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Abstract 
 

In this paper, we propose a scalar variable formation of fuzzy regression model based on the axiomatic credibility 
measure foundation. The fuzzy estimation for fuzzy regression coefficients is investigated. A general M-estimation 
criterion is developed under Maximum Fuzzy Uncertainty Principle, which resulted in weighted Normal equation with 
adjusted term for M-estimator of the regression coefficients. Finally, we explore the fuzzy one-way classification model, 
the M-estimation in general and the concept of estimable function with respect to the one-way model. 
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1    Introduction 
 
In statistical theory, regression is an important topic for modeling the functional relationship between response 
variable(s) and exploratory variable(s) under random uncertainty assumptions. When data is fuzzy, fuzzy regression 
models were also developed although mostly on the ground of Zadeh’s fuzzy mathematics. Therefore, before 
engaging the fuzzy regression literature review, it is necessary to mention the foundation for fuzzy regression model. 
Up to now, fuzzy regression models were almost all developed on the ground of Zadeh’s fuzzy set theory (1965). 
Many set variable oriented fuzzy regression models were proposed: Tanaka at al. (1980, 1982) initiated an approach 
of fuzzy regression which minimizes the fuzziness as an optimal criterion, Diamond (1987, 1988) used least-squared 
errors as a decision criterion, interval regression oriented fuzzy regression model was also presented (see, Dubois and 
Prade, 1980, Kacprzyk and Fedrizzi, 1992 and others).  

It is also noticed that there were variable styled treatments in fuzzy regression in terms of numerical valued 
approaches in which the representative values are utilized, say, the fuzzy mode, the fuzzy average, the fuzzy median, 
or the mid-range of α -cut set of fuzzy membership function to specify the fuzzy subset. However the fundamental 
weakness of these numerical valued treatments on fuzzy subsets lies on the utilization of the partial information of the 
fuzzy subsets under study. In general it is admitted that the existing fuzzy regression models are difficult to play more 
actual roles in industrial and business applications because of the intrinsic weakness roots in its membership-based 
fuzzy mathematical foundation created by Zadeh (1965). 

It should be emphasized here, the contribution of Zadeh’s fuzzy mathematics should not be forgotten, without 
him, today’s mathematics may still wonder in the crisp set theoretical ground. Zadeh revealed another essential form 
of uncertainty – fuzziness and showed the difference from the well known and accepted essential form of uncertainty 
– randomness. However, on the one side, the significance of Zadeh’s membership based fuzzy theory has its own 
intrinsic limitations. Some mathematicians, say, Walley (1991) and some Bayesian statisticians have different view 
on fuzzy set membership functions. It is fair to say, Zadeh’s membership-based fuzzy mathematics reshaped modern 
mathematics and was successful in many industrial applications. No one should simply close the eyes but simply 
reject those facts of successful achievements. It is also true that his  efforts in developing a possibility measure theory 
for characterizing fuzziness failed to create a true counterpart of that of probability measure theory because Zadeh’s 
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(intuitive) possibility measure does not have self-duality property (i.e., the possibility measure of the complement 
event Ac does not equal to one subtracts the possibility measure of event A).  

Although Zadeh’s possibility measure concept is intuitive and straightforward, which led a way for addressing 
the fuzziness, nevertheless, the non-self-duality of possibility measure prevents the scalar variable treatments of a 
fuzzy variable and thus Zadeh’s fuzzy mathematics is often inconvenient and very complicated in mathematical 
manipulations. However, we still believe Zadeh’s work set us a milestone of modern (or non-classical mathematics). 
Finally, the membership specification is still a thorny issue. During almost four decades, fuzzy researchers have to 
specify membership function and set up the parameter values in terms of their own working experiences. Compared 
to the probabilistic “counterpart”, for random variable and its distribution it is very data-oriented, very rich statistical 
estimation and hypothesis testing theory have been developed for the parameters in specifying the distribution 
objectively. The fuzzy statistical theory developed very slowly, and its applications are difficult due to the set-
oriented foundation and set-form variable treatments. 

To resolve the difficulties facing the Zadeh’s membership-based fuzzy mathematics, Liu (2004, 2007) proposed 
an axiomatic foundation for modeling fuzzy phenomena, credibility measure theory.  The credibility measure 
possesses self-duality property and is able to play the role of that in probability theory. Furthermore, fuzzy variable 
concept and its (credibility) distribution, which are parallel to these in probability theory, are developed. 

The credibility measure (of a fuzzy event) is an average of the possibility measure and necessity measure (of a 
fuzzy event) and thus is self-dual. It is true that a credibility measure concept is not as intuitive as that of the 
possibility measure or necessity measure alone in revealing the degree of fuzziness, however, credibility measure 
does reveal the degree of fuzziness in a composite manner and address the weakness of possibility measure or 
necessity measure alone.  Some researchers on possibility measure theoretical ground argued that Liu’s credibility 
measure is too special and lack of justifications for regarding it as a measure for fuzziness. 

We will have a simple argument for the justification as long as a fuzzy researcher believes Zadeh’s membership 
function is a way for characterizing a fuzzy set, denoted as ( )Aµ ⋅ . For this purpose, we state a trivial principle called 
as Measure Equivalence Principle. For a given uncertain event, as long as two measures (or functions) are one-one 
mapping each other, the two measures (or functions) are said to be equivalent and therefore they quantify the same 
kind of uncertainty. Recall that in probability theory, probability distribution of a random variable, denoted as ( )XF ⋅ , 

is used for characterizing random uncertainty. Then any one-to-one mapping of ( )XF ⋅  can be also used for measuring 
the random uncertainty, for example, moment generating function, ( ) E X

Xm eθθ ⎡ ⎤= ⎣ ⎦ , or characteristic function, 

( ) E i X
X e θφ θ ⎡ ⎤= ⎣ ⎦ . The same principle will be applicable in credibility measure case. As a matter of fact, Liu (2004, 

2007) has established the two theorems between credibility measure and membership function. For any event 
{ } ,x x Bξ = ∈ ⊂ R , 

( ) { }( )2Cr 1,x x xµ ξ= = ∧ ∈R  .                                                                        (1) 

Conversely, for any event { }xξ ≤ , the credibility distribution, ( ) { }Crx xξΛ = ≤  links to membership function 

( ) ( ) ( )1 sup 1 sup ,
2 y x y x

x y x xµ µ
≤ >

⎛ ⎞Λ = + − ∈⎜ ⎟
⎝ ⎠

R   .                                                            (2) 

It is obvious a loose 1-1 mapping relation between membership function which implies possibility distribution 
and credibility distribution function exists. Then we will question these who suspect the role and value of credibility 
measure theory, except for accepting the fact that a credibility measure quantifies the fuzzy uncertainty, what are their 
choices?  

In this paper, based on Liu’s (2004, 2007) classical credibility measure theory, i.e., ( , )∨ ∧ -credibility measure 
theory, we develop a scalar variable oriented treatment in terms of an M-estimation for the fuzzy regression 
coefficients, which leads to weighted least-squares formation. 

The structure of this paper is as follows. Section 2 is used for reviewing Liu’s credibility measure theory, 
defining the scalar fuzzy variable and its credibility distribution. In Section 3, the M-function utilizing Maximum 
Fuzzy Uncertainty Principle is introduced and therefore, a weighted normal equation with adjusted term is derived. In 
Section 4, the M-estimators for regression coefficients under maximum membership criterion is derived. In Section 5, 
we investigate the fuzzy one-way classification model. Finally a few concluding remarks are offered in Section 6. 
 
2   A Review of Credibility Measure Theory 
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Let Θ  be a nonempty set, and 2Θ  the power set onΘ . A power set is the set class containing all the possible subsets 
of nonempty set Θ , i.e., { }2 :A AΘ = ⊂ Θ . It is obvious that a power set 2Θ  is the largest σ -algebra on Θ . Each 

element of a power set, say, A ⊂ Θ , 2A Θ∈  is called an event. A number denoted as { }Cr A , { }0 Cr 1A≤ ≤ , is 

assigned to an arbitrary event 2A Θ∈ , which indicates the credibility grade with which event 2A Θ∈  occurs. For 
any 2A Θ∈ , set function { }Cr A  satisfies the following axioms (Liu, 2004, 2007): 

Axiom 1: { }Cr 1Θ = . 

Axiom 2: {}Cr ⋅ is non-decreasing, i.e., whenever A B⊂ , { } { }Cr CrA B≤ . 

Axiom 3: {}Cr ⋅  is self-dual, i.e., for any 2A Θ∈ , { } { }Cr Cr 1cA A+ = .  

Axiom 4: { } { }Cr 0.5 sup Cri i i
i

A A∧ = ⎡ ⎤⎣ ⎦∪  for any { }iA  with { }Cr   0.5iA ≤ . 

Axiom 5: Let set functions {} [ ]Cr : 2 0,1k
k

Θ⋅ → satisfy Axioms 1-4, and 1 2 pΘ = Θ ×Θ × ×Θ , then 

( ){ } { } { } { }1 2 1 1 2 2Cr , , , Cr Cr Crp p pθ θ θ θ θ θ= ∧ ∧ ∧ ,                                                            (3) 

where ( )1 2, , , pθ θ θ ∈Θ . 
Definition 2.1: (Liu, 2004, 2007) Any set function [ ]Cr : 2 0,1Θ →  satisfies Axioms 1-4 is called a ( ),∨ ∧ -credibility 
measure (or simply a credibility measure). The triple ( ), 2 ,CrΘΘ  is called the credibility measure space. 

A credibility measure satisfies all the properties of uncertainty measure and also many of its own. For space 
limitation reason, we can only review minimal materials, but more technical details can be found in Liu (2004, 2007). 
Definition 2.2: (Liu, 2004, 2007) A fuzzy variable ξ  is a measurable mapping from credibility space ( ), 2 ,CrΘΘ  to 
the set of real numbers, i.e., ( ): , 2 ,Crξ ΘΘ → R . 

We should be fully aware that on the credibility measure platform, a fuzzy variable is recorded as a real-valued 
number similar to that of a random variable. Definitely, similar to random variable, a real number as a realized value 
of a fuzzy variable has a distributional grade associated with it. 
Definition 2.3: (Liu, 2004, 2007) The credibility distribution [ ]: 0,1Λ →R  of a fuzzy variable ξ  on ( ), 2 ,CrΘΘ  is 

( ) ( ){ }Crx xθ ξ θΛ = ∈Θ ≤   ,                                                                           (4) 

The credibility distribution ( )xΛ  is the accumulated credibility grade that the fuzzy variable ξ  takes a value less 
than or equal to a real-number x∈R . Generally speaking, the credibility distribution ( )Λ ⋅ is neither left-continuous 
nor right-continuous. What we will deal with are absolutely continuous fuzzy variables with continuous credibility 
density functions and thus poses no further restrictions on our developments. 
Definition 2.4: (Liu, 2004, 2007) Let ( )Λ ⋅  be the credibility distribution of the fuzzy variable ξ . Then a function  

: [0, )λ → +∞R  is called a credibility density function of fuzzy variable ξ  if 

( ) ( )d ,
x

x y y xλ
−∞

Λ = ∀ ∈∫ R .                                                                          (5) 

The axiomatic credibility measure foundation is the starting point of Liu’s fuzzy theory, while the definition of a 
membership function is the fundamental starting point of Zadeh’s fuzzy set theory. Zadeh (1965, 1978) further 
proposed possibility measure based theoretical framework and expected the possibility measure could be a 
counterpart of probability measure, nevertheless, Zadeh failed his own mission. It is necessary to emphasize here that 
with or without membership function fuzzy phenomena in real world can be accurately described by the credibility 
measure models. Linking between credibility measure and membership plays a role of bridging Zadeh’s fuzzy 
mathematics and the new axiomatic fuzzy theory and thus provides a conversion channel. 
 
3   The M-Estimation for Regression Coefficients 
 
A fuzzy linear model describes a functional relationship containing fuzzy uncertainty. For simplicity, let us start with 
the simple fuzzy regression model 

Y xα β ε= + + ,                                                                                            (6) 
where x  is exploratory (or independent or controllable) variable, Y is the fuzzy response (or dependent variable), ε  
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is a fuzzy error term with [ ]E 0ε = and [ ] 2V ε σ= .  Note that the expectation is taken with respect to the credibility 
distribution. Denote the empirical (or fitted) fuzzy linear regression of Y with respect to x  by 

ˆˆ ˆY xα β= +  ,                                                                                    (7) 
where vector ( )ˆˆ,α β  is the estimate of regression coefficient vector ( ),α β . 

Let ( ) ( ) ( ){ }1 1 2 2, , , , , ,n nx Y x Y x Y  be a simple fuzzy sample. 1 2, , , nY Y Y denote the n observed response corresponding 

to 1 2, , , nx x x . In (probabilistic) linear model theory, the error terms are assumed to be 2(0, )Nε σ∼  and iε and jε  

are uncorrelated. Thus, ( )2,i i iY N xα β σ+∼  and iY and jY  are uncorrelated too.  
The next question is to set up an objective function, under which the parameters of the fuzzy regression can be 

chosen such that the estimated parameters could optimize the objective function. On the ground of Zadeh’s fuzzy set 
theory, where membership plays the critical role, Maximum Membership Principle guides the objective function 
setting up. However, the Maximum Membership Principle is only applicable whenever the membership is symmetric. 
Furthermore, in this paper we intend to explore a universal criterion on the ground of Liu’s credibility measure 
theory. 
Liu (2007) states Maximum Uncertainty Principle: “For any event, if there are multiple reasonable values that a 
measure may take, then the value as close as to 0.5 as possible is assigned to the event”. Guiding by this principle, we 
state a specific criterion for the fuzzy uncertainty case. 

Maximum Fuzzy Uncertainty Principle: If there are multiple reasonable fuzzy values that a credibility 
measure may take, then the credibility measure for an event should be a value as close to 0.5 as possible.  

Let us assume that events { },  1, ,iA i n=  are defined on a credibility space ( ), 2 ,CrΘΘ . Then the objective function 
can be 

{ }( )2

1
Cr 0.5

n

i
i

J A
=

= −∑  .                                                                         (8) 

For the simple regression defined by Eq. (8), the credibility distribution of error term ε  is assumed to take a form 
( ) ( ){ }Cr :u uε θ ε θΛ = ≤  .                                                                     (9) 

In other words, the credibility distribution of ε  is defined on the set 
( ) ( ){ }| Y xθ ε θ α βΘ = = − + .                                                              (10) 

Then the objective function under the Maximum Fuzzy Uncertainty Principle takes a form 

( ) ( )( )( )2

1
, 0.5

n

i i
i

J Y xεα β α β
=

= Λ − + −∑ .                                                        (11) 

Note that 
( )( ) ( ) ( ){ }Cr :i i i iY x Y xε α β θ ε θ α βΛ − + = ≤ − + .                                                  (12) 

It is obvious that for a symmetric type membership family, the objective function defined in Eq. (11) is similar to 
the Maximum Membership Principle, although the solution may not be the same. Nevertheless, our criterion for 
setting up objective function is universal no matter what kind of membership families we might face.  

Now, it is ready to return back to the (scalar) fuzzy simple regression model fitting problem, which now 
becomes one of finding an empirical linear regression equation ˆˆ ˆY a bx= +  based on the observations 
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nx Y x Y x Y  such that the credibility distribution at ˆˆ ˆi iY a bx= + should be a value as close to 0.5 as 

possible. Then minimizing the objective function J defined in Eq. (11) with respect to α and β , the M-equation 
system for coefficients ( ),α β is 

( )( )( ) ( )( )

( )( )( ) ( )( )
1

1

0.5 0

0.5 0 .

n

i i i i
i

n

i i i i i
i

Y x Y x

Y x Y x x

ε ε

ε ε

α β λ α β

α β λ α β

=

=

⎧ Λ − + − − + =⎪⎪
⎨
⎪ Λ − + − − + =⎪⎩

∑

∑
                                           (13) 

It should be aware that, if the characterization of credibility distribution of error term ε may involve other 
parameters, denoted as ( )1 2, , ,T

lγ γ γ γ= , then full M-equation system should take the form 



Journal of Uncertain Systems, Vol.2, No.3, pp.177-186, 2008                                                                                                         181 

( )( )( ) ( )( )

( )( )( ) ( )( )

( )( )( ) ( )( )

( )( )( ) ( )( )

1

1

1 1

1

0.5 0

0.5 0

0.5 0

0.5 0.

n

i i i i
i

n

i i i i i
i

n
i i

i i
i

n
i i

i i
i l

Y x Y x

Y x Y x x

Y x
Y x

Y x
Y x

ε ε

ε ε

ε
ε

ε
ε

α β λ α β

α β λ α β

α β
α β

γ

α β
α β

γ

=

=

=

=

⎧ Λ − + − − + =⎪
⎪
⎪

Λ − + − − + =⎪
⎪
⎪ ∂Λ − +⎨ Λ − + − =⎪ ∂
⎪
⎪
⎪

∂Λ − +⎪ Λ − + − =⎪ ∂⎩

∑

∑

∑

∑

                                                 (14) 

Eq. (13) is merely taking the first two equations from Eq. (14) with the assumption that all the parameters, 
denoted as ( )1, , , , lα β γ γ  , satisfy or be determined by Eq. (14) only. Eq. (13) cannot determine coefficients ( ),α β  
alone if ( )1 2, , ,T

lγ γ γ γ=  participate in credibility distribution.  
Now, for non ambiguity, we rewrite Eq. (13) as 

( )( )( ) ( )( )
( )( )( ) ( )( )

1

1

ˆ ˆˆ ˆ0.5 0

ˆ ˆˆ ˆ0.5 0.

n

i i i i
i

n

i i i i i
i

Y x Y x

Y x Y x x

ε ε

ε ε

α β λ α β

α β λ α β

=

=

⎧
Λ − + − − + =⎪⎪

⎨
⎪ Λ − + − − + =⎪⎩

∑

∑
                                        (15) 

Notation ( )ˆˆ,α β  implies that ( )1, , , , lα β γ γ are M-estimator which solves the M-equation system Eq. (14).  

Notice that the function form of commonly used credibility distributions (induced by membership functions) 
may be classified into three basic categories: (a) step function; (b) linear function containing factor like ( )w u c−  (c) 
Nonlinear function, containing factor like ( )dw u c−  or ( )( )exp dw u c− − .  Accordingly, (error) term ( )ˆˆi iY xα β− +  will 
either appear in ( )εΛ ⋅ (linear category) or in ( )ελ ⋅  (nonlinear category) and therefore an appropriate weighted normal 
equation will be derived from Eq. (15). 

For linear category, we take triangular fuzzy error term with parameter ( ), ,a b c , the credibility distribution is 

( )( )

( )
( )
( ) ( )

( )
( ) ( )

( )

0                           

      
2

2
2

1                                .

i

i i

i i
i i

i i
i i

i i

i i

Y x a
Y x a

a Y x b
b a

Y x
Y x c b

b Y x c
c b

Y x c

ε

α β
α β

α β

α β
α β

α β

α β

− + ≤⎧
⎪

− + −⎪ < − + ≤⎪ −⎪Λ − + = ⎨
− + + −⎪ < − + ≤⎪ −

⎪
− + >⎪⎩

                                         (16) 

It is ready to write 

( )( ) ( ] ( )( )( ) ( ] ( )( )
( ] ( )( )

( ) ( )( )

( ] ( )( )
( ) ( )( ) ( ) ( )( )

, ,

,

,
,

1

2

2 .
2

i i i i i i ia a

i ia b
i i

i ib c
i i i ic

Y x Y x Y x

Y x
Y x a

b a

Y x
Y x c b Y x

c b

ε α β ϑ α β ϑ α β

ϑ α β
α β

ϑ α β
α β ϑ α β

−∞ −∞

+∞

Λ − + = − − + − +

− +
+ − + −

−

− +
+ − + + − + − +

−

                                (17) 

Notice that the optimal ( )( )i iY xε α βΛ − + should approach 0.5 and therefore ( )i iY xα β− + should falls in ( ),b bδ δ− +  
and thus the first term and fourth term in Eq. (17) disappears for small 0δ > . In other words, term ( )i iY xα β− +  can be 
isolated and then Eq. (17) can be written as 

( )( )
( )( )

1 1

1 1

ˆˆ

ˆˆ ,

n n

i i i i i
i i

n n

i i i i i i i
i i

w Y x w r

w Y x x w r x

α β

α β

= =

= =

⎧
− + =⎪⎪

⎨
⎪ − + =⎪⎩

∑ ∑

∑ ∑
                                                                  (18) 
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where ir is the remaining terms and iw is the appropriate weight term from the rearrangements in Eq. (17). This will 
result in a weighted normal equation with adjusted term. 

As to the credibility distribution containing nonlinear factor case, for illustrative purpose, let the credibility 
distribution take a form 

( )( )
( )( ) ( )

( )( )( ) ( )

2

2

1 , 0
2

1 2 , 0.
2

i i

i i

Y x
i i

i i
Y x

i i

e Y x
Y x

e Y x

τ α β

ε
τ α β

α β
α β

α β

− − +

− − +

⎧ − + <⎪⎪Λ − + = ⎨
⎪ − − + ≥
⎪⎩

                                        (19) 

It will be very clear that  

( )( ) ( )( )( )2
.

i i i i iY x g Y xε α β τ α βΛ − + = − − +                                                              (20) 

Therefore, Eq. (17) will take a form 

( )( )( ) ( )( ) ( )( )
( )( )( ) ( )( ) ( )( )

1

1

ˆ ˆ ˆˆ ˆ ˆ0.5 ' 0

ˆ ˆ ˆˆ ˆ ˆ0.5 ' 0.

i

i

n

i i i i i i
i

n

i i i i i i i
i

Y x g Y x Y x

Y x g Y x Y x x

ε

ε

α β α β α β

α β α β α β

=

=

⎧
Λ − + − − + − + =⎪⎪

⎨
⎪ Λ − + − − + − + =⎪⎩

∑

∑
                                         (21) 

Define 

( )( )( ) ( )( )1 ˆ ˆˆ ˆ0.5 ' .
ii i i i iw Y x g Y xε α β α β− = Λ − + − − +                                                    (22) 

and 
1 1 1

2 2 2

1 0 0
1 0 0

,   ,   = ,   =

1 0 0n n n

Y x w
Y x w

Y X W

Y x w

α
β

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = Γ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

.                                                  (23) 

Then the weighted normal equation is obtained as 
1 1 .T TX W X W X Y− −Γ =                                                                              (24) 

 
4   M-estimator for Coefficients with Normal Formed Membership 
 
Let the residual take a membership function of form 

( )( ) ( )( )( )2
.i i i iY a bx g Y a bxεµ τ− + = − − +                                                         (25) 

where ( )g ⋅  is a differentiable function with ( )g 0 1= , and ( )lim 0x g x→−∞ = . 
It is obvious that for this case, Maximum Membership Principle works, and accordingly we can define the M-

functional equation system for fuzzy regression coefficients ( ),α β . 

Definition 4.1:  Given the differentiable membership function ( )( )( )2
i ig Y a bxτ− − + , which measures the degree of 

belongingness to empirical linear regression line Ŷ a bx= +  at observation pair ( ),i iY x , then the normal formed M-
functional system based on the n observations ( ) ( ) ( ){ }1 1 2 2, , , , , ,n nx Y x Y x Y  takes the form 

( )( )( ) ( )( )

( )( )( ) ( )( )

2

1

2

1

0

0,

n

i i i i
i

n

i i i i i
i

h Y a bx Y a bx

h Y a bx Y a bx x

τ

τ

=

=

⎧ − − + − + =⎪⎪
⎨
⎪ − − + − + =
⎪⎩

∑

∑
                                               (26) 

where ( ) ( )'h x g x dg dx= = . 
Theorem 4.2: Let a simple regression model Y xα β ε= + +  assumes a fuzzy error ε  [ ] [ ] 2E 0  , Vε ε σ= = and 
membership function ( )( )( )2

i ig Y a bxτ− − + . For given n pair of independent observations ( ) ( ) ( ){ }1 1 2 2, , , , , ,n nx Y x Y x Y , a 

general M-estimator of the coefficients for fitted regression Ŷ a bx= + , ( ),a b  is the solution to the general M-function 

equation system Eq (26). Furthermore, the M-estimator ( ),a b  takes a weighted least-square estimator form as 
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( )( )( )( )( )

( )( )( )( )

2

1

2 2

1

,                                          

n

i i i h i h
i

n

i i i h
i

h h

h Y a bx x x Y Y
b

h Y a bx x x

a Y bx

τ

τ

=

=

⎧ − − + − −⎪
⎪ =⎪
⎨ − − + −⎪
⎪

= −⎪⎩

∑

∑                                                   (27) 

where 

( )( )( )
( )( )( )

( )( )( )
( )( )( )

2 2

2 21 1

1 1

,
n ni i i i

h i h in n
i i

i i i i
i i

h Y a bx h Y a bx
x x Y Y

h Y a bx h Y a bx

τ τ

τ τ= =
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= =

− − + − − +
∑ ∑
∑ ∑

.                         (28) 

Theorem 4.2 is easy to prove by expanding the left side terms of Eq. (26), re-arrange them, for obtaining Eq. (27). Let 
1 1 1

2 2 2

1 0 0
1 0 0

,  ,  

1 0 0n n n

Y x d
Y x d

Y X D

Y x d

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

,                                                   (29) 

where  ( )( )( )2
,  1, ,i i id h Y a bx i nτ= − − + = . Further, let 

1

21

1 0 0
0 1 0

,  

0 0 1 n

d
da

W D
b

d

−

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥Γ = = =⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎣ ⎦

 .                                                  (30) 

Then, the M-functional equation system Eq. (26) can be re-written in a matrix form 
1 1 .T TX W X W X Y− −Γ =                                                                     (31) 

Eq. (31) takes the weighted least-squares normal equation form in statistical linear model theory. However, the 
weighted least-squares formation of the M-functional equation system of Eq. (26) will help further mathematical 
treatments. For example, Eq. (31) can be re-expressed in matrix form 

( ) 11 1ˆ .T TX W X W X Y
−− −Γ =                                                                  (32) 

as long as the inverse matrix exists. 
Example 4.3: Let the membership function g  take a normal form 

( )( )( ) ( )( )( )2 2
exp .g Y a bx Y a bxτ− − + = − − +                                                   (33) 

Then the derivative of membership function is 
( )( )( ) ( )( )( )2 2

exp .h w Y a bx w Y a bx− − + = − − +                                                (34) 

The factor τ is sample-dependent and can be defined by 

max min

2
d d

τ =
−

  ,                                                                              (35) 

where 

{ }
( )( ){ } { }

( )( ){ }2 2
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= − + = − +                               (36) 

Then the M-estimators for regression coefficients are 
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where 
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( )( )( )
( )( )( )

( )( )( )
( )( )( )

2 2

2 21 1
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exp exp
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exp exp
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i i i i
i i

w Y a bx w Y a bx
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∞ ∞
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 .                       (38) 

 
5   Fuzzy One-Way Classification Models 
 
It is not difficult to extend the simple fuzzy regression model to multiple regression case, i.e., the error term  

( )0 1 1 2 2i i i i l liY x x xε β β β β= − + + + .                                                                (39) 
The mathematical treatments are essential the same as the simple regression case.  However, we may face the 
problem to evaluate the effects of factors. Let us to examine a simple example. Let ijY denote the response of thj  
individual of thi type of factor (crisp-valued level), where 1, 2, ,i l=  and 1, 2, , ij m= . The problem is to estimate the 
fuzzy effect of the factor on individual. The fuzzy model takes a form  

ij i ijY ν α ε= + + .                                                                              (40) 
where ν  represent the overall mean response of individual, iα  represents the effect of type i , and ijε is the fuzzy 
residual term peculiar to the response ijY . The feature of fuzzy error ijε will be discussed later. First, we assume the 
membership of the error term takes a form 

( )( ) ( )( )( )2

1 1ij l ij lY g Yε ν α α τ ν α αΛ − + + + = − − + + + .                                          (41) 

Denote 
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⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = = Γ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎣ ⎦

                                           (42) 

and 
1

1
1

1 2

1

0 0
0 0

0 0 n

w
w

W

w

−

−
−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,                                                                   (43) 

where ( )( )( )1
1'i ij lw g Yτ ν α α− = − − + + + . 

Then the Maximum Membership Principle results in the weighted normal equation 
1 1TX W X W XY− −Γ = .                                                                          (44) 

Note that the matrix is not of full rank and thus the inverse does not exist and we can only engage the generalized 
inverse of matrix G such that 

( ) ( )1 2 1 2 1 1 2 1 1 2 ,
T T TW X G W X X W X W XGX W X W X− − − − − −= =                                     (45) 

and furthermore ( ) ( )1 2 1 2T
W X G W X− − is invariant to G  and symmetric. Then  

1ˆ GW XY−Γ = .                                                                                 (46) 
The solution is not unique. However, the estimable functions are unique. For further discussions, define matrix 

H  such that 
1TH GX W X−= .                                                                              (47) 

Then 
( )1ˆ GW XY H I z−Γ = + − ,                                                                       (48) 

where z  is an arbitrary vector. 
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Definition 5.1:  A linear function TΓk  is estimable with respect to fuzzy linear model ij i ijY ν α ε= + +  if 
ˆE T T⎡ ⎤Γ = Γ⎣ ⎦k k ,                                                                                    (49) 

Example of estimable functions, say, 1jα α− , 2,3, ,j l= . 

Remark 5.2: For given observations Y , the fuzzy estimator of estimable function is just  ˆTΓk . For example,  
1

1 1
1 11

1 1ˆ ˆ
jm m

j ji i
i ij

Y Y
m m

α α
= =

− = −∑ ∑  ,                                                                     (50) 

which can be interpreted as the effect of thj factor. Nevertheless, the significance level can not be justified because 
the distribution of relevant ratio of fuzzy quadratic forms has not been developed yet. 

In the one-way classification model is assuming that the factors, iα , 1, 2, ,i l= , are fuzzy-valued level with 
given membership functions, ( )

iα
µ ⋅ , 1, 2, ,i l= . The mathematical treatments are similar to the crisp-factor level 

case. 
 

6   Conclusions 
 
In this paper, we investigate the estimation problem of the scalar fuzzy regression model on the ground of Liu’s 
credibility measure theory. Furthermore, we propose the estimation methodology in fuzzy one-way classification 
model parallel to Searle’s work (1982). Definitely, the idea of a general fuzzy linear model theory roots in this paper. 
The open question is the hypothesis testing problems which will rely on the distributional theory of fuzzy quadratic 
forms. 

Furthermore, fuzzy data may be sampled from different fuzzy error structures, i.e., fuzzy errors are assuming 
different membership functions. Then additional information on fuzzy memberships should be given. 

As to some researchers in fuzzy regression may think and query whether our approach can generate the same 
modeling results as the conventional ones, say, Tanaka at al. (1980, 1982). The answer to this query is no because the 
observations in Tanaka’s fuzzy regression model are fuzzy sets with memberships fully assumed. The comparison of 
Tanaka’s fuzzy regression model to our scalar fuzzy regression model is just similar to that in statistics, regression for 
given random variables as observations and regression for observations from a population of given distribution are 
not the same. In our future paper we will address the regression modeling with Tanaka’s data. 

We should strongly emphasize here, Liu’s credibility measure theory is mathematically rigorous and sound. The 
application of Liu’s theory will gain a great convenience in mathematical treatments. We have noticed that there 
appear some voices within fuzzy research communities. Some researchers feel the credibility measure is “too special” 
and the credibility measure theory is too new to be justified. They demand a justification with probability measure. 
They used the book of Walley (1991) as a cornerstone to fire bullets towards credibility measure theory. However, 
our reading on the book of Walley (1991) leads us to have opposite conclusion since Walley treated membership 
function as a second-order probability. Even so, Walley (1991) is very negative on membership function just as he 
said, “If fuzzy sets have a useful role to play, it is in modeling the ambiguity of ordinary language. But ambiguity is 
only one potential source of imprecision in probabilities and, unlike some other sources of imprecision, it can be 
eliminated through careful elicitation. The membership pµ  that are chosen to model ambiguous probability 

judgments seem both arbitrary and inappropriately precise. No clear interpretation of pµ  has been established. Its 
assessment requires substantial input from a user, in addition to that needed for sensitivity analysis. (The extra 
assessments are comparable to those needed to determine second-order probabilities.)”  If we accept Walley’s 
standing point, we should be serious on the modification on fuzzy theory based on membership function, including 
possibility measure theory. Liu’s work (2004, 2007) just reflect such a demand because his axiomatic foundation does 
not requires membership at all although he is still establishing certain link between his foundation to old fuzzy school.  
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