate normal 

distribution with correlation 

)i jz z
( , ) ( , )i j zCorr z z i jρ= ,  we have 

{ }1 1 1 1
( , )( ) [ ( )] [ ( )] [ ( )] [ ( )] ( , )

i j i j zi j x i x j x i x j i j i j iE x x E F z F z F z F z z z dz dρϕ
∞ ∞

− − − −

−∞ −∞

= Φ Φ = Φ Φ∫ ∫ jz
                           (4) 

where ( , ) ( , )
z i j i jz zρϕ  is the standard bivariate normal probability density function (pdf) with correlation ( , )z i jρ . 

From equation (4) we see that the correlation between ix and jx  is a function of the correlation between only  

and 
iz

jz . We denote this function by [ ]( , )ij zc i jρ . In other words, [ ]( , ) ( , )x ij zi j c i jρ ρ= .  
In order to generate a k-dimensional random vector by NORTA algorithm we need to solve equation (4) for each 

pair of the variables. Hence, we need to solve ( 1) / 2k k −  complicated equations that for many marginal distributions 
are usually unsolvable by analytical methods. Cario and Nelson [2] presented some theorems and propositions that 
describe the property of  and are helpful in solving equation (4).  ZΣ

In short, to generate there are three basic approaches as follow: ZΣ
1) The analytical approach that works for some special cases such as uniform random vectors is difficult to apply 

because the conditional distributions are not easy to obtain in most cases. Chen [3] and Hull [15] applied conditional 
distribution (assumed known) to solve equation (4) for multivariate normal distributions.  

2) In the numerical approach, one employs numerical root finding methods to solve equations. In this 
approach, the double integral function values of the form (4) are evaluated by numerical integration methods. Li and 
Hammond [20] and Cario and Nelson [2] used Newton’s method and Yen [33] applied the efficient Gaussian-
Quadrature integration and Newton’s methods. In these methods, the computational time increase quadratically with k. 
Furthermore, the equispaced integration methods may be inefficient, and the Gaussian quadrature methods may be 
inaccurate (Chen [3]). 

( 1) /k k − 2

3) In the simulation approach, for any set of the root candidates, first the NORTA algorithm is applied to 
generate m random vectors. Then, the correlations of the generated observations are estimated and checked to reach 
the required correlation matrix. Chen [3] employed this approach to solve the ( 1) / 2k k −  equations in (4) by treating 
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it as a stochastic root-finding problem, solving equations using only the estimates of the function values. Yen [33] 
mentioned that the disadvantage of this approach is that the computation time is usually longer than the numerical 
approach.  

To avoid the problems involved in solving equations (4), in the following section, we use the concept of function 
fitting to generate using artificial neural networks. ZΣ
 
3   Multilayer Perceptrons Neural Networks (PNN) 
 
This is perhaps the most popular network architecture in use today, which is discussed at length in most neural 
network textbooks (e.g., Bishop, [1]). In this type of network, we arrange the units in a layered feed forward topology, 
where the units each perform a biased weighted sum of their inputs and pass this activation level through a transfer 
function to produce their output. The network thus has a simple interpretation as a form of input-output model, with 
the weights and thresholds (biases) as the free parameters of the model. Figure 1 shows the topology of PNN with one 
hidden layer. 

Such networks can model functions of almost arbitrary complexity, with the number of layers, and the number of 
units in each layer, determining the function’s complexity. Important issues in Multilayer Perceptrons (MLP) design 
include specification of the number of hidden layers and the number of units in these layers (see [1, 12]). The number 
of input and output units is defined by the problem (there may be some uncertainty about precisely which inputs to 
use). The number of hidden units to use is far from clear. A good starting point is to use one hidden layer, and the 
number of units in hidden layer is traded.  

 
Figure 1:  Topology of PNN with a hidden layer 

 
3.1   Training Multilayer Perceptrons  
 
Once we select the number of layers and the number of units in each layer, the network's weights and thresholds must 
be set to minimize the prediction error made by the network. 

This is the role of the training algorithms. In order to minimize the error, we use the historical cases that the user 
has gathered to adjust the weights and thresholds automatically. This process is equivalent to fitting the model 
represented by the network to the training data available. The error of a particular configuration of the network can be 
determined by running all the training cases through the network, comparing the actual output generated with the 
desired (target) outputs. Then, by an error function, we combine the differences together to get the network error. The 
most common error functions used in the literature are the sum of squared error (SSE), in which we square and sum 
together the individual errors of output units in each case.  

 
3.2   The Back Propagation Algorithm  
 
The best-known example of a neural network-training algorithm is the back propagation algorithm (see [24, 12 and 
8]). Modern second-order algorithms such as conjugate gradient descent and Levenberg-Marquardt (see [1]) are 
substantially faster, e.g., a faster order of magnitude, for many problems, but back propagation still has advantages in 
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some circumstances, and is the easiest algorithm to understand. We will now introduce and use this algorithm. There 
are also heuristic modifications of back propagation, which work well for some problem domains.  

In back propagation, the gradient vector of the error surface is calculated. This vector points along the line of 
steepest descent from the current point, so we know that if we move along it a "short" distance, we will decrease the 
error. A sequence of such moves, slowing as we near the bottom, will eventually find a minimum of some sort. The 
difficult part is to decide how large the steps should be.  

Large steps may converge more quickly, but may also overstep the solution or go off in the wrong direction (if 
the error surface is very eccentric). A classic example of this in neural network training is where the algorithm 
progresses very slowly along a steep, narrow, valley, bouncing from one side across to the other. In contrast, although 
very small steps may go in the correct direction, they also require a large number of iterations. In practice, the step 
size is proportional to the slope (so that the algorithms settle down in a minimum) and to a special constant: the 
learning rate. The correct setting for the learning rate is application-dependent, and is typically chosen by experiment; 
it may also be time varying, getting smaller as the algorithm progresses.  

The algorithm therefore progresses iteratively, through a number of epochs. On each epoch, we submit the 
training cases in turn to the network and target actual outputs; then, compare and calculate the error. This error, 
together with the error surface gradient, is used to adjust the weights, and then the process repeats. The initial network 
configuration is random and training stops when a given number of epochs elapse, or when the error reaches an 
acceptable level, or when the error stops improving. 

 
4   Using ANN to Generate  ZΣ
 
Generating ( , )z i jρ  for each pair of random variables in matrix is very troublesome. Our suggestion is to employ 
an ANN that must be first trained with marginal distributions of the random variables and then be used to generate 
the

ZΣ

( , )z i jρ  values between each pairs of the variables. In fact, we need to employ one network for each pair of the 
variables that have different marginal distributions. In other words, on the one hand, if all of the variables posses a 
common distribution, to generate one trained ANN is adequate. On the other hand, in a three dimensional random 
vector for example, if every pair of the random variables have different marginal probability distribution functions, 
we need to employ three networks. 

ZΣ

For one pair of the random variables assume  and  have c.d.f. and  respectively, and the 
correlation between them is

ix jx )( ii xF )( jj xF
( , )x i jρ . 

To design a proper ANN, we use the Perceptron neural network. This network is one of the most powerful ANN 
in function fitting. To apply PNN we take the following steps: (1) Establish the network architecture; (2) Provide the 
training data; (3) Train the network; (4) Apply the train network. These steps are discussed in the following 
subsections. 
 
4.1   Establishing the Network Architecture 
 
We design a PNN with one neuron in its input layer to represent the variables of whose we need to generate random 
variates. The number of neurons in the output layer is one, which models the random variates of the variables 
generated by NORTA.  
 
4.2   Data Training 
 
To generate data for training purposes, we run NORTA in backward order. In other words, first we generate random 
variates from the joint probability distribution with known correlation between the random variables using NORTA. 
Since the training data sets should cover all domains of the input and the output variables, we select 100 uniformly 
distributed random values between -1 and 1 as the correlations between the variables ( ( , )z i jρ ). Then, using the 
method of moments we estimate the correlation between the generated varaites ( ˆxρ ). These correlation values are set 
as the input of the network. The network should be trained such that it returns output values close to the uniformly 
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generated correlations between -1 and 1.  
The following training-data-generation algorithm shows the steps involved to provide 100 pairs of input-output 

data sets required to train the PNN network. 
For s=1:100                )(szρ = Uniformly random variates between [-1,1]; 

Follow general steps of NORTA algorithm for ( , ) ( )z i j szρ ρ=  1000 times. 
Based on the generated data, compute xˆ ( )sρ (an estimate of correlation between .) ji xx ,
Input = [Input xˆ ( )sρ ]   Output=[Output z ( )sρ ] 

End for 
 
4.3   Training the Network 
 
After generating the training data sets, we design PNN by changing the number of neurons in the hidden layer; trying 
to minimize SSE by back propagation algorithm. We stop the algorithm while SSE reaches to a desired small value. 
Then, we apply the trained PNN to generate ( , )z i jρ from ( , )x i jρ . Figure 2 depicts the proposed algorithm to generate 
random vectors using both NORTA algorithm and the neural network approach.  

 

Generate data
for Training Train ANN

Compute zρ  for 
each pair using ANN 

Transform Z 
and Compute X

Generate  ZΣ Generate vector of 
Z MVN (0, ) ∼ ZΣ

N
O

R
T

A

A
N

N
 

A
pproac
h

Figure 2:  NORTA and PNN model to generate random vectors 
 

5   Performance Evaluation 
 
In order to better understand the method and demonstrate its efficiency we state three numerical examples.  
Example 1: As a simple case assume we want to generate a bivariate binomial distribution with parameters 

 and spectively, with the correlation of1 1( 20, 0.2)n p= = 2 2( 30, 0.15n p= =  ) re 25.0)2,1( =xρ , i.e.  
~ ([20;30],[0.2;0.15];0.25)X MBinomial . 

We coded this algorithm along with the NORTA algorithm and the PNN network all in MATLAB 7. In the first 
step of the proposed method, we generate input data sets for training purposes. For each of the 100 random numbers 
generated from a Uniform distribution between -1 and 1 as the correlation values ( zρ ), we generate 1000 bivariate 
binomial random vectors with parameters of ( 1 2 1 2[ 20; 30],[ 0.2; 0.15])n n p p= = = =  by NORTA algorithm. Then using 
the generated data and applying the moments method we estimate 100 coefficient of correlations of the 
variables, xˆ (1,2)ρ and set them to be the inputs of the PNN network. Next, we design a PNN network with 11 neurons 
in its hidden layer by trial and error. In the training phase of this network, we set the target values of the network to be 
the corresponding uniformly distributed random values. The designed network reaches to SSE=0.0003 after 2525 
epochs. Figure 3 shows the last 25 epochs of the training process in which the value of ˆ (1,2)xρ  becomes 0.2429. Now, 
we are ready to apply the trained network to generate )2,1(  for the NORTA algorithm. 

Zρ
In order to evaluate the performance of the trained network we generate 5000 random vectors using NORTA 

algorithm with 2429.0)2,1( =Zρ  and compute )2,1(xρ . The result of this process is 2466.0)2,1(ˆ =xρ  and 
[3.9742,4.5]=µ   which is very close to their intended values of (1,2) 0.25xρ =  and 1 1 2 2[ 4 . Figure 4 

shows the joint probability distribution of the data generated for this example. In addition, Figure 5 shows the 
marginal distributions of the generated data.  From Figure 5 we see that the shapes of the marginal distributions of the 
generated data are close to binomial distribution. 

.0, 4.n p n p= = 5]
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Figure 5:  The marginal distributions of the data generated in Example 1 

Example 2: Assume we want to generate a three dimensional random vector with the variables having marginal 
Poisson distribution with parameters 1,3,2 321 === λλλ  and the correlation matrix of 

1 0.5 .2
0.5 1 0.5 .
0.2 0.5 1

−⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟− −⎝ ⎠

XΣ
 

Since the parameters of the distributions have different values, we need to employ three PNN networks to 
estimate the coefficient of correlations between ( ), ( ), and ( ) in . In order to do this, we use the 
training-data-generating algorithm and design PNN networks with nine neurons in their hidden layer for each case. In 
the training phase, the first network reaches the value of SSE=0.0003 after 5525 epochs. These figures for the second 
and the third networks are 0.0006 in 6050 epochs and 0.0005 in 8025 epochs, respectively. The results of the training 
phase show a correlation matrix of 

21, zz 1 3,z z 2 3,z z ZΣ

l
1 0.5333 0.2281

0.5333 1 0.5943 .
0.2281 0.5943 1

−⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟− −⎝ ⎠

ZΣ  

In order to evaluate the performance of the trained networks, we generate 5000 random vectors by NORTA 
algorithm using the estimated  and generate  as l

ZΣ ˆ
XΣ

1 0.5099 0.2119
ˆ 0.5099 1 0.5266 .

0.2119 0.5266 1

−⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟− −⎝ ⎠

XΣ
 

Then, by the moments method we estimate the parameter vector as , which is very close 
to its intended one. Figure 6 shows the marginal distribution of the generated data. From Figure 6 we see that the 
shapes of the marginal distributions of the generated data are close to the shape of Poisson distributions. 

]9882.0,0142.3,0024.2[ˆ =λ

Example 3: As a third numerical example, consider a mixed random vector containing discrete random variable 
 and continuous random variable  in which their coefficient of correlation is -0.5. 

In this case, solving equation (4) in NORTA algorithm even with numerical methods becomes very cumbersome 
because we need to use both the integral and the summation operators. However, in the proposed method we can 
design a PNN network with nine neurons in its hidden layer by trial and error. Then, we generate the training data sets 
by the training-data-generating algorithm. To do this, for each of the 100 random numbers generated from a uniform 

1 (1,10)X U∼ 2 (10)X Exponential∼
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distribution between -1 and 1 as the correlation values, we generate 1000 random vectors with the given parameters 
by NORTA algorithm. Then applying the moments method we estimate 100 coefficient of correlations of the 
variables, ˆ (1,2)xρ , using the generated data and then set them to be the inputs of the PNN network. In the training 
phase of this network, we set the target values of the network to be the corresponding uniformly distributed random 
values. The designed network reaches to SSE=0.0005 after 6525 epochs. At this stage, when we input -0.5 as the 
coefficient of correlation value to the trained network, the output becomes -0.5573.  
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Figure 6:  The marginal distributions of the generated data in Example 2 
In order to evaluate the performance of the trained network we generate 5000 random vectors using NORTA 

algorithm with (1,2) 0.5573Zρ = − and compute )2,1(xρ . The result of this process is ˆ (1,2) 0.4968xρ = −  which shows a 
difference of 0.0032 from the target value. This difference is due to errors such as the error in estimating the 
coefficient of correlation and the error in generating normal random vectors in the first step of the NORTA algorithm. 
In order to reduce this difference, in the training phase of the network, we may use 5000 data sets instead of 100 to 
estimate the coefficient of correlation. Although this will certainly reduce the difference, it will result in higher 
amounts of running time. For 5000 generated random vectors of this example, the SSE of the PNN network becomes 
0.00009 after 7100 epochs in which the estimated coefficient of correlation is -0.5719 for the given input of -0.5. 
Then ˆ (1,2)xρ becomes 0.5024 for the 5000 testing data sets, which is very close to its intended value of -0.5. 

 
6   A Comparison Study 
 
Cario and Nelson’s [2] presented three numerical examples in which they obtained the correlation matrices needed for 
NORTA algorithm by numerically solving the equation (4) using Newton’s Method. We compare the estimated 
correlation matrices from the proposed method to the ones generated in their examples. In order to do this we 
generate the correlation matrices of normal random vectors using both methods (PNN and Newton). Then, we use 
these matrices to generate 5000 random vectors by the NORTA algorithm. Finally, we estimate the correlation 
matrices and compare the results. In their first numerical example, all of the random variables of a four-dimensional 
random vector come from a Gamma distribution with parameters of 14.4α =  and 0.03424β = , in which the correlation 
matrix is given in the third column of Table 1. In the second example, we want to generate three-dimensional random 
vectors in which the variables all share the same Binomial distribution with parameters as and 
correlation matrix given in the third column of Table 1. The third example is the same as Example 3 presented in 5.3.  

3 and 0.5n p= =

In Table 1, the second and the third columns show the marginal probability distributions of the variables in the 
random vectors and the correlation matrices of the random vectors, respectively. The fourth column shows the 
generated correlation matrices using the Newton’s method for the NORTA algorithm. Column 5 shows the total 
number of simultaneous equations which we need to solve in the Newton’s method. We note that in a given 
correlation matrix, for every coefficient of correlation, which is different from the other ones, we need to solve one 
equation in equation (4) numerically. The sixth column shows the generated correlation matrices of the proposed 
method for the NORTA algorithm. Column 7 shows the number of required PNN networks to estimate the correlation 
matrices. Note that we need to employ one network for each pair of variables that have different marginal 
distributions. For example, we need to train only one network in the third example because there is only one marginal 
probability distribution in this example. In column 8, we have the estimated correlation matrix of 5000 random 
vectors generated by the NORTA algorithm using the Newton’s method. In column 9, the estimated correlation 
matrix of 5000 generated random vectors by the NORTA algorithm using the proposed method is shown. Finally, 
column 10 shows the sum of squared differences (SSE) between the required figures in a given correlation matrices 
and the ones generated by the Newton’s and the proposed method. 
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Table 1: The results obtained from a comparison study 
 
 
 
 
N0. 

Marginal 
Probability 
Distributions 

 
 
 
xΣ  

 
 
 

zΣ   
( by Newton’s method)

 
 

# of 
equations 
that must 
be solved

zΣ  
 (by  proposed 

method) 

# of 
PNN

s 
that 
must 
be 

train
ed 

 
 
1 

~
(14.4,0.03424)

1, 2,3, 4

ix

i
Γ
=

 

1 0.7 0.5 0.9
1 0.7 0.6

1 0.3
1

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎝ ⎠

1 0.7040 0.5040 0.9200
1 0.7040 0.6160

1 0.3040
1

−⎛

 

⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎝ ⎠

 

 
 

5 

1 0.7008 0.5052 0.9289
1 0.7008 0.6133

1 0.3016
1

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎝ ⎠

 

 
 
1 

 
2 

~
(3,0.5)

1,2,3

ix
Binomial
i =

 1 0.2 0.8
1 0.2

1

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 1 0.2288 0.8960
1 0.2288

1

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

  
2 

1 0.2304 0.8981
1 0.2304

1

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

  
1 

 
3 

1

2

~
 (1,10)

~ .(10)

x
Discrerte U
x Exp

 1 0.5
1

−⎛ ⎞
⎜ ⎟
⎝ ⎠

 1 0.5760
1

−⎛ ⎞
⎜ ⎟
⎝ ⎠

  
1 

1 0.5719
1

−⎛ ⎞
⎜ ⎟
⎝ ⎠

  
1 

 
Table 1: Continued 

SSE  
 
No. 

ˆ
xΣ  of 5000 data sets 

generated using in 
Newton’s method 

zΣ

 

ˆ
xΣ of 5000 data 

generated using 
in the proposed 

method 
zΣ

 
Newton’s method 

Proposed 
method 

 
1 

1 0.7087 0.5175 0.8902
1 0.7072 0.6070

1 0.3151
1

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎝ ⎠

1 0.7005 0.5160 0.9008
1 0.7013 0.6015

1 0.3118
1

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎝ ⎠

  
0.000807 

 
0.000400 

 
2 

1 0.2116 0.7959
1 0.1964

1

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1 0.2061 0.8017
1 0.1930

1

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

   
0.000164 

 
0.000080 

3 1 0.5037
1

−⎛ ⎞
⎜ ⎟
⎝ ⎠

1 0.5024
1

−⎛ ⎞
⎜ ⎟
⎝ ⎠

  0.000013 0.000005 

 
The results of Table 1 show that not only the proposed method works better than the Newton’s method, but also 

there is much less efforts involved.  
 

7   Conclusion and Recommendations for Future Research 
 
In this paper, we proposed a new method to generate random vectors with arbitrary marginal distributions and 
correlation matrices. We focused on the NORTA algorithm and employed artificial neural network estimation of the 
correlation matrices of normal random vectors, ignoring the analytically complicated equations in NORTA algorithm. 
We can apply the new method to any type of marginal distribution, and it is very simple to code for any random 
vectors even if the vectors contain variables of both discrete and continuous types with different marginal 
distributions. The results of a comparison study and the applications of the proposed method on three numerical 
examples are encouraging.   

For the future research we recommend extending the use of neural network estimation methodology to the cases 
in which one desires to generate multivariate random vectors with a given auto-correlation matrix directly. 
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