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Abstract

In applications of Bayesian inference frequently data and a-priori information are not precise numbers
and not standard probability distributions on the parameter space, but more or less fuzzy. Therefore
suitable descriptions of data are so-called non-precise numbers which are more general than fuzzy numbers,
and so-called fuzzy probability distributions on the parameter space. Based on this it is necessary to
generalize Bayes’ theorem to this situation. This is possible and described in the paper.
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1 Introduction

The most up-to-date mathematical description of non-precise data is by special fuzzy subsets of the real line
IR, called non-precise numbers.

A non-precise number x? is a fuzzy subset of IR whose membership function ξ(·) obeys the following
conditions:

(1) ∀ δ ∈ (0; 1], the δ-cut Cδ

[
ξ(·)] := {x ∈ IR : ξ(x) ≥ δ} is a finite union of compact intervals [aδ,j ; bδ,j ],

i.e.

Cδ [ξ(·)] =
kδ⋃

j=1

[aδ,j ; bδ,j ] .

(2) C1[ξ(·)] 6= ∅.

A function ξ(·) fulfilling conditions (1) and (2) is called characterizing function of the non-precise number
x?.

Remark 1: Special non-precise numbers are so-called fuzzy numbers. For them the δ-cuts are all non-empty
compact intervals, i.e. Cδ [ξ(·)] =

[
aδ; bδ

]
for ∀ δ ∈ (0; 1].

For the generalization of Bayesian inference based on fuzzy samples x?
1, · · · , x?

n of a stochastic quantity
X, for example a lifetime, it is necessary to consider the sample space Mn

X , where MX is the set of possible
values of X, called observation space MX . In order to do that the concept of fuzzy vectors is necessary.

A n-dimensional fuzzy vector is a fuzzy subset of the n-dimensional Euclidean space IRn whose membership
function ζ(·, · · · , ·) obeys the following conditions:

(1) ∀ δ ∈ (0; 1], the δ-cut Cδ

[
ζ(·, · · · , ·)

]
:= {x ∈ IRn : ζ(x) ≥ δ} is a finite union of simply connected

compact subsets of IRn.

(2) C1

[
ζ(·, · · · , ·)

]
6= ∅.

Functions ζ(·, · · · , ·) obeying the conditions (1) and (2) are called vector-characterizing functions.

Remark 2: It is important to note that a vector (x?
1, · · · , x?

n ) of non-precise numbers x?
i is not a fuzzy

vector. But it is possible to combine the characterizing functions ξi(·) of x?
i , i = 1, 2, · · · , n in order to obtain
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the so-called fuzzy combined sample x? whose vector-characterizing function ζ(·, · · · , ·) is defined by its values
ζ(x1, · · · , xn ) for ∀ (x1, · · · , xn ) = x ∈ IRn in the following way:

ζ(x1, · · · , xn ) := min
{

ξ1(x1), · · · , ξn(xn)
}

∀ (x1, · · · , xn ) ∈ IRn,

ζ(·, · · · , ·) is a vector-characterizing function, because Cδζ(·, · · · , ·)=∏n
i=1 Cδ

[
ξi(·)

]
for ∀ δ ∈ (0; 1].

The fuzzy combined sample x? is the basis for the generalization of Bayesian inference to the situation of
fuzzy data.

2 Bayes’ Theorem and Fuzzy Data

For continuous parametric stochastic model X ∼ f(· |θ), θ ∈ Θ, a-priori density π(·) and data x1, · · · , xn the
a-posteriori density π(· | x1, · · · , xn ) of the parameter is obtained by the classical Bayes’ theorem

π(θ | x1, · · · , xn ) =
π(θ) ·

n∏
i=1

f(xi | θ)
∫
Θ

π(θ) ·
n∏

i=1

f(xi | θ) dθ
, ∀ θ ∈ Θ.

Using the notation of the likelihood function

`(θ;x1, · · · , xn ) =
n∏

i=1

f(xi | θ),

Bayes’ theorem reads

π(θ | x1, · · · , xn ) ∝ π(θ) · `(θ;x1, · · · , xn ), ∀ θ ∈ Θ,

where ∝ means ”proportional to up to a multiplicative constant”, i.e.

π(θ | x1, · · · , xn ) = C · π(θ) · `(θ;x1, · · · , xn ), ∀ θ ∈ Θ.

For fuzzy data x?
1, · · · , x?

n the likelihood function has to be generalized. The basis for that is the combined
fuzzy sample x? with its vector-characterizing function ζ(· · · ). The generalized likelihood function `?(θ;x?)
is a fuzzy valued function assigning to every θ ∈ Θ a fuzzy number `?(θ;x?) whose characterizing function is
given by application of the so-called extension principle from fuzzy set theory: The characterizing function
ψ`?(θ;x?)(·) of `?(θ;x?) is obtained by

ψ`?(θ;x?)(y) =
{

sup {ζ(x) : `(θ;x) = y} if ∃ x : `(θ;x) = y
0 if |∃ x : `(θ;x) = y

}
, ∀ y ∈ IR.

Looking at the δ-cuts Cδ

[
ψ`?(θ;x?)(·)

]
=

[
`δ(θ;x

?); `δ(θ;x?)
]

for varying θ, two classical real valued functions

`δ(·;x?) and `δ(·;x?) are obtained, called δ-level functions.
The generalized (fuzzy) a-posteriori density π?(· | x?

1, · · · , x?
n ) = π?(· | x?) is obtained by its δ-level

functions πδ(· | x?) and πδ(· | x?) ∀ δ ∈ (0; 1]. These δ-level functions are defined by

πδ(θ | x?) = π(θ) · `δ(θ;x?)∫

Θ

π(θ) · `δ(θ;x
?) + `δ(θ;x?)

2
dθ

and

πδ(θ | x?) = π(θ) · `δ(θ;x
?)∫

Θ

π(θ) · `δ(θ;x
?) + `δ(θ;x?)

2
dθ





, ∀
{

θ ∈ Θ
δ ∈ (0; 1].

Remark 3: π?(· | x?) is a fuzzy valued function such that all δ-level curves are integrable.
By the sequential updating procedure of Bayesian inference it is necessary to consider fuzzy a-priori densties

π?(·) also.
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3 Generalized Bayes’ Theorem for Fuzzy A-priori Density
and Fuzzy Data

In case of fuzzy a-priori density π?(·) with δ-level functions πδ(·) and πδ(·) as well as fuzzy data with fuzzy
combined sample x?, whose vector-characterizing function is ζ(·, · · · , ·), Bayes’ theorem can be generalized,
defining δ-level functions, in the following way:

πδ(θ | x?) = πδ(θ) · `δ(θ;x?)∫

Θ

1
2

[
πδ(θ) · `δ(θ;x

?) + πδ(θ) · `δ(θ;x?)
]
dθ

and

πδ(θ | x?) = πδ(θ) · `δ(θ;x
?)∫

Θ

1
2

[
πδ(θ) · `δ(θ;x

?) + πδ(θ) · `δ(θ;x?)
]
dθ





∀
{

θ ∈ Θ
δ ∈ (0; 1].

Remark 4: By this definition of the δ-level functions πδ(· | x?) and πδ(· | x?) of the fuzzy a-posteriori density
the sequentially calculated a-posteriori density π?(· | x?

1, x
?
2) is the same as the one-step calculated a-posteriori

density π?(· | x?), where x? = (x?
1, x

?
2).

Moreover for standard a-priori densities and precise data this concept reduces to the classical Bayes’
theorem.

Example 1: For a stochastic quantity X with exponential distribution, i.e. density f(x | θ) = 1
θ e−x/θ I(0;∞)(x)

with θ ∈ Θ = (0;∞), and fuzzy a-priori density π?(·) on Θ depicted in Figure 1, where π0+(θ) and π0+(θ) are
the boundary points of the support of π?(θ), some δ-level curves are given.

p0,5(q)

p1(q)

p0,5(q)

p1(q)

q

1 2 30

1

0,5

1,5

p0(q)

p*(q)

p0(q)

Figure 1: Some δ-level curves of π?(·)

In Figure 2 the characterizing functions of a sample of 8 fuzzy observed life times are depicted. Application
of the generalized Bayes’ theorem gives the δ-level curves of the fuzzy a-posteriori density π?(· | x?

1, · · · , x?
8).

The result is depicted in Figure 3.
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Figure 2: Characterizing functions of a sample of 8 fuzzy life times
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Figure 3: Fuzzy a-posteriori density
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Figure 4: Fuzzy predictive density

4 Predictive Distributions

Let X ∼ f(· | θ), θ ∈ Θ be a continuous stochastic model with parametric family of densities f(· | θ), θ ∈ Θ.
Then the a-posteriori predictive distribution of X conditional on the observed data x1, · · · , xn of X is of
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interest.
In standard Bayesian inference the so-called predicitive density f(· | x1, · · · , xn ) is obtained as the

marginal density of X in (X, θ̃) based on the a-posteriori density π(· | x1, · · · , xn ), i.e.

f(x | x1, · · · , xn ) =
∫

Θ

f(x | θ) · π(θ | x1, · · · , xn ) dθ ∀ x ∈ MX .

In case of fuzzy a-posteriori density π?(· | x?
1, · · · , x?

n ) the resulting predictive density is a fuzzy probability
density f?(· | x?

1, · · · , x?
n ), whose values are obtained by the generalized integral of fuzzy valued functions:

f?(x | x?
1, · · · , x?

n ) :=
∫

Θ

− f(x | θ)¯ π?(θ | x?
1, · · · , x?

n ) dθ ∀ x ∈ MX ,

where ¯ denotes the multiplication of a fuzzy valued function by a real number and
∫− denotes the integration

operator of fuzzy valued functions which is defined via δ-level curves. For details compare [5].
The result of this generalized integration is a fuzzy number. Therefore the generalized predictive density

is a fuzzy valued probability density.
In continuation of the example the corresponding fuzzy predictive density is depicted in Figure 4.

5 Conclusion

Basic for Bayesian statistical inference are a-priori distributions and sample data. Both are frequently not
precise as is assumed in standard Bayesian inference. Fuzzy a-priori information can be quantified by so-called
fuzzy probability densities, and fuzzy data can be modelled by non-precise numbers.

A suitable generalization of Bayes’ theorem is presented in the paper which keeps the sequential nature
of the Bayesian updating procedure when samples are splitted. Moreover generalized predictive distributions
are explained. Further methods of statistical analysis procedures in case of fuzzy data can be found in the
German language monograph [5].
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