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Abstract 

 
This paper presents a generalized reinforcement learning methodology for tuning fuzzy logic controllers with 

nonlinear dynamic behaviors. To this aim, the Generalized Approximate Reasoning-Based Intelligent Controller 
(GARIC) model in [3] is modified to handle vagueness in control states. The proposed architecture has a self-tuning 
capability even when only a weak reinforcement signal such as binary failure signal is available. The controller is 
tested and validated by the well-know Cart-Pole control problem. Compared to similar models, the proposed controller 
exhibits a better performance with regards to the learning speed and robustness to changes in controlled system 
dynamics, even in the presence of uncertainty in the states obtained.  

 © 2008 World Academic Press, UK. All rights reserved. 
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1 Introduction 
 
Fuzzy logic is proved to be effective in solving many nonlinear control problems, where the nonlinear behavior of the 
system makes it difficult, if not impossible, to build an analytical model of the system. Nevertheless, building a fuzzy 
controller has its own difficulties that should be resolved through the implementation of suitable techniques. 

There are two approaches to the development of a fuzzy model. The first approach is based on describing the rules 
governing the system linguistically using terms of natural language, and then transforming them into fuzzy rules. In 
this approach, which is referred to as the direct approach to fuzzy modeling, the linguistic descriptions are constructed 
subjectively according to prior knowledge of the system. This makes the process highly dependent on the expert’s 
knowledge, and if the expert’s knowledge about the system is faulty this would result in developing an un-robust 
model of the system. Thus, the rules should be fine-tuned in order to be used for control purposes. 

The second approach uses input-output data in the development of the fuzzy model, and is called the indirect 
approach to fuzzy modeling. The problem of extracting fuzzy rules from data arose in the early years after the birth of 
fuzzy modeling concepts. Since in this approach the fuzzy rules are constructed based on data, if the data is faulty, 
damaged, or noisy, the obtained rules may not be reliable; i.e., crude rules may be obtained that need to be fine-tuned.  

When input-output training data are available, supervised learning techniques perform well on the task of tuning 
the controller. However, when such data are not available, unsupervised methods such as reinforcement learning can 
be used to solve the problem. In reinforcement learning, it is assumed that the equations describing the system are not 
well-known to the controller and the only information available are the states of the system and a reinforcement signal 
evaluating the performance via a failure or success signal. The controller is expected to learn the best policy through a 
trial-and-error interaction with the dynamic environment. 

Reinforcement learning can be used to fine-tune a fuzzy logic controller; either for structure identification (e.g., 
[1,2]) or for parameter identification (e.g., [3,4]). This paper concentrates on the latter issue. A number of previous 
studies exist in the literature. In [9], Mustapha and Lachiver present a model called the Generalized Reinforcement 
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Learning Fuzzy Controller (GRLFC), which is similar to the model proposed in this paper. The architecture proposed 
by Berenji and Khedkar [4], called the Generalized Approximate-Reasoning-Based Intelligent Controller (GARIC) is 
the main inspiration for generating GRLFC. However, one shortcoming of their model is that it needs a large number 
of trials to be tuned. Seo et al. [10] notice and model vagueness both in states and goals, but they ignore the 
generalization issue. Feng [11] introduces a model in which the learning rates are variable. However, the vagueness in 
the states is ignored. In [6], Jouffe proposes a good model which uses eligibility traces to enhance the speed of 
learning. In his work, he investigates the continuous and discrete actions.  

In this paper we extend the GARIC architecture with respect to various aspects. The vagueness in the input states 
are modeled by adding a new component called Fuzzifier. In addition, learning mechanism in Critic is different from 
that of Action Evaluation Network which plays the role of the critic in GARIC. Furthermore, variable learning rates 
are used for updating the parameters of the Actor and the Critic. This increases the speed of learning that leads to a 
satisfactory performance of GRLFC, even when vagueness exists in the input variables. Also, Explorer in GRLFC is 
an extension of the Explorer in GARIC and uses the Episode Information Feedback from the plant to perform a better 
exploration and exploitation. GRLFC not only captures the vagueness in the input states, but also has a superior 
performance in comparison with similar GARIC models. 

The rest of this paper is organized as follows: In Section 2, the fundamentals of the fuzzy inference system that is 
used in this paper are reviewed. Section 3 presents a brief review of reinforcement learning and its relation with fuzzy 
inference systems. The proposed Generalized Reinforcement Learning Fuzzy Controller (GRLFC) is discussed in 
Section 4. In Section 5, simulation results are presented to show the efficiency and superiority of the proposed model 
in comparison with similar models like GARIC. Finally, Section 6 concludes the paper with a discussion of the 
contributions and areas of future work. 
 
2   Fuzzy Inference System 
 
A fuzzy inference system (FIS) can be defined as a set of IF-THEN rules that maps an input space onto an output 
space. Therefore, it can be considered as a method for generalization and functional approximation. 

( )xAμ ( )xBμμ

xaCaLSaC − bCaRSaC +bLSbC −

0.1

bRSbC +   

Fig.1. Triangular membership functions, their parameters and the MaxMin point determining the degree of 
matching. 

The input variables of an FIS are usually considered to have crisp values. However, in most real-world situations, 
input variables (states) are vague. The proposed FIS can capture the vagueness in the input variables by considering 
them as triangular fuzzy numbers (Fig. 1). 

In this research triangular membership functions are used in both antecedent and consequent parts of the FIS, for 
the sake of simplicity. These membership functions are determined by three parameters: centre ( C ), right spread 
( ), and left spread ( ). We can use any kind of matching operators (t-conorm/t-norm) to calculate the degree of 
matching of input variables and their corresponding antecedents. However, we use the MaxMin operator since it is 
more widely used. For future work, we will try other operators to justify and select the most suitable ones for our 
problem. Of course, if we use parametric t-conorms and t-norms, we should add an optimization module to tune the 
prameters of t-conorm/t-norm which are used for calculating the degree of matching.  

RS LS

Under the above assumptions, the degree of matching between an input variable and its corresponding antecedent 
label can be easily calculated by using the MaxMin operator:  
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where ψ  is a function defined as 
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The degree of applicability of a rule can be determined by applying a t-Norm to the degrees of matching between 
each input variable of the rule and its corresponding antecedent labels. GRLFC inherits its t-Norm from GARIC in 
which Softmin, defined in equation (3), is used as the t-Norm. In addition, we assume that [3]. Since we do 
not tune the antecedent labels and we do not need its differentiability, any other kind of t-Norm would also be 
appropriate for our system. However, the results should be validated and justified based on the situation of the 
problem domain. Using parametric t-conorm and t-norm would also need a new optimization module to tune the 
parameters of the union and intersection operators. We usually use Neural Networks together with an evolutionary 
algorithm for this purpose. For future work, we will use other kinds of t-conorm and t-norm, and compare the results 
obtained. We consider this to be very necessary in developing adaptive systems. 
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Thus, using the Softmin operator and degrees of matching, the degree of applicability or the degree of firing of rule 
 can be calculated by iR

( ) ( )( )innii BAMaxMinBAMaxMinMinSoftw ,,,, 11 …=    (4)

where  is the degree of firing of rule ,  is the jiw iR jA th input variable, and  is the jijB th antecedent label in the ith 

rule, . By applying the degree of firing of  to its consequent part, the output of the rule can be calculated. The 
defuzzified output is calculated by 

iR iR

    ( )iCi wz
i

1−= μ   (5)

where  is a defuzzification method,  is the consequent label of the i1−μ iC th rule, and  is the defuzzified output for 
the i

iz
th rule. In this paper, we use the Local Mean of Maximum (LMOM) method for defuzzification [3]. 

Combining the outputs of all rules, a crisp control action in the form of weighted average is obtained, using the 
following equation 
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where  is the number of the rules. This can also be extended for multiple output variables. m
 
3   Reinforcement Learning 
 
Similar to many other techniques in the field of artificial intelligence, reinforcement learning (RL) has its roots in 
psychology. The idea behind RL is learning from experience and through trial-and-error interactions with a dynamic 
environment, similar to what any intelligent creature would do during its lifetime. 
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In many tasks to which we would like to apply reinforcement learning, most states encountered have never been 
exactly experienced before. This is almost always the case when the state or action spaces include continuous 
variables or complex and vague sensations. Therefore, a generalization method is needed; more specifically, the kind 
of generalization we require is often called function approximation because it takes examples from a desired function 
(e.g., a value function) and attempts to generalize to construct an approximation of the entire function.  

Fuzzy Inference Systems (FIS) are appropriate tools for generalization. The use of FIS as opposed to a global 
function approximator like Neural Networks has two major advantages: 1) the FIS’s inherent locality property 
permits the introduction of human knowledge, and 2) localizes the learning process to only implicated parameters [5]. 
However, the process of fine-tuning the fuzzy controller still remains a difficult task.  

It should be noted that supervised control learning requires training data or a teacher of the subject domain. In 
most real-world applications, training data is often hard to obtain or may not be available at all. An approach to 
solving this problem is based on reinforcement learning, a paradigm that stems from the desire to make systems that 
learn from autonomous interactions with their environments. Therefore, reinforcement learning techniques can be 
effective for the fine-tuning of fuzzy controllers when no training data is available and only a weak reinforcement can 
be obtained.  

This area of research has attracted many researchers. Some have applied RL techniques to tune a conventional 
Neural Network as the critic while the actor is an FIS [3,7]. Others have used Fuzzy Inference Systems to increase the 
knowledge of the critic about the goodness of the states and consequently enhance the performance of the system 
[4,5]. However, not many researchers have considered the vagueness in input states. In this paper, we propose a 
model that captures the uncertainty in the state of the system. In addition, the proposed model demonstrates a superior 
performance in comparison with similar models even in presence of uncertainty. The proposed GRLFC is tested and 
validated by several test cases. 

 
4   The Architecture of GRLFC 
 
In the proposed model, a fuzzy controller is implemented in the form of an FIS which plays the role of the Actor. The 
Actor implements the knowledge of the expert operator about how to control the system. The Critic which evaluates 
the value of the current state is another FIS, and it incorporates the knowledge about the goodness of the states of the 
plant. Both of these components simultaneously learn to improve their performance through interaction with a 
dynamic environment and by receiving a reinforcement signal.  

  

Fig. 1. The architecture of GRLFC. 

The architecture of GRLFC is shown in Fig. 2. The system has five components: Fuzzifier, Actor, Critic, Explorer 
and Updater. Current state of the plant is fed into the Fuzzifier which captures the vagueness of that state. The Actor 
uses this fuzzy state to determine the action and the Critic evaluates its value. Combining the value determined by the 
Critic and the reinforcement signal, an internal reinforcement is generated which is used for fine-tuning both the 
Actor and the Critic. Learning in both Actor and Critic is through tuning of parameters of the consequent part labels. 
Explorer perturbs the action suggested by the Actor in order to provide a better search of the state space. To 
accomplish this task, the Explorer uses current episode information, the internal reinforcement, and the action 
suggested by the Actor. In what follows, we present each component in more detail. 
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4.1 Fuzzifier 
 
As already mentioned, in many real-world problems, uncertainty exists in the states of a system. This can be caused 
by many factors like uncertainty in sensor readings or uncertain nature of the states of the system (linguistic input 
states). 

 

Fig. 2.   FIS scheme 

The Fuzzifier considers the uncertainty in the input variables by constructing a symmetric or asymmetric triangular 
fuzzy membership function using the crisp input states. In other words, the crisp input makes the centre of the 
triangular membership function and the spreads are determined by the Fuzzifier according to the specifications of the 
problem. Thus, the shape of the membership function constructed is determined by the nature and amount of 
uncertainty in the input states.  

 
4.2   Actor and Critic 

 
Both the Actor and the Critic are fuzzy inference systems described in Section 2, and have similar architectures 
depicted in Fig. 3. In this scheme, the first layer is the input layer which can accept triangular fuzzy membership 
functions as fuzzy states. Layer 2 contains the antecedent labels and determines the degree of matching using the 
MaxMin operator. In layer 3 the degree of firing of the rule is calculated using the Softmin operator as well as the 
degrees of matching between the fuzzy input variables and their corresponding antecedent labels. Consequent labels 
are in layer 4, where defuzzification is performed using LMOM defuzzification method [3] and the output of each 
rule is calculated. Layer 5 is the output layer in which the crisp control action is determined.  
 
4.3   Explorer 
 
This component makes a trade-off between exploration and exploitation of the state space. Since we assume that the 
knowledge-bases of the Actor and the Critic may be rough and out of tune, in the early steps of simulation (or the 
actual run), the state space must be sufficiently explored. When the time passes and the Actor learns to suggest more 
appropriate actions, the Critic learns to correctly predict the state values by trial-and-error interactions with the 
environment. Therefore, exploration is smoothly substituted by exploitation. The Explorer accomplishes this task by 
perturbing the action, F, suggested by the Actor using the TD prediction error [8], δ, given by equation (13), and the 
length of the previous episode, T. This process is done via the following equation 

( )TRFF ,δσ+=′  (7)
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where  is a standard uniformly distributed random variable defined on R [ ]aa,− , and σ  is some monotonically 
decreasing function with respect to T  and the magnitude of δ . In this way, when the magnitude of δ  is large 
(small), there will be a large (small) difference between the Actor’s suggested action, F, and what is actually applied 
to the plant, . This provides the exploration of the state space. The Explorer also provides the perturbation needed 
by the Updater in updating the parameters of the Actor and the Critic. The perturbation, s, is calculated using the 
following equation:  

F ′

( )( )( )2
exps F F δ′= − . (8)

4.4   Updater 

This component tunes the labels in the consequent parts of the Actor and the Critic using a decaying learning rate, the 
TD error, and the gradient of each FIS (Actor and Critic) with respect to parameters of the consequent parts of the 
corresponding FIS. To be more specific, the centers and the spreads in the antecedents of the labels in the consequent 
parts of each FIS are tuned. 

For the Actor, the parameters are tuned in order to reach the objective of maximizing the state value so that the 
system would end up in a good state and eventually avoid failure. This can be done through equation (9) in which s  
is the perturbation term calculated by the Explorer, p is a parameter of Actor to be tuned,  is the value of the state 

calculated by the Critic, 

v
δ  is the TD error, and ( )sgn •  is the sign function. The reason ( )δsgn  is used is that 

when this term is negative, it means that the current state is worse than the previous one and therefore a step toward 
the opposite direction is needed. On the other hand, when this term is positive, it means that the current state is better 
than the previous one and therefore the current step should be taken in the direction of the previous step.  
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Since this approximator ignores the change in a state between successive time steps, it is a very crude estimator of the 
derivative and thus we consider only the sign of this estimator and not its magnitude. The existence of the derivative 
is an implicit assumption [4]. 

Calculation of pF ∂∂  is not difficult. V , a label in the consequent part of the Actor, is parameterized by  

which may be center, left spread, or right spread and  is the rule that its consequent label is V . In addition, is 

the defuzzified output of the rule  calculated by (11) using LMOM defuzzification method [4] and is the 

degree of firing of rule . Thus,  
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In (11),  is the center of the label V  and  and  are its right and left spreads, respectively. The 
derivative needed for tuning of the Actor can be calculated using (10) and (12) . 
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In the above equation, , where  is the number of the rules in the knowledge-base of the Actor. { }mi ,,2,1 …∈ m
For the Critic, the objective is to minimize the TD prediction error, tδ , given by the following equation 
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where ( )ji sV  is the Critic estimation for the value of state  in time step i . The term js ( 11 ++ + ttt sVr )γ  is actually 

an estimation of  and, therefore, ( )tt sV tδ  is the error of that estimation. γ  is the reward discount rate which 

determines the importance of the future time steps in the current learning cycle. If γ  is set to 0 , only the immediate 
reward is considered and if it is set to 1, the value of all the future states and the effect of the applied actions are 
taken into account in the learning process. In our experiments, we use 95.0=γ , since this value is usually used by 
researchers and yields better results. Therefore, the learning rule for the Critic is similar to that of the Actor and is 
given by (14) in which β  is the learning rate and, likeα , it is a small positive variable.  

An episode begins when the simulation (or the run of the actual system) starts and it ends when a failure occurs. In 
the beginning of each episode, the learning rates are set to a relatively large value. Then, during an episode the 
learning rates decay quickly and reach to small values and from that point forward, the learning rates decay after each 

 time steps to provide more exploitation of the good policy found by the controller.  N
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In (14), the term pv ∂∂  can easily be calculated similar to the calculation of VpF ∂∂  in (12). This is because 

the Critic, like the Actor, is an FIS. The other term, v∂∂δ  is approximated using (15), assuming that the derivative 
does not depend on r .  
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where, similar to the Actor learning rules, only the sign of v∂∂δ  is used in the calculations. Furthermore, is 

given by the finite difference . 

vd 2

212 −− +− ttt vvv
 
5   Experiments 
 
To show the efficiency and superiority of the proposed system, we applied the GRLFC to a well-known control 
problem called Cart-Pole. In this problem, a pole is hinged to a cart which moves along a track. The control objective 
is to apply an appropriate force, F, to keep the pole in a vertical position and the cart within track boundaries. The 
state of the system is determined by ( )θθ ,,, xx  in which x  and  are the displacement and velocity of the cart, and x
θ  and  are the angular displacement and angular velocity of the pole, respectively. A failure occurs when either θ

12>θ  or mx 4.2>  or NF 10> , whereas a success is when the pole stays balanced for  time steps. 

In our experiment, 

000,100
δ  is calculated using 95.0=γ . In addition, half-pole length, , pole mass, 

 and cart mass, . The dynamics of the cart-pole system are modeled by the following 
nonlinear differential equations [3] 

ml p 5.0=

kgm p 1.0= kgmc 1=
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One of the important strengths of the proposed model is its capability of capturing the uncertainty in the state of 
the system. In our particular experiment with the cart-pole problem, vagueness may be caused by uncertainty in 
sensor readings. The Fuzzifier captures the uncertainty through constructing a triangular fuzzy membership function 
that has the crisp state as its center, , and C LSC −  and RSC +  as its left spread and right spread, respectively. In 
this experiment, we consider symmetric membership functions with 001.0== LSRS . 

Moreover, the Actor has the same 9+4 rules of the Action Selection Network (ASN) and the Critic has same 5+5 
rules of the Action Evaluation Network (AEN) in GARIC [4]. The Actor rules are as follows. 

1. If Theta is POSITIVE and ThetaDot is POSITIVE then Force is POSITIVE LARGE. 
2. If Theta is POSITIVE and ThetaDot is ZERO then Force is POSITIVE MEDIUM. 
3. If Theta is POSITIVE and ThetaDot is NEGATIVE then Force is ZERO. 
4. If Theta is ZERO and ThetaDot is POSITIVE then Force is POSITIVE SMALL. 
5. If Theta is ZERO and ThetaDot is ZERO then Force is ZERO. 
6. If Theta is ZERO and ThetaDot is NEGATIVE then Force is NEGATIVE SMALL. 
7. If Theta is NEGATIVE and ThetaDot is POSITIVE then Force is ZERO. 
8. If Theta is NEGATIVE and ThetaDot is ZERO then Force is NEGATIVE MEDIUM. 
9. If Theta is NEGATIVE and ThetaDot is NEGATIVE then Force is NEGATIVE LARGE. 
10. If Theta is VERY SMALL and ThetaDot is VERY SMALL and x is POSITIVE and xDot is POSITIVE then 

Force is POSITIVE SMALL. 
11. If Theta is VERY SMALL and ThetaDot is VERY SMALL and x is POSITIVE and xDot is POSITIVE 

SMALL then Force is POSITIVE VERY SMALL. 
12. If Theta is VERY SMALL and ThetaDot is VERY SMALL and x is NEGATIVE and xDot is NEGATIVE 

then Force is NEGATIVE SMALL. 
13. If Theta is VERY SMALL and ThetaDot is VERY SMALL and x is NEGATIVE and xDot is NEGATIVE 

SMALL then Force is NEGATIVE VERY SMALL. 
The Critic has the following 10 rules: 
1. If Theta is POSITIVE and ThetaDot is POSITIVE then State is BAD. 
2. If Theta is POSITIVE and ThetaDot is NEGATIVE then State is OK. 
3. If Theta is ZERO and ThetaDot is ZERO then State is GOOD. 
4. If Theta is NEGATIVE and ThetaDot is POSITIVE then State is OK. 
5. If Theta is NEGATIVE and ThetaDot is NEGATIVE then State is BAD. 
6. If x is POSITIVE and xDot is POSITIVE then State is BAD. 
7. If x is POSITIVE and xDot is NEGATIVE then State is OK. 
8. If x is ZERO and xDot is ZERO then State is GOOD. 
9. If x is NEGATIVE and xDot is POSITIVE then State is OK. 
10. If x is NEGATIVE and xDot is NEGATIVE then State is BAD. 

 
The Actor and the Critic knowledge-bases are depicted in Fig.4 and Fig.5, respectively. Fig.6 depicts the 11th rules 

of the Actor as an example. Fig.7 and Fig.8 summarize the rules of the Actor and the Critic, respectively. Figures 9-11 
show the simulation results of the experiments in which various labels of the Actor or the Critic are damaged and the 
system has managed to tune those parameters to their appropriate values. Particularly, Fig.12 depicts the success of 
GRLFC in accomplishing a difficult task in which two of the most important labels of both the Actor and the Critic 
are damaged and the spreads are set to , that is 100  times more vagueness in the input variables; i.e., GRLFC is 
capable of learning in a few trials even with the existence of vagueness in the input states which are provided by 
slower sensor signals. In addition, Fig.13 depicts the robustness of GRLFC in the case of changes in the dynamics of 
the plant. Fig.13 illustrates only the early stages of learning for this task; i.e., learning took more time steps to 
complete. 

1.0

In Fig.14, various labels of the Actor are damaged. Furthermore, the simulation time step is increased to  
(from ; i.e., the sensors respond 3 time slower) and the starting states are random. Fig.14 also shows that 

ms06.0
ms02.0
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GRLFC has been successful in avoiding failure for  minutes, i.e., 33000  simulation time steps in this experiment.  
In both of these difficult tasks (i.e. the one whose results are shown in Fig.12 and Fig.14) GRLFC managed to adapt 
to the new situation only after a few trials. 

33

In Fig.15, the tolerance of failure conditions is confined; i.e., failure conditions are 6>θ , mx 4.0>  and 

NF 10> . In addition, the half-length of the pole is decreased to from . GRLFC adapts itself to the new 

situation after only  trials. 
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 Fig. 3. The Actor’s Knowledge base. 
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Fig. 4. The Critic’s Knowledge base. 

-0.1 0 0.1
0

0.5

1

"theta" is
very small

-2 0 2
0

0.5

1

"thetaDot" is
very small

-2 0 2
0

0.5

1

"x" is
positive

-2 0 2
0

0.5

1

"xDot" is
positive small

-1 0 1 2
0

0.5

1

"force" is 
positive very small

 

Fig. 5. The 11th rule of the Actor 
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 NE ZE PO VS

NE NL NS  ZE
ZE NM ZE  PM
VS     
PO ZE PS  PL 

 NE ZE PO VS
NE NS    
ZE     
VS NVS   PVS
PO    PS 

 
Fig. 7.   9+4 rules used in Actor. 
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Fig. 8.  5+5 rules used in Critic. 
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(b) Pole position 

 
Fig. 9.  The center of ZE force label was shifted to +5. The system shifted it back to about 0. Each episode started in a 

on-random state. The learning took only 3 trials. n 
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(b) Pole position 

 
Fig. 10. The center of ZE force label was shifted to +3. The system shifted it back to about 0. Each episode started in 
a random state. The learning took only 4 trials. 
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(b) Pole position 

 
Fig. 11.   The center of GOOD label was shifted to 0.5. The system shifted it back to about 1. Each episode started in 

non-random state. The learning took only 3 trials.  a   
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(b) Pole position 

Fig. 12.  The center of GOOD label and the center of ZE label were damaged (GOOD-0.5 and ZE+3). In addition 
preads are set to 0.1. The learning took only 4 trials.  s 
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(b) Pole position 

Fig. 13.  The mass of the cart is changed from 1kg to 2kg. The system is adapted to new situation without a failure.     
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(b) Pole position 

Fig. 14.  Various force labels were damaged: ZE-2,PL+5,PM+3,PS+2,NM+1. In addition, simulation time step was 
increased to 0.06 from 0.02. Each episode started in a random state. The learning took 6 trials. GRLFC avoided 
failure for 33 minutes.     
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(b) Pole position 

Fig. 15.   Tolerance for the failure conditions is changed and the half length of the pole is decreased to 0.4 from 0.5. 
The system is adapted to new situation with only 1 failure (2 trials). 

 
Table 1.  Learning method comparison on cart-pole problem 
 

System Proposed by # of Trials Vagueness in Input States 
-- O. Esogbue et al. 100 No 
-- S. M. Mustapha et al. 50 No 
GARIC H. R. Berenji et al. 4 No 
FACL L. Jouffe 3.70 No 
GRLFC M. H. Fazel et al. 3.35 Yes 

 
6  Conclusions and Future Works 

 
This research has modified the GARIC model [3]. The proposed model extends GARIC in several ways. The model is 
capable of capturing the vagueness in input variables. Furthermore, the learning speed is increased and the number of 
failures that occur before a success is decreased using variable learning rates. Learning strategy for the Critic is 
different from that of Action Evaluation Network (AEN). This new strategy stems from viewing what is the so called 
internal reinforcement from another point of view; more specifically, considering the internal reinforcement as the 
Temporal Difference error (TD error). The Explorer component also extends the Stochastic Action Modifier (SAM) 
in GARIC to provide better exploration of the state space. Simulation results show the superiority and efficiency of 
the proposed GRLFC in comparison with other models. Table 1 summarizes the comparison between the learning 
models, regarding the speed of learning and the features of each.  
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An interesting topic of future work is to use a linguistic output instead of using a crisp one. This would capture the 
vagueness in the output variables. In this way, instead of applying the TSK-like method which we used in our model, 
approaches like Mamdani or Logical, which are able to generate and process linguistic outputs, should be 
incorporated. By using these methods, the performance of each of these techniques and their combinations can be 
investigated. 

Considering different spreads for the triangular fuzzy membership function of each input element in the input 
vector can also be considered as another topic of future work. Investigating the effect of the shape of these 
membership functions, including the symmetry and spreads, can be an interesting study. 

Moreover, instead of using the gradient descent method, applying a more efficient technique may contribute to 
the quality of the solution and further decrease the number of time steps for reaching a solution. Furthermore, 
reaching such a solution may need less number of time steps. 
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