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Abstract 
 

In this paper, the application of ambient intelligence computing techniques in the prediction of occupant 
behaviours is addressed. It is aimed to deliver a wellbeing monitoring and assistive environment to support 
elderly lives independently, in control of their day to day activities.  A wireless sensor network is 
constructed to collect the required occupancy data. Individual sensory data are combined to form an 
occupancy time series. In this paper different techniques in time series prediction are investigated. The 
prediction techniques include an Evolving Fuzzy Predictor (EFP) model along with Auto Regressive 
Moving Average (ARMA) model, Adaptive-Network-based Fuzzy Inference System (ANFIS), as well as 
Transductive Neuro-Fuzzy Inference model with Weighted data normalization (TWNFI). These prediction 
techniques are used to predict the occupancy time series representing anticipated occupancy of different 
areas of the environment, and the results are compared. Experimental results are presented based on a 
home environment with four separate areas and each area is equipped with a wireless passive infrared 
motion detector linked to a central processing unit. For wireless communication of the sensor network, 
ZigBee wireless modules are employed in the prototype ambient intelligence environment.  

 © 2008 World Academic Press, UK. All rights reserved.  
Keywords: ambient intelligence, computational intelligence, Wireless Sensor Network (WSN), time series, 
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1 Introduction 
 
It is always useful to be able to predict a particular event in the future in more certain terms rather than a forecast. 
Prediction techniques have been applied in different areas of science and technology. In financial systems, for 
example, stock market prediction has attracted a great deal of attention.  In mechanical and electrical systems, 
condition monitoring and predictive maintenance have the benefit of determining the condition of in-service 
equipment and providing an accurate alarm before a fault reaches critical level [1].  

In this paper, it is intended to investigate prediction techniques in a smart home environment where the 
behaviours of occupants are predicted. This kind of smart environment is called a predictive ambient intelligence 
environment, which can be categorized as the new third generation of smart environments [2]. The new emerging 
third generation of smart environments also known as predictive ambient intelligence environments can learn from 
environmental changes as well as behavioural patterns of occupants.  

Predictive ambient intelligence environments collect data acquired from a sensor network. Collected data include 
a variety of attributes, such as the environmental changes and occupants’ interactions with the environment. These 
data are used in a learning approach to make a predictive ambient intelligence environment that can predict the 
occupancy of different areas, as well as requirements and interests of occupants at different times. This predictive 
feature, for example, can improve the performance of energy saving approaches in a smart environment; in addition, 
it enhances the convenience of occupants as well as security and safety.  

Data collection and prediction are two key challenges of predictive ambient intelligence environments. The first 
challenge is due to the energy and bandwidth constraints in sensor networks [3, 4], but the second challenge, which is 
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the main focus of this article, is a learning problem in distributed sensor networks. A predictive ambient intelligence 
environment can predict the next state of consecutive interactions with the use of the knowledge it has learnt from 
previously observed interactions. For instance, it can predict the favourite light intensity of different occupants in a 
specific area of the environment at a specific time of a day. Prediction consists of pattern extraction to identify 
sequences of actions, and then sequence matching to predict the next action in one of these sequences [5]. 

The prime application of the research reported here is to deliver a wellbeing monitoring and assistive 
environment to support elderly people to live independently, in control and able to care for themselves within the 
limits of their abilities. To take into account the chaotic behaviour of the occupant, the uncertainty and anomalies of 
the occupant behaviour will be modelled. To achieve this goal, historical data are used as the basis for estimating 
occupant behaviour in future.  

In this paper, as part of our ongoing research, a comprehensive comparative study is conducted to investigate 
different approaches available in predictive techniques in prediction of occupant behaviour. A summary of available 
prediction techniques focusing mainly in three areas of data mining, soft computing techniques and statistical 
modelling prediction techniques is reported in section 2. Section 3 covers the data acquisition technologies and the 
proposed data acquisition system for this research. Our proposed environment and data representation for our 
prediction strategy is considered in section 4. Prediction techniques are explained in Section 5 followed by 
experimental results in Section 6. Relevant concluding remarks and further works are discussed in the final section. 
 
2 Prediction Techniques in Ambient Intelligence Environment 
  
Prediction in ambient environments is a learning challenge in distributed sensor networks. There are a variety of 
techniques for this learning challenge including data mining techniques, soft computing techniques and statistical 
modelling techniques. A review of these techniques is presented in this section. 
 
2.1   Data Mining Prediction Techniques 
 
Two prediction techniques coming from the area of data mining are discussed in this section including Case-Based 
Reasoning and Distributed Voting Approach. 
Case-Based Reasoning  

Case-Based Reasoning (CBR) is a classification method that uses previous experiences to find a solution for 
current problem. It has two basic operations including case-generation and case-selection [6]. As a method of 
prediction, context-aware based case-based reasoning proposed in [7] is used as a method of pattern extraction of 
occupants’ behaviour in a predictive ambient intelligence environment. In this method, the context in a smart home is 
classified into three dimensions, namely time, environment and person [8]. In this method each case is represented as 
follows: 

Case= (caseID, personID, habitID, environmentID, activeID, time) 
A system framework proposed for implementing this method is shown in Figure 1.  

 

 

Figure 1: Case-based reasoning system framework. 
Context-aware based CBR is a centralized prediction technique. It stores all cases in a central database, but the 

case adaptation phase in its system framework reduces the number of cases that should be kept in the database. In 
addition, as a centralized approach, context-aware based CBR might not utilize the computational power of sensory 
devices in sensor networks. 
Distributed Voting Approach 

Due to the distributed nature of sensor networks in ambient intelligence environments, implementing distributed 
algorithms for learning approaches becomes possible. Most of these algorithms use the small computational power of 
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individual sensors to construct a powerful learning approach in the whole network. The distributed voting algorithm 
proposed in [9] is one of these algorithms. In this algorithm a tree structure of sensors as small computing devices and 
a powerful computing device in the root of this tree is constructed to solve a classification problem. This tree structure 
is shown in Figure 2.  

 

Figure 2: A tree structure in a distributed voting approach. 
Each sensor as a leaf of the tree uses neural network or decision tree approaches for local prediction. Due to the 

shortage of memory in sensory devices, all training data for different classes are stored in the root. During the 
learning process, each sensor receives training data from the root. After the training phase, each node can measure 
and classify one or more attributes in a local policy. Eventually, in a global prediction, the root receives local 
classification decisions from sensors and performs a global classification by applying a voting strategy. The 
distributed voting approach is categorized as a distributed approach. In spite of the distributed nature of this technique, 
a huge training data is stored in the root. Utilization of sensors’ computational power is the most significant 
advantage of distributed voting approach. 

 
2.2   Soft Computing Prediction Techniques 
 
Three prediction techniques coming from the area of soft computing are discussed in this section including 
Reinforcement Learning, Fuzzy Rule Based Learning and Adaptive Online Fuzzy Inference System. 
Reinforcement Learning 

Reinforcement learning is a method that learns the relation between input and output with trial and error. In this 
method, a function called the reinforcement signal must be maximized [6]. Any significant difference between input 
signal and target signal is considered as a punishment; therefore, the value of the reinforcement signal decreases. On 
the other hand, a slight difference between input signal and target signal is considered as a reward; hence, the value of 
the reinforcement signal increases. As an example of reinforcement learning technique, [10] proposes an intelligent 
lighting control in which a multi-agent system controls lights. This technique concerns varying lighting preferences of 
different users for different tasks. Figure 3 shows a physical space equipped with identification sensors, photo sensors 
and actuators. 

 

Figure 3: Physical space equipped with sensors and actuators. 
In [10], the reinforcement learning technique is used to train the agents. An agent uses users’ location and light 

readings as the state space for the reinforcement learner and attempts to take actions that lead to appropriate light 
settings. For example, the absolute difference between the light intensity sensed by an agent before and after the user 
action is used as a negative reinforcement or punishment. Also, if an agent turns a light on and the user turns it off 
then the agent receives a negative reinforcement. In contrast, if a person does not change anything the agent receives a 
positive reinforcement as a reward. Due to the multi-agent nature of this technique, it is categorized as a distributed 
approach, but it does not utilize the computational power of sensory devices. 
Fuzzy Rule Based Learning 

The multi-agent framework proposed in [11] can be deployed in an intelligent building equipped with sensors 
and effectors. In this approach, each agent controls and learns about a small sub-region of the entire environment. 
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Here, knowledge is represented by fuzzy rules and the learning process is an unsupervised algorithm. In the learning 
process, inputs from sensors are sampled and transformed to fuzzy sets in a fuzzification phase. Then, the learning 
process compares the fuzzy inputs with stored fuzzy rules. Any significant difference between fuzzy inputs and stored 
fuzzy rules is considered as a punishment. On the other hand, a slight difference between fuzzy inputs and fuzzy rule 
is a reward to the fuzzy rule. This technique is illustrated in Figure 4.  

 

Figure 4: Fuzzy rule-based learning. 
For example, assume that an agent in the study room contains the following rule: 

If time is 8pm and Bob is in study room then set the light intensity to 10 
If, as a sample, the system recognizes that Bob is in study room and time is 8pm but the light intensity of Bob’s 
preference is 5, then the stored rule receives a significant punishment, or it may be replaced with a new rule. This 
technique is a multi-agent technique and it is categorized as a distributed approach. Despite the distributed nature of 
this technique, it does not utilize the computational power of sensory devices. The most significant advantage of 
fuzzy rule-based learning is the reduction of raw data by applying the fuzzification mechanism. 
Adaptive Online Fuzzy Inference System 

In [12], an Adaptive Online Fuzzy Inference System (AOFIS) as a learning and control system is proposed. The 
authors do their experiments in the Essex intelligent dormitory (iDorm) as a test bed. The AOFIS prediction approach 
contains three phases for learning and two phases for control and adaptation: 

a) Monitoring the users’ interactions and capturing input/output data associated with their actions 
b) Extraction of the fuzzy membership functions from the data 
c) Extraction of the fuzzy rules from the recorded data 
d) The agent controller 
e) Life-long learning and adaptation mechanism 
In the first phase, sensors take a snapshot from users’ action, as well as sensors readings before the users’ action. 

For instance, assume that the temperature of an area is 30 and a user sets the air conditioner to 25. The system takes a 
snapshot from the both current temperature and the user’s temperature preference. In the second phase, different 
techniques of clustering such as Fuzzy C-Means, Double Clustering, Agglomerative Hierarchical Clustering 
Approach and Quantification of Fuzzy Membership Functions are used to extract fuzzy membership function. With 
these techniques the accumulated user input/output data is categorized into a set of fuzzy membership functions 
which quantify the raw crisp values of the sensors and actuators into linguistic labels, such as normal, cold, or hot. In 
the third phase, the defined set of membership functions are combined with the existing user input/output data to 
extract the rules defining the users’ behaviours. The fuzzy rule extraction approach used by AOFIS is based on an 
enhanced version of the Mendel Wang method that is a one-pass technique for extracting fuzzy rules from the 
sampled data. With extraction of membership functions and a set of rules, the agents’ Fuzzy Logic Controller (FLC) 
becomes capable to capture human behaviours. Therefore, in the fourth phase, the agent monitors the state of the 
environment and affects actuators based on its learned FLC that approximates the preferences of the user. Finally, in 
the fifth phase, the agent adapts its existing rules or adds new rules based on the new preferences of the user. For 
example, if the user changes the settings of the environment, then the agent would adapt itself with new preferences. 
Five phases of AOFIS are illustrated in Figure 5. 

 

Figure 5: Five phases of Adaptive Online Fuzzy Inference System (AOFIS). 
Due to the use of fuzzy membership functions, the amount of data that needs to be kept in the AOFIS technique 

is reduced. This technique can be used as either a centralized or multi-agent approach. 
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2.3 Statistical Modelling Prediction Techniques 
Statistical approaches such as the Markov model are also considered in ambient intelligence environments. The 
Markov model is a statistical method of modelling that uses a Markov chain to define a process. In a Markov chain, 
the next state of the system only depends on the present state. Transition probability between two states in a Markov 
chain is represented by a transition matrix. Figure 6 illustrates a simple example of a Markov chain, as well as its 
transition probability matrix. 

 

 

Figure 6: Markov chain and transition probability matrix. 
The Markov chain is used in [13] to model daily activity of elderly people living alone in a smart home. In this 

approach, first of all, a profile transition probability matrix from observed sensory data for each elderly person is 
generated and stored in a database. Then, during a daily activity, a test transition probability matrix is generated. 
Minor differences between profile and test matrices with an acceptable tolerance shows that the health status of the 
elderly person is not changed. In contrast, any significant statistical difference between these two matrices can be 
considered as an abnormal health status of the elderly person. The significance of a statistical model such as the 
Markov chain in modelling ambient intelligence environments is due to its simplicity and capability of representing 
systems with multiple transitions. 

 

2.4 Summary of Reviewed Prediction Techniques 
The prediction problem in an ambient intelligence environment is mostly the difficulty of pattern extraction in a 
distributed sensor network. Due to the distributed nature of sensor networks, it becomes possible to apply distributed 
prediction approaches to them. The distributed voting approach reviewed as a data mining technique is an example of 
such approaches. On the other hand, the small computational power of individual sensors makes it difficult to execute 
complicated prediction techniques with their huge training datasets. Therefore, the push is to less distributed 
techniques or multi-agent techniques. Case-Based Reasoning reviewed as a data mining prediction technique is a 
centralized approach in which patterns and training datasets are stored in a database. Two other techniques including 
Reinforcement learning and Fuzzy rule based learning can be categorized as multi-agent approaches but AOFIS can 
be categorized either as a centralized or as a multi-agent approach.  

Collected data from sensory devices in a sensor network can become extremely large and problematic. It was 
shown that some reviewed approaches use compression, regression or fuzzy methods to overcome this challenge. On 
the other hand, it could be problematic in terms of robustness as the system may lose some data by applying these 
techniques. 

It is less likely that a prediction technique contains all features discussed above. However, the most effective 
prediction technique is strongly dependant on the characteristics of the environment it should be applied to. Besides, 
the complexity of the application should be considered when choosing an appropriate method of prediction. For 
example, a predictive ambient intelligence environment with occupancy, temperature, and light intensity control 
might need a fusion of techniques for prediction purposes. 

 

3 Data Acquisition in Ambient Intelligence Environment 
Data acquisition is the first phase in making a predictive ambient intelligence environment. The data acquired 
includes the occupancy of different areas, environmental attributes, the state of the intelligent devices, and 
interactions between occupants and devices. This data is then used by intelligent approaches for training and 
adaptation in a predictive ambient intelligence environment. A data acquisition system should perform two major 
tasks - sensation and transmission.  

Sensory devices are responsible for sensation in a data acquisition system. Nowadays, variety of sensors can be 
used to perform this task. Typical sensors are as follows: 
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a) Passive Infrared Sensor (PIR): PIR or motion detector is sensitive to the movements of living objects. This 
sort of sensors is normally used to control the occupancy of different areas. 

b) Door Contact Sensor: Door contact sensor is a type of magnetic switch which can detect the open and closed 
states of a door.  

c) Temperature Sensor: A type of resistive sensor which is sensitive to the environmental temperature. 
d) Light Intensity Sensor: A type of resistive sensor which is sensitive to the light intensity of the environment. 
e) Electrical Current Sensor: A type of sensor that can monitor the activity of electrical devices by measuring 

their electrical current consumption. 
The transmission mechanism in a data acquisition system is responsible for the transmission of sensed values by 

sensory devices to the central processing unit for data collection and processing. To overcome the challenge of 
sensory data transmission, a sensor network can be set up. A sensor network is a network of interconnected sensors in 
which the sensors can communicate with each other as well as the base station. The role of a sensor network in a very 
large environment with many sensors becomes more significant. There are two types of sensor networks, namely 
wired sensor network and Wireless Sensor Network (WSN).  

It is apparent that in a wired sensor network, sensory devices are connected via a wired network. In spite of its 
simplicity, a wired sensor network is a very expensive means of sensory data transmission due to the wiring costs, 
particularly in environments with massive numbers of sensors. For example, X10 is a well established wired sensor 
networks in which sensory devices and actuators can communicate with the base station via electrical power lines. 

In a WSN, there is no need for any wired infrastructure. Sensory devices accompanied by their wireless modules 
can be deployed anywhere in an ambient intelligence environment. Wireless sensor networks, in comparison with 
wired sensor networks, are more flexible in terms of the deployment and the required infrastructure of the network in 
ambient intelligence environments. Power consumption is the most important concern in wireless sensor networks 
because sensory devices and their wireless modules are usually powered by batteries [3, 4].  

The new IEEE standard (IEEE 802.15.4) in wireless technology for low speed communications has opened a new 
direction in WSN [14]. This standard can support up to 250 Kbps data rate which is a very good speed for 
communication in the scale of a sensor network. This standard was then applied by the ZigBee Alliance to develop 
the ZigBee protocol as a wireless network suitable for low speed communications in the scale of a network of sensory 
devices. Many companies have produced wireless modules based on ZigBee protocol so far. For example, Atmel, 
Texas Instruments, Maxstream (XBee), Silicon Lab and Telegesis have introduced their version of ZigBee wireless 
devices.  

The ZigBee protocol supports three topologies: star or single hop, cluster tree and mesh topologies to provide a 
larger range of activity [14]. Star topology is the simplest form of a ZigBee WSN in which all installed wireless 
devices only communicate with one wireless device that is interfaced with a PC or a base-station (Figure 7). This 
topology is suitable in a short range WSN. On the other hand, for long range communication in bigger environments 
or in the case of existence of obstacles in the environment which can decrease the wireless communication range, tree 
or mesh topologies are proposed. For example, in a tree topology some devices act as routers in the wireless sensor 
network to resolve the problem of either long range communication or obstacles in environment. Figure 8 is an 
illustration of such a tree wireless sensor network. 

 

 

Figure 7: A star network of ZigBee wireless modules. 
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Figure 8: A tree network of ZigBee wireless modules. 
As discussed earlier in this section, to build an ambient intelligence environment a data acquisition system 

including a variety of sensors and a communication mechanism such as a wireless sensor network is required. The 
collected data is then logged in the base-station to be used in prediction techniques. In the next section, type and 
format of collected data as well as the representation of this information are investigated. 

 

4 Data Representation of A Proposed Environment 
In our scenario of an ambient intelligence environment, a home environment including four different areas is 
proposed. As it is shown in Figure 9, this environment includes one bedroom, one lounge, a corridor, and a kitchen.  

 

 

Figure 9 - Proposed home environment. 
In this single-occupancy scenario, the occupancy of different areas for one occupant is considered. To identify 

the occupancy of different areas in such an environment, a wireless sensor network collects sensory data from the 
whole environment. In order to detect if an area is occupied, a PIR motion detection sensor installed in that area can 
detect the movement of living objects. In our scenario, four PIRs can cover the entire proposed environment. To 
support PIR devices in occupancy detection we can use different types of sensors. For example, we can use a light 
intensity sensor in the bedroom, a light intensity sensor and an electrical current sensor (for a TV) in the lounge, and a 
light intensity sensor, a temperature sensor and a gas flow sensor in the kitchen to support PIR activations in such 
areas.  

Although supporting sensors and detectors can help us to determine the occupancy of an area, the occupancy 
detection is mostly the responsibility of PIR motion detection sensors in that area. The signal generated by a PIR is 
intrinsically a digital signal. PIR sensors are sensitive to the movement of living objects. Any movement within the 
detection range of a PIR will cause a logical 1 signal until the object stops its movement. As soon as the moving 
object stopped its movement, the signal level returns to logical 0. The behaviour of a PIR is shown in Figure 10. 

 

 

Figure 10: A PIR sensor signal. 
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A sample of collected data from PIR sensors are depicted in Figure 11. This figure shows the activity for five 
days in the proposed environment.  

 

Figure 11: Passive Infrared signals for five days in the proposed environment. 
To represent the signals received from PIRs in a single graph, it is proposed to present all signals based on the 

level of activity or the duration of the PIR activity in each area.  Figure 12 is an illustration of this transformation 
from Figure 11 to this new representation based on the level of activity. 

 

Figure 12: Passive Infrared signals representation based on the level of activity for each sensor. 
In order to generate a suitable continuous form of signal for prediction, a transformation of a crisp signal to a 

continuous signal is proposed. This transformation is performed in two following phases:  
In the first phase, we assume a level for each PIR signal and represent them in a time based graph. The combined 

signal representation for passive infrared signals in Figure 11 is shown in Figure 13. In this figure, each level 
represents the occupancy of an area. For instance, level B in this graph shows the occupancy of the area B (lounge) or 
the firing of the PIR sensor in this area. As the proposed environment is a single-occupancy environment, there will 
not be any parallel activation of PIR sensors. 

 

Figure 13: The first phase of continuous representation of passive infrared signals in a single graph. 
In the second phase of continuous signal representation, the combined occupancy signal shown in Figure 13 will 

pass through a low pass filter to eliminate its sharp edges. In order to do this, we apply a Bessel type low-pass filter to 
the combined occupancy signal. Figure 14 is a softened edge representation of Figure 13 after passing it through a 
Bessel low-pass filter. This representation of the combined occupancy signal is more suitable for use by prediction 
techniques.  
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Figure 14: Softened edge combined occupancy signal. 
The combined occupancy signal  represents the behaviour of the occupant and his/her movement in the 

proposed environment. As expected, this signal is representing a time series. 
( )x t

Therefore, the prediction of the behaviour of an occupant is formulated into prediction of the combined 
occupancy time series . This series is mainly influenced by life style and the behaviour of individual occupant. 
However, daily temperature, time of the day, day of the week, week of the year and public holidays will have a big 
impact on the occupancy time series. There are other factors that can affect the occupancy time series which are 
extremely difficult to model. Assuming that only a pattern of usage for working days are included in our study, then it 
is expected that the generated time series would be a stationary time series. 

( )x t

   
5 Prediction Techniques 
 
In the literature several techniques have addressed time series prediction [15].  Stochastic models and dynamic-based 
techniques are the main classical techniques reported in literature [16]. However, these techniques are found to under 
perform in predicting the behaviour in complex systems. Alternative approaches have been investigated by many 
researchers. These approaches use computational intelligence techniques such as Neural Networks, Neuro-Fuzzy and 
Evolutionary Fuzzy Systems [17-20]. In recent years, more attention has been paid to learning and adaptive systems 
integrated with computational intelligence techniques. Evolving predictive systems capable of updating the 
parameters and structure simultaneously are proposed in [21-23]. 

The goal of the prediction task is to use past values of time series to the time t  to predict the values at some point 
in the future t δ+ . A mapping from p  points of the time series spaced Δ  apart is created to predict future 
value ˆ ( )x t δ+ . 

 ˆ[ ( ( 1) ) ... ( ( ) ) ... ( ) ( )] ( )x t p x t p j x t x t x t δ− − Δ − − Δ −Δ ⇒ +                              (1) 

The predicted values of the combined occupancy time series ˆ(x t )δ+ is then translated into the occupancy of the 
environment as described in the preceding section. 

In this paper a proposed Evolving Fuzzy Predictor (EFP) model will be used to predict the combined occupancy 
time series. The prediction results of occupancy time series are also compared with the following three well 
established techniques.   

• Auto Regressive Moving Average (ARMA) model [24, 25], 
• Adaptive-Network-based Fuzzy Inference System (ANFIS) [26], 
• Transductive Neuro-Fuzzy Inference model with Weighted data normalization (TWNFI) [27]. 

More details about the Evolving Fuzzy Predictor model as well as ARMA model are given in the following two 
sections. Readers are referred to the original papers for more information about ANFIS and TWNFI techniques. 

 

5.1   Evolving Fuzzy Predictor Model 
 
To predict the combined occupancy time series ( )x t , the current and past values of the signal are modeled as rules 
that represent the nonlinear relationship between these values. A fuzzy rule of the following form will be used as the 
model for prediction of the occupancy time series: 

iR : If ( )x t  is p
iA�  … and  ( ( ) )x t p j− − Δ  is j

iA�  ... and ( ( 1) )x t p− − Δ is 1
iA�  then ( )x t δ+  is iB  
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where iR  is the label of i th rule, ( ( ) ) : = 1, ,x t p j j− − Δ … p  is the j th input, (x t )δ+  is the  output,  

(  and ) is a fuzzy label, and 

j
iA�

= 1,2, ,i n… = 1, ,j … p iB  is either a real number or a linear combination of inputs 

.  and 0 1= * ( ) * ( ( 1)i i i piB q q x t q x t p+ + + − −… n)Δ p  are the numbers of rules and individual inputs 
respectively. It is assumed that the universe of input variables is limited to a specific domain interval, i.e. 

( ) [ ,  ]x t x x− +∈ . 

The decision, ˆ (x t )δ+  for the th instance, as a function of inputs i ( ( ) ) : = 1 , ,x t p j j p− − Δ … , is given in 
the following equation: 

 =1

=1

ˆ ( ) =

n

i i
i

n

i
i

w B
x t

w
δ+

∑

∑
                                          (2) 

where iB  is the consequent parameters and  is the rule firing strength given by: iw

                 (3) 
=1

= ( ( ( ) )   = 1, 2,
p

i jAij

w x t p j iμ − − Δ∏ � …, n

where jAi
μ �  is the membership function (MF) of the fuzzy value . Gaussian membership functions with two 

parameters 

j
iA�

j
iρ  and j

iσ  as the mean and spread of MFs are considered.  

 
2

( ( ) )( ( ( ) )) = exp
j

i
j jAi i

x t p jx t p j ρμ
σ

⎛ ⎞⎛ ⎞− − Δ −⎜ ⎟− − Δ −⎜⎜ ⎟⎝ ⎠⎝ ⎠
� ⎟

)

.                          (4) 

In short, the parameters of a fuzzy rule-based system are defined as .  = [ , , ]j j
i j i i iBσ ρΘ

The prediction problem is now in the form of identifying the parameters of the rule base, . Starting from the 
initial values of the parameters, to update these parameters as more data is available, the adaptation technique 
presented in the next section can be employed.  

i jΘ

 
5.1.1   Predictor Model Adaptation 
 
To minimize the difference between the predicted occupancy time series ˆ (x t δ+  and actual occupancy time series 

(x t )δ+ , the error generated from all data must be minimized. The following mean square error function is 
considered for minimization of the prediction error.  

                       2

=1 =1

1 1 ˆ( ) = ( ) = ( ( ) ( ))
2 2

s s

k ij
k k

E e x t x t 2δ δΘ Θ + − +∑ ∑                                            (5) 

where  is the difference between the actual value,ke (x t )δ+ , and the predicted value, ˆ(x t )δ+ , for the k th 
training data sample. We assume that there are a total of  samples in the training data set.  s

All parameters of the fuzzy predictor model, = [ , , ]j j
i j i i iBσ ρΘ , can be updated using a steepest gradient 

descent method to minimize the error function ( )E Θ  given in expression (5). The parameters then will be updated 
by the following rule:  

 | |ij new ij old ijeηΘ = Θ − ∇                           (6) 

where  is the gradient of parameters and ije∇ η  is the rate of descent which may be chosen arbitrarily.  
The partial derivative of the error function, ( )E Θ  with respect to each parameter is given below: 

 =ij j j
i i i

E E Ee
Bσ ρ

⎡ ⎤∂ ∂ ∂
∇ ⎢ ⎥∂ ∂ ∂⎣ ⎦

                      (7) 
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where 

 

1

k i
n
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It is anticipated that when the parameters are adapted, the prediction error will be reduced. It should be noted that 
the gradient descent technique mentioned above suffers from various convergence problems. This has been 
investigated by many researchers. The convergence problem of the steepest descent technique in fuzzy inference 
systems modelling is discussed in [28].  

It is reasonable to take large steps down the gradient at locations where the gradient is small and small steps 
where the gradient is large. If both gradient and curvature information namely the second derivatives are used then the 
error will be minimized in shorter time and more accurately. 

The gradient descent is too slow for real-time adaptation. To increase the speed, the Levenberg-Marquardt (LM) 
algorithm is considered for parameters adaptation [29]. This algorithm is designed to approach second-order training 
speed without having to compute the Hessian matrix. The LM algorithm update rule is given as: 

1| | ( )T
ij new ij old kJ J I J eμ −Θ = Θ − +                                                             (11) 

where 0μ ≥ ,  and ijJ e= ∇ I is the identity matrix. Even though this technique is computationally more 
demanding, it will update the parameters of the fuzzy rule-base more quickly. This has proven to be a useful tool for 
real-time rule adaptation.  

 
5.2   Auto Regressive Moving Average 
This technique is used as a basis for the analysis and it is a well established technique in prediction of financial time 
series. Any ARMA model has two parameters respectively, p and . The first parameter is the Auto Regression 

parameter and the second parameter is the Moving Average parameter. Hence an ARMA process 

q

( )x t  can be 
presented as follows [25]: 

1 1( ) ( 1) ... ( ) ( ) ( 1) ... ( )p qx t x t x t p z t z t z t qφ φ θ θ− − − − − = + − + + −                              (12) 

where is the white noise with mean 0 and variance( )z t 2σ , φ  is the coefficient of the Auto Regression part, and θ  

is the coefficient of the Moving Average part. Expression (12) can be formulated as:   

1 1
( ) ( ) ( ) ( )

p q

i i
i i

x t z t x t i z t iφ θ
= =

= + − + −∑ ∑                                   (13) 

The polynomials φ  and θ  will be referred to as the autoregressive and moving average polynomials 

respectively. Applying the Innovations Algorithm Proposition [25] to the transformed process, ( )x t , we obtain: 
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Equations (14) determine the one-step predictors ( 2 )x
∧

, ( 3 )x
∧

, … recursively. 
 

6 Experimental Results 
 
To validate the proposed techniques in the preceding sections, a prototype single occupancy environment with 4 areas 
are considered. This environment consists of four different areas: A, B, C, and D as depicted in Figure 15. 

 

 

Figure 15: Prototype environment. 
To sense the occupancy state of the prototype environment, a PIR sensor is installed in each area.  Sensory data 

from PIRs are collected via a Wireless Sensor Network (WSN). After some initial investigation, it was decided to use 
Maxstream XBee wireless modules to install our prototype ambient intelligence environment. To overcome the 
challenge of power consumption, XBee modules are able to operate in a very efficient power saving mode. The XBee 
module used in this project is a part of a PICAXE board consisting of a PIC microcontroller, a PC serial interface 
section, relevant power supply circuit, XBee module activity indicators and input/output pins for interfacing with both 
microcontroller and XBee wireless module [30]. Each PICAXE board includes a jumper for connecting the serial 
input pin of XBee module to the serial output pin. With this feature the PICAXE XBee board can operate as a router 
in a wireless sensor network. Moreover, a PICAXE XBee board can be configured to control the modes of operation 
of XBee modules including transceiver mode and power saving mode. 

As the proposed environment is a rather small home environment, a WSN of five XBee modules with star 
topology is configured. In this network, PIR sensors are connected to four XBee modules while the fifth module that 
is interfaced with a PC acts as a core of the star network. In order to reduce the power consumption, the PIC 
microcontrollers are programmed to activate XBee wireless modules whenever a change in the sensor reading is 
detected. Otherwise, the XBee modules will remain in power saving (sleep) mode. In the base station, any received 
data from sensory devices can be identified with the address of the sender XBee module. After this identification the 
data is logged with a record of the date, time and the detected value to be used in our prediction techniques. 

The occupancy data were collected from the proposed environment for 15 working days (Holidays and weekends 
are not included). Combined occupancy time series is shown in Figure 16 where PIR sensors are monitored every 
minute (1440 samples per day). In this representation the signal of the fired PIR is assumed to remain 1 until another 
PIR gets fired. 
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Figure 16: Combined time series for 15 working days. 

The Evolving Fuzzy Predictor model is set to perform prediction based on 15 minutes ahead prediction i.e. 
15δ = . Only 5 samples of the time series 5p =  and 15Δ =  are considered for our predictive model. Therefore, by 

monitoring the occupancy time series in every quarter of an hour of the last hour, the model should be able to predict 
the location of the occupant in the next 15 minutes or so. This is formulated in expression (15).     
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                  (15) ˆ( 15) = ( ( ), ( 15), ( 30), ( 45), ( 60))x t f x t x t x t x t x t+ − − − −
A fuzzy rule-based model with five inputs and one output was generated (Figure 17). For all inputs 2  

membership functions in the universe of  [1 4] are defined.   
 

 

Figure 17: A Fuzzy rule-based model for prediction of 15 minutes. 
In this experiment, collected data for 12 days are used for training the Evolving Fuzzy Predictor model. Other 3 

days of data are used for checking the prediction technique after training phase. The predicted signal is depicted in 
Figure 18.  
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Figure 18: Evolving Fuzzy Predictor model predicted signal (15 minutes ahead). 

As it was mentioned earlier in section 4, the minimum difference between the occupancy of different areas in the 
combined occupancy signal is one level. Therefore, with differences less than half a level the predicted signal works 
properly.  Prediction error for the above experiment is shown in Figure 19.   
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Figure 19: Evolving Fuzzy Predictor model prediction error. 

The Evolving Fuzzy Predictor model trialled for 100 epochs reaches the minimum learning error of 0.0574 after 
8 epochs. The learning error (RMSE) of Evolving Fuzzy Predictor model is depicted in Figure 20.  
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Figure 20: EFP learning error. 

For the next experiment, an ARMA model is created to predict the occupancy combined signal. The applied 
model is an ARMA model of order four (ARMA [4, 4]) and the prediction step in this model is set to 15 which is 
equal to 15 minutes in the combined occupancy signal. Figure 21 illustrates the predicted signal after 20 iterations for 
the estimation of coefficients in the proposed ARMA model.  
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Figure 21: ARMA predicted signal (15 minutes ahead). 

The absolute error for ARMA model predicted occupancy signal shown in Figure 22 is less than 0.2 except at 
starting points which is smaller than our critical error (half a level).  
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Figure 22: ARMA prediction error. 

An ANFIS model is trialled as the third technique for time series prediction. With two Gaussian membership 
functions for each input, a Sugeno-type ANFIS model is constructed of 32 rules. By applying the time series to the 
model after 100 epochs, a 15-minute prediction is performed. The learning error of this model is depicted in Figure 23. 
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Figure 23: ANFIS learning error. 

In the last experiment, a TWNFI technique is used to predict the occupancy time series. The model is trained for 
a twelve-day period reaching an RMSE learning error of 0.141 with a rule average number of 1.5. The predicted 
signal for a period of 5 days is illustrated in Figure 24.  
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Figure 24: TWNFI predicted signal (15 minutes ahead). 

The Prediction error of TWNFI crosses the critical level (half a level) in some points at the edges of the signal.  
A summary of prediction techniques used in this paper is presented in Table 1. 
     The results in this section show the ability of the employed techniques to predict the combined occupancy time 
series. Except TWNFI in which predicted signal in some points at sharp edges fails to present a reliable prediction, 
other three techniques show a reliable prediction of the combined time series with their less than a half level absolute 
errors. The proposed Evolving Fuzzy Predictor model as a fuzzy rule-based model in comparison with ANFIS as a 
similar technique shows a better convergence in the learning phase with reaching the minimum learning error after 8 
epochs. However, both techniques perform a very good prediction with the absolute error of less than 0.3 a level and 
the minimum learning error of 0.0574. The ARMA model as a classical linear prediction technique with the absolute 
error of less than 0.2 a level presents the respectful ability of this technique in predicting our time series. 
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Table 1: Prediction techniques in comparison. 

 order training/estimation 
error 

absolute 
error 

training 
time 

EFP MF = 2, rules 
= 32 

0.0574 after 8 
epochs 

Less 
than 0.3 

100 
epochs 

ARMA p = 4 , q = 4 0.0342 Less 
than 0.2 

20 
iterations 

ANFIS MF = 2, rules 
= 32 

0.0574 after 50 
epochs 

Less 
than 0.3 

100 
epochs 

TWNFI average rules 
= 1.5 0.141 Less 

than 1.05 
100 

epochs 
  

7 Conclusions and Further Research 
 
This paper presents an occupant behaviour prediction technique for an ambient intelligence computing environment. 
The proposed technique has proven to be very practical for single occupant environment. The project aim is to deliver 
a wellbeing monitoring and assistive environment to support elderly lives independently and the assumption of single 
occupancy is not far from reality.  However, the research will continue to investigate multi-user patterns and non-
stationary occupancy time series when the occupancy pattern is investigated over a longer period of time and 
unpredictable events such as visits by friends or relatives. 
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