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Abstract 
 

This paper mainly concerns projective synchronization (PS) of a new chaotic system. PS with both identical and 
different scaling factors between two identical chaotic systems is realized. In addition, the PS of new chaotic system 
with unknown parameters including the unknown coefficients of nonlinear terms is studied by using adaptive control. 
Numerical simulations are presented to show the effectiveness of the proposed chaos synchronization scheme.  
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1 Introduction 
 
Since the pioneering work of Fujisaka and Yamada [1] and Pecora and Carroll [2], chaos synchronization has become 
an active research subject in nonlinear science because of its many potential applications in physics, secure 
communication, chemical reactor, biological networks, economics, and artificial neural networks. Especially, several 
theoretical studies and laboratory experimentations about chaos synchronization have been applied to the secure 
communication. Generally speaking, the idea of synchronization is to use the output of a drive system to control a 
response system so that the response of the latter follows the output of the drive system asymptotically. Up to now, 
various schemes of synchrony such as complete synchronization [3], phase synchronization [4], lag synchronization 
[5], and generalized synchronization [6]. have been described and studied. 

In recent years, projective synchronization, which has been first reported by Mainieri and Rehacek [7] in partially 
linear systems and developed by many authors [8-11], is the most noticeable one. More recently, a new 
synchronization method called ‘Modified projective synchronization’ is proposed in [12] where the chaotic systems 
can synchronize up to a constant scaling matrix. Modified projective synchronization in two chaotic systems with 
unknown parameters is realized by using adaptive control [12-15]. Furthermore, the PS has been used in the research 
of secure communication [16] due to the unpredictability of the scaling factor. 

This paper addresses projective synchronization of a new chaotic system. PS with both identical and different 
scaling factors between two identical chaotic systems is achieved. We also present an effective scheme for PS in two 
chaotic systems with uncertainties rendered by the unknown coefficients of nonlinear terms, however, the current 
study mainly take into account chaotic system with uncertain linear terms coefficients [12-15]. 

At present, we constructed a new chaotic system [17], which is described by 
( )

2

x a y x
y b x c y x z
z x h z

= −⎧
⎪

= + −⎨
⎪ = −⎩

                                                                                   (1) 

where a, b, c and h are constants. When parameters a=20，b=14, c=10.6 and h=2.8, the system (1) shows chaotic 
behavior. For more detailed analysis of the complex dynamics of the system, please see relative reference [17]. 

The organization of this paper is as follows. In Section 2, we achieve projective synchronization in the new chaotic 
system with both identical and different scaling factors. In Section 3, by employing adaptive control theory, we obtain 
a sufficient condition for projective synchronization in the new chaotic system with unknown parameters. Conclusion 
is obtained in the final section. 
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2    Projective Synchronization between Two Chaotic Systems  
 
In this section, projective synchronization in the new chaotic system with both identical and different scaling factors 
is achieved via the Lyapunov stability theory and Barblat’s lemma. 
 
2.1   PS with identical scaling factor 
 
In this subsection, by using the Lyapunov stability theory and Barblat’s lemma, we obtain the condition for projective 
synchronization between two chaotic systems. 

From (1), the drive system is as follows 
( )1 2 1

2 1 2 1

2
3 1 3,

x a x x

3x bx cx x x

x x hx

= −⎧
⎪

= + −⎨
⎪ = −⎩

                                                             (2) 

and the response system with control input reads  
( )1 2 1 1

2 1 2 1 3 2

2
3 1 3 3

y a y y u
y by cy y y u

y y hy u

= − +⎧
⎪

= + − +⎨
⎪ = − +⎩

                                                         (3) 

where  are the nonlinear control laws such that two chaotic systems can be synchronized with a scaling 
factor

( 1, 2,3iu i = )
α . Define the error signals as e xi i iyα= − ( 1, 2,3)i = . 

We have the following error dynamics 

1 2 1 1

2 1 2 1 3 1 3
2 2

3 3 1 1 3.

e ae ae u
e be ce x x y y u

e he x y u

α

2α α

α α

⎧ = − −
⎪

= + − + −⎨
⎪ = − + − −⎩

                                        (4) 

For two identical chaotic systems without ( 0iu )= , if the initial condition of two systems is different, the 
trajectories of the two identical systems will quickly separate each other and become irrelevant. However, for the two 
controlled chaotic systems, the two systems will approach synchronization for any initial condition by appropriate 
control laws. For this goal, the following laws for the system (3) are designed 

[ ]1 2 1 1

2 1 1 3 1 3 2

2 2
3 1 1 3 3

1 ( )

1 [ (

1 [ ( ) ]

u ae k a e

u be x x y y k c e

u x y k h e

α

α
α

α
α

⎧ = + −⎪
⎪
⎪ = − + + +⎨
⎪
⎪ = − + −⎪⎩

2) ]                                                    (5) 

where ki (i=1, 2, 3) are the control gains of positive scalars. 
Then, we have the following theorem 

 
Theorem 1 For given nonzero scalarα , the PS between two systems (2) and (3) will occur by the adaptive control 
laws (5). 
 
Proof. Choose the following Lyapunov function 

( )2 2 2
1 2 3

1
2

V e e e= + + . 

The time derivative of the Lyapunov function along the trajectory of error system (4) is 
1 1 2 2 3 3V e e e e e e= + +

[ ] [ ] 2 2
1 2 1 1 2 1 2 1 3 1 3 2 3 3 1 1[ ]e ae ae u e be ce x x y y u e he x y uα α α= − − + + − − − + − + − − 3α α .                         (6) 

By substituting Eq.(5) into Eq.(6), we have 2 2 2
1 1 2 2 3 3 0V k e k e k e= − − − ≤ ，where eT=(e1, e2, e3), p= diag(k1, k2, k3).  
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Since is negative semi-definite, we can not immediately obtain that the origin of error system (4) is 

asymptotically stable. In fact, as , then 

V
0V ≤ 1 2 3, ,e e e L∞∈ . From the error system (4), we have 1 2 3, ,e e e L∞∈ . 

Since  and p is a positive-definite matrix, we obtain  TV e p= − e

( ) ( )2
min0 0 0

(0) ( ) 0
t t tTp e dt e pedt Vdt V V t Vλ ≤ = − = − ≤∫ ∫ ∫ , 

where min ( )pλ  is the minimum eigenvalue of positive matrix p .Then 1 2 3 2, ,e e e L∈ . According to the Barbalat’s 

lemma, we have lim ( ) 0 .
t

e t
→ ∞

= Therefore, the response system (3) synchronizes the drive system (2). This 

completes the proof. 
 

Numerical simulations are given to show the feasibility and effectiveness of the controllers (5). Choose the scaling 
factor 2α=−  and the control gains k1=4, k2=8, k3=4. The fourth-order Runge-Kutta method is used to solve the 
systems with time step size 0.001. The initial conditions of the drive system and the response system are (x1(0), x2(0), 
x3(0)) = (-1, 2, 2) and (y1(0), y2(0), y3(0)) = (-2, -2, -2). Hence the error system has initial values (e1(0), e2(0), e3(0)) = 
(-5, -2, -2), synchronization of the system (2) and (3) via adaptive control laws (5) are shown in Fig.1 and Fig.2. Fig.1 
displays the time response of the projective synchronization errors , as1 2 3, , 0e e e →  t → ∞ implying that all the 
state variables tend to be synchronized in a proportional. Fig.2 depicts the projection of the synchronized attractors of 
the drive system (2) (dotted line) and the response system (3) (solid line), which illustrates a projective 
synchronization with 2α = − . 

. 

      
Fig. 1. Error signals between drive and response systems      Fig. 2. Chaotic attractors when α=-2. 

Specially, when 1α = or 1α = − , it will achieve complete synchronization or anti-synchronization 
 

2.2   Projective Synchronization with Different Scaling Factors 
 
In the former section, we realize projective synchronization in chaotic system with the same scaling factorα . Now, 
the study will achieve projective synchronization with different scaling factors which implies that the three state 
variables of the drive system are in proportion to that of the response system with three different nonzero scaling 
factors α1, α2, α3, respectively. This synchronization form called ‘modified projective synchronization’ in [12], has 
been considered recently in chaotic systems [12-15]. In this subsection, we will focus on this type of synchronization 
between two new chaotic systems. 

We define the error vectors as ei=xi-αiyi (i=1, 2, 3). Hence the error system is 
( )1 2 1 1 2 1 1 1

2 1 2 1 3 2 1 2 2 2 1 3 2
2 2

3 1 3 3 1 3 3 3 3

( )

.

e a x x a y y u
e bx cx x x by cy y y u

e x hx y hy u

α α
α α α α

α α α

= − − − −⎧
⎪

= + − − − + −⎨
⎪ = − − + −⎩

2                                         (7) 

Our objective is to design effective controllers to achieve projective synchronization with different scaling factors 
between the systems (2) and (3). For this goal, the following control laws for the systems are designed  
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[ ]

1 2 1 2 2 1 1
1

2 1 2 1 1 3 2 1 3 1 2 2
2

2 2
3 1 3 1 3 3

3

1 [ ( ) ( ) ]

1 ( ) ( )

1 ( )

u a y ae k a e

u b y x x y y be k c

u x y k h e

α α
α

α α α
α

α
α

⎧
= − + + −⎪

⎪
⎪⎪ = − − + + + +⎨
⎪
⎪

⎡ ⎤= − + −⎪ ⎣ ⎦⎪⎩

e                                              (8) 

where ki (i=1, 2, 3) are positive scalars.  
Then we obtain the following theorem. 

 
Theorem 2. Given the controllers (8), the system (2) and (3) can asymptotically achieve projective synchronization 
with different scaling factors. 
 
Proof. Define a Lyapunov function  

( )2 2 2
1 2 3

1
2

V e e e= + + . 

The time derivative of the Lyapunov function along the trajectory of error system (7) is  
( )1 1 2 2 3 3 1 2 1 1 2 1 1 1( )V e e e e e e e a x x a y y uα α= + + = − − − −⎡ ⎤⎣ ⎦  

 2 1 2 1 3 2 1 2 2 2 1 3 2 2e bx cx x x by cy y y uα α α α⎡ ⎤+ + − − − + −⎣ ⎦
2 2

3 1 3 3 1 3 3 3 3e x hx y hy uα α α⎡ ⎤+ − − + −⎣ ⎦  .                                                                                           (9) 
By substituting Eq.(8) into Eq.(9), we have 2 2 2

1 1 2 2 3 3 0V k e k e k e= − − − ≤ . 

Since V is a positive decreasing function and V  is negative semi-define, this implies that the origin of the error 
system (7) is asymptotically stable. Therefore, the response system (3) synchronizes the drive system (2). We can 
approach projective synchronization with different scaling factors asymptotically with the controllers (8). 

 
Numerical simulations are given to verify the effectiveness of the controllers (8). Choose the following scaling 

factors α1=-2, α2=2, α3=-3 and the control gains k1=4, k2=8, k3=4. The fourth-order Runge-Kutta method is used to 
solve the systems with time step size 0.001. We assume that the initial condition (x1(0), x2(0), x3(0)) = (-1, 2, 2) and 
(y1(0), y2(0), y3(0)) = (-2, -2, -2) are employed. Hence the error system has initial values (e1(0), e2(0), e3(0)) = (-5, 6, -
4), We can observe that the drive system (2) and the response system (3) achieve projective synchronization 
immediately (see Fig.3 and Fig.4) after the control is activated although the initial condition are different. Fig.3 
displays the time response of the projective synchronization errors , as t→ ∞ implying that all the 
state variables tend to be synchronized in a proportional. Fig.4 depicts the projection of synchronized attractors of the 
drive system (2) (dotted line) and the response system (3) (solid line) with α

1 2 3, , 0e e e →

1= -2, α2=2, α3= -3. 
It is worth mentioning that the convergence rate of error signals can be adjusted by the control gains ki (i=1, 2, 3). 
 

 
 
Fig. 3. Error signals between drive and response systems   Fig. 4. Chaotic attractors when α1=-2, α2=2, α3=-3. 



Journal of Uncertain Systems, Vol.2, No.1, pp.67-74, 2008                                                                                                               71 

3 Projective Synchronization with Different Scaling Dactors Between Two 
Uncertain Chaotic Systems 

 
In References [12-15], projective synchronization between chaotic systems with unknown parameters is achieved, 
when the coefficients of linear terms are unknown. However, for any physical system, it is more important to know 
the nonlinear terms. Therefore, in this section, we study projective synchronization in the new chaotic system with 
unknown coefficients of nonlinear terms. 

For the chaotic system (1), assume the parameters a, b, c, h and the coefficients of two nonlinear terms (denote 
them as m, n) are unknown. So the system (1) can be written as  

( )1 2 1

2 1 2 1
2

3 1 3.

x a x x

3x bx cx mx x

x nx hx

= −⎧
⎪

= + +⎨
⎪ = −⎩

                                                                              (10) 

The response system with control has the following form 
( )1 2 1 1

2 1 2 1 3

2
3 1 3 3.

y a y y u
y by cy my y u

y ny hy u

= − +⎧
⎪

2= + + +⎨
⎪ = − +⎩

                                                                      (11) 

Define the error vectors as i i ie x yiα= − (i=1, 2, 3), the error system is  

( )1 2 1 1 2 1 1 1

2 1 2 1 3 2 1 2 2 2 1 3 2 2

2 2
3 1 3 3 1 3 3 3 3

( )

.

e a x x a y y u
e bx cx mx x by cy my y u

e nx hx ny hy u

α α
α α α α

α α α

= − − − −⎧
⎪

= + + − − − −⎨
⎪ = − − + −⎩

                                                       (12) 

The following control laws and update laws for system (10) are designed 

1 2 1 2 1 2 1
1

2 1 1 2 1 1 3 2 1 3
2

2 2
3 1 3 1 3

3

1 ˆ[ ( ( ) ) ]

1 ˆ ˆ ˆ ˆ[ ( ( ) ) (1 ) ]

1 ˆˆ ˆ[ (1 ) ],

u a e e y e

u b e y mx x my y c

u nx ny h e

α α
α

α α α
α

α
α

⎧
= − + − +⎪

⎪
⎪

= + − + − + +⎨
⎪
⎪

= − + −⎪
⎩

2e

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , . , , , ,a a a b b b c c c h h h m m m n n n a b c h m= − = − = − = − = − = − n̂

                                                           (13) 

and  

2 1 2 1 2 1

1 1 2 1 2

2
2

2
3

1 3 2 2 1 3 2

2 2
1 3 3 1 3

ˆ ( ( ) )

ˆ ( ( ) )

ˆ

ˆ

ˆ

ˆ

a e e y e a

b e y e b

c e c

h e h

m x x e y y e m

n x e y e n

α α

α α

α

α

⎧ = − + − −
⎪
⎪ = + − −
⎪
= −⎪

⎨
⎪ = − −
⎪

= − −⎪
⎪

= − −⎩

                                                                                (14) 

where and  are estimated 
parameters of unknown parameters a, b, c, h, m, n, respectively.  

ˆ ˆ ˆ

Then we obtain the following theorem. 
 
Theorem 3. For given nonzero scalarαi (i=1, 2, 3), projective synchronization between two systems (10) and (11) 
will occur by the adaptive control laws (13) and update laws (14). 
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Proof. Define a Lyapunov function 

( )2 2 2 2 2 2 2 2 2
1 2 3

1
2

V e e e a b c h m n= + + + + + + + + . 

The time derivative of the Lyapunov function along the trajectory of error system (12) is  

1 1 2 2 3 3V e e e e e e aa bb cc hh mm nn= + + + + + + + +   

1 2 1 1 2 1 1 1( ( ) ( ) )e a x x a y y uα α= − − − −  

2 1 2 1 3 2 1 2 2 2 1 3 2 2( )e bx cx mx x by cy my y uα α α α+ + + − − − −  

.               (15) 2 2
3 1 3 3 1 3 3 3 3

ˆ ˆˆ ˆ ˆ( )e nx hx ny hy u aa bb cc hh mm nnα α α+ − − + − + + + + + + ˆ

2
By substituting Eqs.(13) and(14) into Eq.(15), we have 

2 2 2 2 2 2 2 2
1 2 3V e e e a b c h m n= − − − − − − − − − . 

Since the Lyapunov function V is a positive definite and its derivative V is negative definite in the neighborhood of 
the zero solution for the system (12). Based on the Lyapunov stability theory, the error dynamical system can 
converge to the origin asymptotically. Therefore, the response system (11) synchronizes the drive system (10). We 
can approach projective synchronization with different scaling factors asymptotically with the controllers (13) and 
update laws (14). 

 
In the numerical simulations, the fourth-order Runge-Kutta method is used to solve the systems with time step size 

0.001. We assume that the initial condition  (x1(0), x2(0), x3(0))=(2, 2, 2) and (y1(0), y2(0), y3(0))=(-2, -2, -2), and α1=3, 
α2=4, α3=-2, are employed. Hence the error system has the initial values (e1(0), e2(0), e3(0))=(8, 10, -2).The six 
unknown parameters are chosen as ,20a = 14b = , 10.6c = , 2.8h = , 1m = − and  in simulations so that 
the new system exhibits a chaotic behavior. Synchronization of the system (10) and (11) via adaptive control laws (13) 
and (14) with the initial estimated parameters

1n =

ˆ 10a = , ˆ 6b = , ˆ 5c = , ˆ 5h = , ˆ 1m =  and are shown in Figs. 
5, 6 and 7, respectively. Fig. 5. displays the synchronization errors of system (10) and (11). Fig. 6 depicts chaotic 
attractors of the drive system (10) and the response system (11) when α

ˆ 1n = −

1=3, α2=4, α3=-2. Fig. 7 shows that the 
estimations , , , , , of the unknown parameters converge to a=20, b=14, c=10.6, h=2.8, 
m=-1 and n=1, as t→∞. 

ˆ( )a t ˆ( )b t ˆ( )c t ˆ( )h t ˆ ( )m t ˆ( )n t
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Fig. 5. Error signals between drive and response systems 
 
 
 
 

 
Fig. 6. Chaotic attractors of the drive system (8) (dotted line) and the response system (9) (solid line) when α1=3, 
α2=4, α3=-2. 

 
 

 
 
Fig. 7. Estimated values for unknown parameters as t→∞. 

 



74                                                                                      G. Cai and  S. Zheng：Projective synchronization of a new chaotic system 

4   Conclusion 
 
In this paper, based on the Lyapunov stability theory and Barblat’s lemma, we achieved the projective 
synchronization of a new chaotic system with identical or different scaling factors. The PS of the new chaotic system 
with uncertainties including the coefficients of nonlinear terms was obtained via adaptive control. Numerical 
simulations showed the effectiveness of the analytical results. 
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