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Abstract. Min-independence has been proved to be a sufficient condition of a vector of fuzzy random
variables to be a fuzzy random vector. The objective of this paper is to study further on the independence
condition for fuzzy random vector based on continuous triangular norms. We first discuss measurability
criteria for fuzzy random vector, and present two more new equivalent formulations of the measurability
criteria. Then, based on the obtained results and T -independence of fuzzy variables, we generalize the
independence condition for fuzzy random vector from scenario of minimum triangular norm to that of
continuous triangular norms.
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1 Introduction

There are two types of uncertainties in the real world — randomness and fuzziness. Two powerful theories,
probability theory and possibility theory [2, 9, 19, 20, 21] are used to deal with them, respectively. Based
on credibility measure [13], an axiomatic approach, called credibility theory, was proposed by Liu [11], which
is an extension of possibility theory, and is theoretical foundation of decision making under possibilistic
uncertainty [10]. In a practical decision-making process, we often face a hybrid uncertain environment where
fuzzyness and randomness nature coexist. As a combination of credibility theory and probability theory,
fuzzy random theory is an appropriate tool to deal with such a twofold uncertainty [11, 17]. In fuzzy random
theory, fuzzy random variable is a kernel in this theory, which was introduced by Kwakernaak [6, 7] to depict
the phenomena in which fuzziness and randomness appear simultaneously. Since then, its variants as well as
extensions were presented by other researchers, aiming at different purposes, e.g., Puri and Ralescu [4], Kruse
and Meyer [8], López-Diaz and Gil [18] and Liu and Liu [14].

In a fuzzy random decision making system, we are often required to construct fuzzy random vectors by using
various fuzzy random variables. In fuzzy random theory [11], a well known result on fuzzy random vectors is:
If ξ = (ξ1, ξ2, · · · , ξn) is a fuzzy random vector, then ξi, 1 ≤ i ≤ n, are fuzzy random variables. However, the
converse proposition may not necessarily hold. That implies, some more conditions should be added to the
considered fuzzy random variables so as to construct a fuzzy random vector. Using possibility measure, Feng
and Liu [3] established the measurability criteria for fuzzy random vector, and studied the relationship between
fuzzy random vectors and fuzzy random variables under the assumption of min-independence. Furthermore,
Liu and Wang [16] characterized the measurability of fuzzy random vectors through credibility measure.

Our goal in this paper is to study further on the independence condition for fuzzy random vector based
on triangular norms. We aim to generalize the independence condition for fuzzy random vector from scenario
of minimum triangular norm to that of continuous triangular norms.

This paper is organized as follows. In Section 2, we recall some basic concepts on fuzzy random vectors.
Section 3 introduces T -independence of fuzzy variables. In Section 4, we first discusses the measurability
criteria for fuzzy random vector and obtained two more new equivalent formulations of measurability criteria.
After that, applying the obtained results, we generalize the min-independence condition for fuzzy random
vector to the scenario of continuous triangular norms. Finally, a conclusion is provided in Section 5.
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2 Fuzzy Random Vector

Given a universe Γ, an ample field [19] A on Γ is a class of subsets of Γ that is closed under arbitrary unions,
intersections, and complementation in Γ. Let Pos be a possibility measure defined on the ample field A, a
self-dual set function Cr, called credibility measure, can be formally defined as follows:

Definition 2.1 ([13]) Let Γ be a universe, A an ample field on Γ. The credibility measure, denoted Cr, is
defined as

Cr(A) =
1
2

[1 + Pos(A)− Pos(Ac)] , A ∈ A, (1)

where Ac is the complement of A.

The triplet (Γ,A,Cr) is called a credibility space [12]. A credibility measure has the following properties:

(1) Cr(∅)=0, and Cr(Γ) = 1.

(2) Monotonicity: Cr(A) ≤ Cr(B) for all A,B ⊂ Γ with A ⊂ B.

(3) Self-duality: Cr(A) + Cr(Ac) = 1 for all A ⊂ Γ.

(4) Subadditivity: Cr(A ∪B) ≤ Cr(A) + Cr(B) for all A,B ⊂ Γ.

Definition 2.2 Let (Γ,A,Cr) be a credibility space. A fuzzy vector is a map X = (X1, X2, · · · , Xn) from Γ
to <n such that

{γ ∈ Γ | X(γ) ≤ t} ∈ A (2)

for every t ∈ <n. As n = 1, it is called a fuzzy variable.

In credibility theory, possibility distribution of fuzzy vector X is defined as

µX(t) = Pos{γ | X(γ) = t} (3)

for every t = (t1, t2, · · · , tn) ∈ <n. A fuzzy vector X is said to be upper semicontinuous (abbreviated by usc)
if its possibility distribution µX(x) is usc at every t ∈ <n.

We assume that (Ω,Σ,Pr) is a probability space, and Fn
v is a collection of fuzzy vectors defined on a

credibility space (Γ,A,Cr).

Definition 2.3 ([14]) A fuzzy random vector is a map ξ = (ξ1, ξ2, · · · , ξn) : Ω → Fn
v such that for any closed

subset F ⊂ <n, Pos {γ | ξω(γ) ∈ F} is Σ-measurable, i.e., for any Borel subset B ⊂ [0, 1], we have

{ω ∈ Ω | Pos {γ | ξω(γ) ∈ F} ∈ B} ∈ Σ.

As n = 1, it is called a fuzzy random variable.

A fuzzy random vector ξ is said to be usc if for each ω ∈ Ω, fuzzy vector ξω is usc.

3 T -independence of Fuzzy Variables

A triangular norm (t-norm for short) is a function T : [0, 1]2 → [0, 1] such that for any x, y, z ∈ [0, 1] the
following four axioms are satisfied [5]:

(T1) Commutativity: T (x, y) = T (y, x).

(T2) Associativity: T (x, T (y, z)) = T (T (x, y), z).

(T3) Monotonicity: T (x, y) ≤ T (x, z) whenever y ≤ z.

(T4) Boundary condition: T (x, 1) = x.
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The associativity (T2) allows us to extend each t-norm T in a unique way to an n-ary operation in the usual
way by induction, defining for each n-tuple (x1, x2, · · · , xn) ∈ [0, 1]n

Tn
k=1xk = T (Tn−1

k=1 xk, xn) = T (x1, x2, · · · , xn).

Definition 3.1 Let Xk, k = 1, 2, · · · , n be nk-ary fuzzy vectors, T a t-norm. We say X1, · · · , Xn are T -
independent if

Pos{X1 ∈ B1, · · · , Xn ∈ Bn} = Tn
k=1Pos{Xk ∈ Bk} (4)

for any sets Bk ∈ <nk , k = 1, 2, · · · , n.

Furthermore, a sequence {Xn} of fuzzy vectors is said to be T -independent if for all n ≥ 2, fuzzy vectors
Xi, i = 1, 2, · · · , n are T -independent. Particularly, in the above definition, when all nk = 1 for k = 1, 2, · · · , n,
the T -independence of fuzzy vectors degenerates to that of fuzzy variables (see Cooman [1]).

Theorem 3.1 Suppose that T is a right continuous triangular norm, µk are the possibility distributions of
fuzzy variables ξk, k = 1, 2, · · · , n, respectively, and µ is the possibility distribution function of fuzzy vector
(ξ1, ξ2, · · · , ξn). Then ξ1, ξ2, · · · , ξn are T -independent if and only if

µ(t1, t2, · · · , tn) = Tn
k=1µk (5)

for any real numbers t1, t2, · · · , tn.

Proof. Necessity: Suppose ξ1, ξ2, · · · , ξn are T -independent variables. Then for any real numbers tk, k =
1, 2, · · · , n, letting Bk = {tk}, k = 1, 2, · · · , n, we have

Pos{ξ1 = t1, ξ2 = t2, · · · , ξn = tn} = Tn
k=1Pos{ξk = tk}

which implies (5) is valid. The necessity of the theorem is proved.
Sufficiency: Suppose (5) is valid. Then for any Bk ⊂ <, k = 1, 2, · · · , n, we have

Pos{ξk ∈ Bk, k = 1, 2, · · · , n} = Pos

(
n⋂

k=1

⋃

tk∈Bk

{ξk = tk}
)

= sup
tk∈Bk,1≤k≤n

Tn
k=1Pos{ξk = tk}. (6)

Therefore, for any ε > 0, there is (ť1, ť2, · · · , ťn) ∈ ∏n
k=1 Bk such that

Pos{ξk ∈ Bk, k = 1, 2, · · · , n} < Tn
k=1Pos{ξk = ťk}+ ε ≤ Tn

k=1Pos{ξk ∈ Bk}+ ε,

By the arbitrary of ε, we obtain

Pos{ξk ∈ Bk, k = 1, 2, · · · , n} ≤ Tn
k=1Pos{ξk ∈ Bk}.

On the other hand, for every δ > 0, there is ťk ∈ Bk such that µk(ťk) + δ > Pos{ξk ∈ Bk}. Moreover, by the
right continuity of t-norm T , for any ε > 0, there exists δ > 0 such that

Tn
k=1(µk(ťk) + δ) ≤ Tn

k=1µk(ťk) + ε.

As a consequence, we have

Tn
k=1Pos{ξ ∈ Bk} < Tn

k=1(µk(ťk) + δ) ≤ Tn
k=1µk(ťk) + ε

= Pos{ξk = ťk, k = 1, 2, · · · , n}+ ε

≤ Pos{ξk ∈ Bk, k = 1, 2, · · · , n}+ ε.

Letting ε → 0, we deduce

Pos{ξk ∈ Bk, k = 1, 2, · · · , n} ≥ Tn
k=1Pos{ξk ∈ Bk}.

The sufficiency of the theorem is proved.



158 S. Wang and J. Watada: T -Independence Condition for Fuzzy Random Vector

Theorem 3.2 Let T be a t-norm. The fuzzy variables X1, X2, · · · , Xn are T -independent if and only if

2Cr

{
n⋂

k=1

{Xk ∈ Bk}
}
∧ 1 = Tn

k=1[2Cr{Xk ∈ Bk} ∧ 1] (7)

for any subsets B1, B2, · · · , Bn of <.

Proof. Noting that for any A ∈ A, we have

Pos(A) = 2Cr{A} ∧ 1.

Replacing all Pos{·} in formula (4) by 2Cr{·} ∧ 1, we proved the theorem.

Remark 3.1 If the t-norm T in Theorems 3.2 is taken as ”min” t-norm, then (7) degenerates to

Cr

{
n⋂

k=1

{Xk ∈ Bk}
}

= min
1≤k≤n

Cr{ξk ∈ Bk}

for any sets B1, B2, · · · , Bn of <. That is just the min-independence of fuzzy variables [15, 11].

4 T -independence Condition for Fuzzy Random Vectors

In [3], Feng and Liu established the following measurability criteria for fuzzy random vectors. Based on those
criteria they concluded that under min-independence condition, i.e., ξk,ω, k = 1, 2, · · · , n are min-independent
fuzzy variables for any ω ∈ Ω, if ξk, k = 1, 2, · · · , n are usc fuzzy random variables, then ξ = (ξ1, ξ2, · · · , ξn)
is a fuzzy random vector. In this section, we will generate the result to the case of T -independence condition,
where T is any continuous t-norm.

Theorem 4.1 ([3]) Let (Ω,Σ,Pr) be a complete probability space, and ξ a map from Ω to usc-Fn
v . Then the

following six statements are equivalent:

(i) ξ is a fuzzy random vector in the sense of Definition 2.3.

(ii) For every open subset G ⊂ <n, Pos {ξω ∈ G} is Σ-measurable.

(iii) For every open ball B(t; r) (t ∈ <n, r > 0), Pos {ξω ∈ B(t; r)} is Σ-measurable.

(iv) For every compact set K ⊂ <n, Pos {ξω ∈ K} is Σ-measurable.

(v) For each α ∈ (0, 1], ξα is a random set from Ω to <n.

(vi) For every Borel subset B ⊂ <n, Pos {γ | ξω(γ) ∈ B} is Σ-measurable.

In this section, we first derive the following two more measurability criteria for fuzzy random vectors.

Lemma 4.1 Let (Ω,Σ,Pr) be a complete probability space, and ξ a map from Ω to usc-Fn
v . Then ξ is a fuzzy

random vector if and only if for every open-closed interval I ⊂ <n, Pos{ξω ∈ I} is Σ- measurable.

Proof. From Assertion (vi) in Theorem 4.1, the Necessity is obviously valid since every interval I = (c, d] ⊂ <n

is a Borel subset of <n.
Sufficiency: Since ξ is a map from Ω to usc-Fn

v , for any ω ∈ Ω, ξω = (ξ1,ω, · · · , ξn,ω) is an n-ary fuzzy
vector. Note that every open subset G ⊂ <n can be expressed as the union of at most countable many disjoint
open-closed intervals {Ik}, G = ∪∞k=1Ik, where

Ik =
n∏

j=1

(ck
j , dk

j ], (ck
j , dk

j ] ⊂ <.

Therefore,

Pos{ξω ∈ G} = Pos

{
ξω ∈

∞⋃
n=1

In

}
= sup

n≥1
Pos {ξω ∈ In} .

Since Pos{ξω ∈ I} is Σ- measurable, we have Pos{ξω ∈ G} is Σ- measurable. Furthermore, by Assertion (ii)
in Theorem 4.1, ξ is a fuzzy random vector.
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Lemma 4.2 Let (Ω,Σ,Pr) be a complete probability space, and ξ a map from Ω to usc-Fn
v . Then ξ is a fuzzy

random vector if and only if for every open-closed interval I ⊂ <n, Cr{ξω ∈ I} is Σ- measurable.

Proof. Necessity: Suppose that ξ is a fuzzy random vector. For any open-closed interval I ⊂ <n, Cr{ξω ∈ I}
can be expressed by

Cr{ξω ∈ I} =
1
2
[1 + Pos{ξω ∈ I} − Pos{ξω ∈ Ic}].

Noting that I and Ic both are Borel subset of <n, by Assertion (vi) in Theorem 4.1, Cr{ξω ∈ I} is a Σ-
measurable function.

Sufficiency: We note that for any open-closed interval I ⊂ <n, Pos{ξω ∈ I} can be written as

Pos{ξω ∈ I} = 2Cr{ξω ∈ I} ∧ 1.

Therefore, the measurability of Cr{ξω ∈ I} implies that of Pos{ξω ∈ I}. Furthermore, by Lemma 4.1, ξ is a
fuzzy random vector.

Example 4.1 Assume that Ω is a complete probability space, and C and W are random variables on Ω. Try
to testify ξ is a fuzzy random variable, where

µξω
(x) = exp

(
−

(
x− C(ω)

W (ω)

)2
)

x ∈ <.

We use Lemma 4.1 to testify ξ is a fuzzy random variable. For any open-closed interval (a, b] ⊂ <, to
testify Pos{ξω ∈ (a, b]} is Σ-measurable, it suffices to show the equation

{ω ∈ Ω | Pos{a < ξω ≤ b} ≥ t} ∈ Σ

holds for any t ∈ (0, 1]. Noting that

{ω ∈ Ω | Pos{a < ξω ≤ b} ≥ t}
= {ω ∈ Ω | [C(ω)−W (ω)

√
− ln t, C(ω) + W (ω)

√
− ln t] ∩ (a, b] 6= ∅}

= {ω ∈ Ω | C(ω)−W (ω)
√
− ln t ≤ b} ∩ {ω ∈ Ω | C(ω)−W (ω)

√
− ln t > a} ∈ Σ,

we have Pos{ξω ∈ (a, b]} is Σ-measurable. Furthermore, since µξω
(x) is continuous, by Lemma 4.1, ξ is a

fuzzy random variable.

Theorem 4.2 Let ξk, k = 1, 2, · · · , n be the fuzzy random variables defined on a complete probability space
(Ω,Σ,Pr). If ξk,ω, k = 1, 2, · · · , n are usc T -independent fuzzy variables for any ω ∈ Ω, where T is a continuous
t-norm, then ξ = (ξ1, ξ2, · · · , ξn) is a fuzzy random vector.

Proof. From Lemma 4.1, it suffices to prove Pos{ξω ∈ I} is Σ- measurable for any open-closed interval
I ⊂ <n. Denoting I =

∏n
k=1 Jk =

∏n
k=1(ck, dk], we have

Pos{ξω ∈ I} = Pos

{
(ξ1,ω, ξ2,ω, · · · , ξn,ω) ∈

n∏

k=1

Jk

}
= Pos

{
n⋂

k=1

{ξk,ω ∈ Jk}
}

.

Note that ξk,ω, k = 1, 2, · · · , n are T -independent fuzzy variables, we have

Pos{ξω ∈ I} = Pos

{
n⋂

k=1

{ξk,ω ∈ Jk}
}

= Tn
k=1Pos {ξk,ω ∈ Jk} .

By Proposition 4.1, we know Pos {ξk,ω ∈ Jk} is Σ-measurable, this fact together with that every continuous
t-norm T is a Borel measurable function deduce that Pos{ξω ∈ I} is a Σ-measurable function. This completes
the proof of the theorem.
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Example 4.2 Assume that Ω is a complete probability space, and Y, C and W are random variables on Ω.
Try to testify (ξ, ζ) is a fuzzy random vector, where

µξω
(x) = exp

(
−

(
x− C(ω)

W (ω)

)2
)

x ∈ <,

ζω = (Y (ω)− 2, Y (ω), Y (ω) + 3),

and ξω and ζω are mutual T -independent fuzzy variables, T is a continuous t-norm.

By Example 4.1, we know ξ is a fuzzy random variable, similarly, we can testify ζ is a fuzzy random
variable. Since ξω and ζω are mutually T -independent under a continuous t-norm, by Theorem 4.2, we can
deduce (ξ, ζ) is a fuzzy random vector.

5 Concluding Remarks

In this paper, we studied on the independence condition for fuzzy random vector under continuous triangular
norms, and obtained the following new results.

First, we derived two more new measurability criteria for fuzzy random vector.
Second, based on T -independence of fuzzy variables and the obtained results, we discussed the relationship

between fuzzy random vectors and fuzzy random variables, and generalized the min-independence condition
of fuzzy random vector to T -independence condition in the scenario of continuous triangular norms.
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