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Abstract 

Ecological data is very costly and difficult to collect, and quite often the sampled data are insufficient for further 
spatial analysis. Today, we as spatial modellers are often presented with the situation whereby a set of data is collected 
already, although from the viewpoint of spatial analysis the data is insufficient, but re-sampling is impossible because 
of the cost and time limits. In this paper, we are dealing with a two spatial problems whereby: the data is just species 
presence only and no numerical data; and also the data sampling is not well spread over the study area. These are two 
very common problems that spatial modellers face everyday, and in this paper we provide some simple techniques to 
deal with these problems. We firstly use frequency counts to deal with species presence data, then use the recently 
developed partial differential equation motivated regression (PDEMR) model to predict the unknown locations, and 
finally combine these data to produce a kriging prediction map. These techniques are fairly new, but very effective in 
dealing with ecological data problems. For illustration, Protea rare species ( i.e., the population size of 10 to 100), in the 
Cape Floristic Region, from 1992 to 2002, South Africa, are used. 

© 2008 World Academic Press, UK. All rights reserved 
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1   Introduction 
 
Today, ecological data is very costly and difficult to collect, and quite often the sampled data are insufficient for 
further spatial analysis. We as spatial modellers are often presented with the situation whereby a set of data is 
collected already, although from the viewpoint of spatial analysis the data is insufficient, but re-sampling is 
impossible because of the cost and time limits. Since the samples are not designed for spatial predictions, the samples 
are not well spread over the study area, and can not be used for spatial predictions such as kriging. Another problem is 
that quite often the data collected are just species presence data or categorical data, and this makes very difficult to 
model the plants, and impossible to do a kriging prediction map. These are two very common problems that spatial 
modellers face everyday, and in this paper we will provide some simple techniques to deal with these problems. 

In this paper, we will model the Protea species in the population size of 10 to 100, in the Cape Floristic Region, 
from 1992 to 2002, in South Africa. We firstly use frequency counts to deal with species presence data, then use the 
recently developed partial differential equation motivated regression (PDEMR) model to predict the unknown 
locations, and finally combine these data to produce a kriging prediction map. These techniques are fairly new, but 
very effective in dealing with ecological data problems. 
 
2   Proteas in the Cape Floristic Region 
 
The Cape Floristic Region is located at the southern tip of the Africa, and it covers parts of Western and Eastern Cape 
provinces of South Africa. It is home to some 9030 plant species, and nearly 70% of which are found nowhere else. 
Fynbos is the predominate ecosystem in the Cape Floristic Region, and it is under serious threat (Freeth et al. [2]).  
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The Protea Atlas Project collected samples of Fynbos’s flowering Proteas in the Cape Floristic Region, South 
Africa, from 1992 to 2002. These sample data provide valuable information on the distribution and change in the 
Proteas. In this case, we are focusing on the category of Proteas that has the estimated population size from 10 to 100, 
per sample site. 

Figure 1 below shows the location of the Cape Floristic Region within South Africa, and Figure 2 shows the 
locations of Proteas occurrence of the population size of 10 to 100, in the Cape Floristic Region, from 1992 to 2002. 

 

 
 

Figure 1. The Cape Floristic Region within South Africa 
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Figure 2. The sample locations of proteas in the population size of 10-100, in the Cape Floristic Region, 1992-2002 

 
As one can see from Figure 2, the sample locations are not well spread, since its original purpose was spatial 

predictions, but for scientific and biodiversity knowledge. The samples tended to focus in certain areas, while other 
areas are entirely un-sampled. This creates a problem for kriging predictions. The Protea data are presence only data, 
and not numerical, which creates another problem for spatial analysis. 

 
3   Frequency Counts of the Occurrence of Proteas 
 
To solve the problem of presence data only, this being a categorical data issue, a simple technique of using frequency 
counts is used. The Cape Floristic Region is divided into 243 grid cells, and within each cell, the presence of Protea 
species is counted, and the resulting value is attached to each centroid point of each cell. The centroid point is needed 
in order for kriging prediction maps to be produced. See Figure 3. 

 

 
 

Figure 3. The grid cell division of Cape Floristic Region 
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In Figure 4, the blue color are 0 in value, it shows the cells that does not have any frequency counts at all. In other 
words, the blue point cells show the un-sampled locations within the Cape Floristic Region. It is clear that a lot of the 
areas are un-sampled, and these locations vary from year to year. In order for an accurate kriging prediction map to be 
produced, the missing cells must be filled. This means that the PDEMR model must be used in order to predict the 
un-sampled cells. 
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Figure 4. The sampled frequency counts of proteas in the population size of 10-100, in the Cape Floristic Region, 
1992-2002 

 
4   The Concept of DEMR Model and the Coupling Principle 
 
In engineering theory, particularly, in modern control theory, it is often convenient to utilize a differential equation to 
describe the dynamic law of a continuous system. However, the unknown parameter vector θ  associated with system  

Definition 4.1. A pair of equations 
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is called the pth-order univariate differential equation motivated regression model, abbreviated as (pth-order univariate) 
DEMR model.  Eq. (1a) is called the motivated differential equation and Eq. (1b) is called the (first) coupled 
regression model, where h is the grid size for the first difference ∆ . As to the term ( )x̂ k  is the approximation to 

primitive function ( )x t  at t k= .  

If the observation on the system is at the first difference level, denoted as ( ) ( ) ( ){ }1 , 2 , ,X x x x n∆ = ∆ ∆ ∆" , where 

. Note that the relation between summation operator Σ and difference operator ( ) ( ) ( )1x k x k x k∆ = − − ∆ , define 

( ) ( )1 1x x∆ � , then 

( ) ( )( )
1

k

i
x k x

=

= ∆∑ i . (2)

It is often using 

[ ]1ˆ( ) ( ) ( 1)
2

x k x k x k= + −  (3)



                                                         R. Guo et al.: PDEMR Modelling of the Protea Rare Species Spatial Patterns 36

as a first approximation to ( )x t  at t . Finally, k= { }, 2,3, ,k kε = " n is the error terms of the coupled regression 
model in Eq. (1b) paired in the above equation system Eq. (1). The nature of errors in Eq. (1) will be discussed later. 
For a better understanding, let us examine a simple example. 

 
Example 4.2. Equation system 
 

( )

( ) ( ) ( )

                            

ˆ , 2,3, ,k

dx x a
dt

x k x k k n

α β

α β ε

⎧ = +⎪
⎨
⎪∆ = + + =⎩ " b

 (4)

is the simplest first-order univariate DEMR model. Eq. (4b) is called as the coupled regression (abbreviated as 
CREG) model because its form strictly follows a “translation rule” based on the form of the motivated differential 
equation. We call this translation rule as the coupling principle in DEMR. 

For an overall intuitive picture of DEMR model, we list the components and the translation rule in terms of the 
coupling principle in Table 1. 

 
Table1.  Coupling rule in univariate first-order DEMR model 

Term Motivated DE Coupled REG 
Translation rule between MDE and CREG 

Intrinsic feature Continuous Discrete 
Independent variable t k 
1st-order derivative ( ) /dx t dt  ( ) ( )( ) 1x k x k x k∆ = − −  
pst-order derivative ( ) ( ) /p pd x t dt  ( ) ( )1 1( ) 1n n nx k x k x k− −∆ = ∆ − ∆ −

Primitive function ( )x t  ( )x k  
Model formation ( ) ( )dx t

x t
dt

α β= +  ( ) ( )ˆ kx k x k∆ = α +β + ε  

PARAMETER COUPLING 
Parameter (α,β) (a,b) 

Dynamics 
(Solution) ( ) (0) tx t x eβ⎡ ⎤α α

= − +⎢ ⎥β β⎣ ⎦
 ˆ( 1) (1) bka ax k x e

b b
⎡ ⎤+ = − +⎢ ⎥⎣ ⎦

 

Filtering (Prediction) [ ]( ) (0) tdx t dt dx dt eβ= α−β  ˆ ˆ ˆ( 1) ( 1) ( )x k x k x k∆ + = + −  
 
A fundamental note is made here that the original observations are treated as the approximated derivatives of the 

dynamic law x(t), however, after the rule finding, the modelling is still required to return  back to the derivative level 
because that is the observational one. 

 
5   Partial Differential Equation Model 

 
It is often the case that a variable (or a group of variables, i.e., vector) under investigation relates to multi-factors and 
the functional relationships are specified by a system of partial equations. Similar to DEMR modelling cases, we may 
also face the sparse data availability. Therefore, it is necessary to investigate the partial differential equation (system) 
motivated (multivariate) regression (abbreviated as PDMR) modelling. As a necessary, let us review the partial 
differential equation (system) theory. 

 
5.1   A Family of Partial Equation Model 

 
The family of partial differential equation system under investigation takes its form 
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and 

( ) ( ) ( ) ( )( )1 2, , , , , , ,
T

i i i imf z x f z x f z x f z x= " . (7)

 
5.2   A Linear Partial Equation System Model 

 
A linear partial differential equation system takes its form 

( ) ( )

( )0 0

,  1,2, ,

                                   

i
i

z A x z b x i n
x

z x z
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where 

( ) ( )( ),i i jk m m
A x a x

×
= . (9)

The solution to a partial differential equation system is not necessary to exist. The following consistent theorem is 
a necessary condition for a partial equation system to have a solution. 

Theorem 5.2.1. ([3]) Assume that functions ( ),if z x  are continuously differentiable with respect to x and 

z respectively in a domain . Then the equation system has a solution for arbitrary initial data if and 
only if the following consistency conditions are satisfied 

mG ⊂ ×R Rn

, 1,2, ,i i j j
j i

j i

f f f f
f f i j

x z x z
∂ ∂ ∂ ∂

+ = + ∀ ≠ =
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" n .  (10)

In addition, the solution is unique on the domain where it is defined. In the linear case, the solution is defined on the 
whole domain , where the coefficients and free terms are defined, provided the domain is surface-simply 
connected. 

nD ⊂ R

 
Corollary 5.2.2. For a linear partial differential equation system, the consistency conditions can be stated as 

i j i j i j
j i

i j i j i j
j i

A A A A A A
x x

A b b A b b
x x

∂ ∂⎧ + = +⎪ ∂ ∂⎪
⎨ ∂ ∂⎪ + = +
⎪ ∂ ∂⎩

 (11)

where . 1,2, ,i j n≠ = "
 

5.3   The Consistency Conditions for A Bivariate PDE Model 
 

Let a bivariate PDE takes the form 
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( ) ( )

( ) ( )

1 1

2 2

, ,          

, , .        

z x y z x y
x
z x y z x y
y

⎧∂⎪⎪ =α +β⎪⎪∂⎪⎨⎪∂⎪ =α +β⎪⎪∂⎪⎩

 (12)

Now let us investigate the formation of Eq. (12) satisfying the Corollary to Forbenius Theorem. Note that 
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For the first condition in (11) 
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which leads to the condition 

( ) ( )1 2, ,x y x
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=
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As to the second condition in (11) 
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which leads to a fairly complicated condition 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2, , , , , ,x y x y x y x y x y x y
y x
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Combining Eq. (15) and Eq. (17), the consistency conditions can be expressed by 
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6   The PDEMR Model Formation 

 
Similar to DEMR model, PDEMR model is also constituted by two components: motivated partial differential 
equation (abbreviated as PDE) systems and coupled (multivariate) regression model. Let us use the linear PDE 
motivated regression for the basic definition. 

Definition 6.1. Coupled equation system 
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denotes the (first) partial difference of ( )1 2, , , mz x x x" with respect to exploratory variable ix at point 

( ) ( ) ( ) ( )( )1 1 2 2, , , , ,i i m mx k x k x k x k" " . 
 

7   A PDEMR Modelling of Protea Frequency Count Spatial Distribution 
 

7.1   A Bivariate Partial Differential Equation for Log-Count 
 

Bear in mind that we intend to develop a counting model for filling those sites where the counts of a particular class 
was recorded as zero, typically is in the design note for observation and sampling data collection, however, was not 
attended for some technical reasons. The count is a (integer) scalar function of coordinate (x, y) and thus it may be 
appropriate to us the log-transformation, i.e., 

z
( , ) ln ( , )u x y z x y= . Note that 
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     (21) 

To obtain the insight of bivariate PDE model, we start with a bivariate partial differential equation system in the 
form of Eq. (22) 
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It is obvious that 
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Accordingly, a homogeneous equation system is obtained and it is easy to check that the homogenous equation 
system Eq. (22) satisfies the consistency conditions set up in Corollary 5.2.2.  

The matrix form of Eq. (22) can be written as 

41 3

52 4

1
2

2

u
x x
u

yy

⎡ ⎤∂ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎡ ⎤αα α⎢ ⎥∂ ⎢ ⎥⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥⎢ ⎥∂ αα α⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥∂⎣ ⎦

 (24) 

or taking the transpose for both sides of Eq. (24), 



                                                         R. Guo et al.: PDEMR Modelling of the Protea Rare Species Spatial Patterns 40

[ ]
1 2

3 4

4 5

1 2
2

u u x y
x y

α α
α α
α α

⎡ ⎤
⎡ ⎤∂ ∂ ⎢ ⎥=⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎢ ⎥⎣ ⎦

. (25) 

Let the parameter matrix be 
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The design matrix ( a vector) is denoted as 
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And the partial derivative vector is denoted as 
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Finally we have a matrix representation of the bivariate partial equation system Eq. (22) 
T

Tu X
x

⎛ ⎞∂
= Λ⎜ ⎟∂⎝ ⎠

. (29) 

 
7.2   The Divided Difference and Its Application in Approximating Partial Derivatives 

 
The key step for PDEMR model setting is the translation from partial derivatives into partial differences. It is often 
the case that the observations are not equal-gap taken, but on the contrary. In bivariate circumstances, the way for 
defining difference for unequal-gapped data is even more complicated than that in one-dimensional case. Therefore, 
we intend to develop a scheme of the obtaining “best” partial difference for approximating the corresponding partial 
derivatives. 

1. Divided difference. 
Definition 7.2.1. Given a function ( )f x  on the interval [a,b]. Let the sequence { }1 2, , , lx x x" with [ ],ix a b∀ ∈  

and i jx x< for any  i<j. Then the quantity 
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1
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x
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f
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−

−
∆

−
�  (30) 

is called the (first) divided difference for function ( )f ⋅  at ix . 
 
2. Partial divided difference. 
Definition 7.2.2. Given a bivariate function ( ),w x y  on . Let 2D ⊂ R ( ),i jx y D∈ . Then 
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, ,
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w
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−

−
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−
 (31) 

is defined as a (first) partial difference of ( ),w ⋅ ⋅  with respect to exploratory variable x at ( ,i j )x y . Similarly,  
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( ) ( )1

1

, ,
j
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w
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−
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is defined as the partial difference of ( ),w ⋅ ⋅  with respect to exploratory variable at y ( ),i jx y . 
 
3. Using directional derivative for least-square estimated partial divided difference. 
Let be a sub-space of a 2-dimensional space, D ×R R , any point of , denoted as D ( ),M x y corresponds to the 

value of a scalar function ( ),s x y , if the position of M  could be represented by a vector , then scalar function can 

be regarded as a function of variable vector , i.e., 

rK

rK ( )s s r= K . 
Definition 7.2.3. Let 
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is called the directional derivative with respect to directional vector l
K

at point ( ),x y .  

Let ( ),r x y D⊂k be a neighborhood of radius r , i.e., for any ( ) ( ),i j r ,x y x∈k y )the distances of ( ,i jx y  from 

point ( ),x y : ( ) ( )22
i jx x y y− + − < r . 

However, unless the functional form of the scalar field is available, then we can not obtain the accurate values of 
the directional derivatives. However, for each direction, ( ) ( ), ,i jx y x y→ , an approximate directional derivative can 
be calculated as 
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Furthermore, the cosines of the directional angular are also calculated as 
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Therefore, the ( ) (, ,i j )x y x y→ pair of point will generate an equation 
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In general, there will be ( )1 2k k −  equations in total if there are k points in ( ),r x y D⊂k , which overspecify the 

two unknown partial differences, x
∂∆ and   at y

∂∆ ( ),x y  respectively. As a matter of fact, the partial differences will be 
least-square estimate. 
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7.3   The Coupled Bivariate Regression Model 

 
Once the partial differences, either direct divided estimate or the least-square estimate defined in 7.2, x
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Then the coupled regression model in matrix form will be 
X E∆ = Λ+ . (40) 

Finally, the bivariate PDEMR model for the log-count will be 

[ ]
1 2

3 4

4 5

1 2
2

.     

u u x y
x y

X E

α α
α α
α α

⎧ ⎡ ⎤
⎡ ⎤∂ ∂⎪ ⎢ ⎥=⎪⎢ ⎥ ⎢ ⎥∂ ∂⎨⎣ ⎦ ⎢ ⎥⎣ ⎦⎪
⎪ ∆ = Λ +⎩

 (41) 

As to the error structure of the PDEMR formation in Eq. (41), we will investigate in the next subsection. 
 
7.4   The Normal Random Fuzzy Error Structure and Its Estimation 

 
Following multivariate regression modeling theory, it is assumed that the error matrix E  in the bivariate regression 
model in Eq. (40) as follows 

[ ]

11 12

21 22
2 1 2

1 2

E ,n

n n

e e
e e

e e

e e

×

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

# #
. (42) 

Typically, the m observations on the jth trial have correlation matrix ( )ijσΣ =  and 

[ ]
[ ]1 2 12

E 0,  1,

Cov , .
ie i

e e Iσ

= =

=

2
 (43) 

In other words, the ith “response” follows the linear regression model having error vector ie  with [ ]Cov i iie Iσ= . 
However, the errors for different “response” on the same “trial” may be correlated (Johnson and Wichern [9]). 

Furthermore, for the coupled bivariate regression model, it is assumed that the error vector is normal random fuzzy 
vector, which is a sum of a fuzzy vector, denoted as (  and a normal random vector having mean zero and 

variance-covariance matrix 

)1 2, Tm m

( )ijσΣ = . Then for any given fixed value pair ( , the error vector has joint 
distribution 

)1 2, Tm m

( ) 1 1 1 11
1 2 1 2

2 2 2 2

1, exp
2

Tx m x m
f x x

x m x mπ
−

⎛ ⎞− −⎛ ⎞ ⎛ ⎞
⎜ ⎟= − Σ⎜ ⎟ ⎜ ⎟⎜ ⎟− −Σ ⎝ ⎠ ⎝ ⎠⎝ ⎠

. (44) 
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As to the fuzzy vector, (  we propose a bi-triangular joint membership function similar to univariate 
normal random fuzzy variable case 

)1 2, Tm m

( ) ( )

( )

( )
1 2

1 1 2
1 2 1

1 2

1 1 2
1 2 1 2 2,

1 2

if ,

, if

0,               otherwise

m m

z a b z
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b a b a
c z b z

z z z z A
c b c b

µ

− −⎧

 ,

+ ∈⎪ − −⎪
⎪ − −

= + ∈⎨ − −⎪
⎪
⎪
⎩

 (45) 

where the domain areas in Eq. (45) are defined by 
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⎧ ⎫

= ≥ ≥ + ≥⎨ ⎬
⎩ ⎭

 
(46) 

The following figure illustrates the shape of the bi-triangular membership function proposed. 
 

 
 

Figure 5. Bi-triangular joint membership function 
 
The chance measure for the bi-normal random fuzzy vector can be derived as an extension to Model I (see Liu 

[11] ). Let event , then the chance measure is { } ( )2
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(47) 

where bi-normal random fuzzy vector mξ η= +� . Without any doubts, the Model I type of chance measure looks very 
neat, but the estimation procedure would be difficult to handle.  

For parameter estimation purpose, we will still intend to address the relevant average chance measure.  At our 
current mathematical manipulation level, it is impossible to derive a bivariate average chance measure for the bi-
triangular membership fuzzy mean vector and bivariate normal distribution with mean zero and variance-covariance 
matrix . Nevertheless, for the error vector fuzzy component,  Σ
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the bivariate normal random component is distributed as 

( )
1

1 1 12 1
1 2 1 2

2 12 2 21 12

12 2

1, exp

2

Tx x
f x x

x x
σ σ
σ σσ σ

π
σ σ
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(49) 

Note that he parameters to be estimated are ( )1 2,h h  and ( )1 12 2, ,σ σ σ . Therefore, the estimation procedure for the 
bivariate estimation problem can be converted into a three-step univariate average chance estimations: 

 
Step 1. Perform the Maximum Average Chance estimation on parameter ( )1 1,h σ  utilizing the bivariate regression 

error vector 1̂e , which in component level is ( )1 1 1, , 1, 2, ,je N jζ σ =�∼ n"  being  assumed to be independent normal 

random fuzzy variables. The form of the average chance density is given in Appendix Eq. (A12). 
Step 2. Perform the Maximum Average Chance estimation on parameter ( )2 2,h σ  utilizing the bivariate regression 

error vector 2̂e , which in component level is ( )2 2 2, , 1, 2, ,je N jζ σ =�∼ n"  being  assumed to be independent 

normal random fuzzy variables. The form of the average chance density is given in Appendix Eq. (A12) too. 
 
Step 3. Perform a Maximum Average Chance estimation on parameter 12σ  utilizing the “data” of the sum of two 

error vectors, i.e., 1̂ ˆe e+ 2 conditional on the estimated parameters ( )1 2 1 2
ˆ ˆ ˆ ˆ, , ,h h σ σ  obtained from Step 1 and Step 2. The 

reason behind it is the fuzzy mean of the component error sum vector is 1 2 , 1, 2, ,j j j nζ ζ+ = "  and the variance 

( )1 2 1 12 2ˆ ˆ 2j jVAR e e .σ σ σ+ = + +   The fuzzy membership for 1 2 , 1, 2, ,j j j nζ ζ+ = "  are defined by ( )( )1 2 1 2,0,h h h h− + + , 

while the normal component is defined as ( 1 12 20, 2N )σ σ σ+ + . Thus the average chance density takes a form 
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(50) 

As to the Maximum Average Chance Estimation procedure, we will state it in the subsection 7.5.  
 

7.5 The Maximum Average Chance Estimation 
 

In linear model theory, it is often assumed that the model error structure follows multivariate normal distribution and 
thus the likelihood function can be obtained. For random fuzzy variable theory, an average chance function can be 
defined (for theoretical details, see Appendix). We will propose a data-assimilating algorithm for determining the 
unknown parameters of the average chance distribution underlying the PDEMR model. We use data-assimilation to 
contrast with statistical estimation because while both methods determine unknown parameters in terms of sampling 
data, however, statistical estimation is performed under the hypothesized (random) population probability distribution, 
but the data-assimilation will be performed according to a chance distribution, particularly, the average chance 
distribution, which is not population probability distribution at all. In statistics, the commonly used principle is 
maximum likelihood estimation, where the estimated parameter(s) maximize the likelihood function. Parallel to 
maximum likelihood estimation, we will define average chance function according to a hypothesized random fuzzy 
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population average chance distribution, and then for the data-assimilated parameter(s) we maximize the average 
chance function, which may be regarded as a counterpart of likelihood function. 

Definition 7.1.  (Average chance function).  Let { }1 2, , , nx x x"  be a simple random sample drawing from a given 

population with assumed probability distribution ( );θF x , where parameter-vector ( )1 2θ , , ,
T

γθ θ θ= , 1γ ≥  and 

parameter component 0θ  is a fuzzy variable with credibility distribution ( )
0

yθΛ defined by parameter-vector ρ , and 

whose average chance distribution is derivable and denoted as ( )xΨ . Then the joint average chance density, denoted 
as 

{ } ( )2 1 2 2
1

(ρ , , , | , , , | , , ,
n

T T
n i

i

C x x x xγ γθ θ ψ ρ
=

= ∏" " "θ θ  (51) 

is called the (average) chance function. Similarly to log-likelihood function, the function 
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x  (52) 

is called the log-chance function given the simple random sample { }1 2, , , nx x x" . 

Maximum Average Chance Principle: For a given simple random sample { }1 2, , , nx x x" , the optimal data-

assimilated parameter-vector  ( )2ρ , , ,
TT

γθ θ"  maximizes the average chance function or equivalently, maximizes the 

log-chance function.  

Let us investigate the maximum average chance estimate for a normal random fuzzy variable, under a triangular 
credibility fuzzy mean with parameters (  and fixed variance parameter ), ,a b c 2σ .  

In a full data-assimilated parameter estimation of the coupled regression model specified by the univariate model, 
we have that 

( )2ˆ ,i i ie y x N eα σ= − �∼  (53) 

where 

( ) ( ) ( )( )1ˆ1, , , , p
ix x i x i x i−= ∆ ∆"  (54) 

and , therefore the contribution of i( )p
iy x= ∆ i th sample element to the average chance function is 
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(55) 

Let (  specify fuzzy mean , and ), ,a b c e� 2σ the variance. Then the full log-chance function is 
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l a b c x x x x a b cσ ψ σ
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=∑"  (56) 

Thus the search the unknown parameters as an optimization problem may be converted into the problem of solving 
 nonlinear equation system as follows 4
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(57) 

For the case of an isosceles triangular membership function (shown in Appendix Eq. (A11)) the number of 
parameters to be estimated reduced to 2, i.e., ( )1 1,h σ  for Step 1 and ( )2 2,h σ  Step 2, respectively, and in Subsection 
7.4 and accordingly the average chance density is given in Appendix Eq. (A12). As to Step 3, the parameter left to be 
estimated are 12σ  because ( )1 2 1 2

ˆ ˆ ˆ ˆ, , ,h h σ σ  are obtained in Step 1 and Step 2.  

 
8   PDEMR Predicted Protea Frequency Counts 
 
Using the predicted results from the PDEMR model, the un-sampled cells are predicted with frequency counts of the 
Protea. Figure 6 shows the predicted frequency counts of Proteas in the population size of 10 to 100, in the Cape 
Floristic Region, from 1992 to 2002. 
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Figure 6. The PDEMR model predicted frequency counts of proteas in the population Size of 10-100, in the Cape 
Floristic Region, 1992-2002 

 
Finally, we can produce kriging prediction maps of the Protea species, using the predicted results from the 

PDEMR model. Figure 7 shows the distribution and patterns of frequency counts of Proteas. One can see the changes 
in the density of occurrence of the Proteas in the Cape Floristic Region over the 11 years. 
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Figure 7. The kriging prediction maps of frequency counts of proteas in the population size of 10-100, in the Cape 
Floristic Region, 1992-2002 

 
The light colours in Figure 6 referred to low counts and the dark colours referred to high counts of the Proteas. It 

is interesting to note that the kriging prediction maps of 1992 and 2002 are very different, and the frequency counts of 
the Proteas has increased in 2002. The pattern of distribution are also very different, the high counts of Proteas in 
2002 seems to occur in small fragmented areas. The final map in Figure 6 shows the difference between 1992 and 
2002, one can that there are areas of positive changes and areas of negative changes, over the 11 years. 

 
9   Conclusion 
 
In this paper, we solved two crucial problems with regard to the ecological dataset, presence data only and incomplete 
sample data. We used the partial differential equation motivated regression (PDEMR) model, which merges the 
partial differential equation theory, (statistical) linear model theory and credibility measure theory together. The 
coupled regression component in a PDEMR model is in nature a special random fuzzy multivariate regression model. 
We developed a bivariate model for prediction of the Protea species in the population size of 10 to 100, in the Cape 
Floristic Region, 1992 to 2002, in South Africa. The model has produced very good results, which helped to produce 
kriging prediction maps. The spatial distribution and pattern are clear to see and understand in the kriging maps. 

Finally, it is necessary to pointed out that conceptually the motivated partial equation is common one as in partial 
differential equation literature. The parameters in the motivated differential equation are real-valued numbers. 
However, after the coupled multivariate regression, and even further the maximum average chance estimation for the 
error structure, the estimated parameters are random fuzzy in nature.  However, in this paper we will not facilitate 
further details because this will depend on our research on the asymptotic analysis of the Maximum Average Chance 
estimators in the near future. 
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Appendix: Theory of Random Fuzzy Variable 

 
First we need to review the fuzzy credibility measure theory foundation proposed by Liu [10], and then state the 

concept of random fuzzy variable. The theory of Liu [10, 11] is different from that initiated by Zadeh [15, 16]. 
Let Θ  be a nonempty set, and 2  the power set on Θ Θ . Each element, let us say, A ,⊂ Θ 2A Θ∈  is called an 

event. A number denoted as { }Cr A , { }0 Cr 1A≤ ≤ , is assigned to event 2A Θ∈ , which indicates the credibility 

grade with which event  occurs. A { }Cr A satisfies the following axioms [10]: 

Axiom 1: { }Cr 1Θ = . 

Axiom 2: {}Cr ⋅ is non-decreasing, i.e., whenever A B⊂ , { } { }Cr CrA B≤ . 

Axiom 3: {}Cr ⋅  is self-dual, i.e., for any 2A Θ∈ , { } { }Cr Cr 1cA A+ = .  

Axiom 4: { } { }Cr 0.5 sup Cri i i
i

A A∧ = ⎡⎣∪ ⎤⎦  for any { }iA  with { }Cr   0.5iA ≤ . 

 
Definition A.1. ([10]) Any set function [ ]Cr : 2 0,1Θ →  satisfies Axioms 1-4 is called a ( -credibility measure 

(or classical credibility measure). The triple (  is called the ( -credibility measure space. 

)
) )

,∨ ∧

, 2 ,CrΘΘ ,∨ ∧
 
Definition A.2. ([10]) A fuzzy variable ξ  is a mapping from credibility space  to the set of real 

numbers, i.e., . 

( , 2 ,CrΘΘ )
( ): , 2 ,Crξ ΘΘ → R

 
Definition A.3. ([10]) The credibility distribution [ ]: 0,Φ →R 1  of a fuzzy variable ξ  on ( )  is , 2 ,CrΘΘ

( ) ( ){ }Crx xθ ξ θΦ = ∈ Θ ≤ . (A1) 

 
Now we are ready to state the random fuzzy variable concept. 
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Definition A.4. A random fuzzy variable, denoted as ( ){ },Xβ θξ = θ∈Θ  , is a collection of random variables Xβ  

defined on the common probability space ( ), PrΩ A,  and indexed by a fuzzy variable ( )β θ  defined on the credibility 

space ( ) . ,2 ,CrΘΘ

 
Definition A.5. ([10]) Let  be a random fuzzy variable, then the average chance measure denoted by , of 

a random fuzzy event { }
ξ {}ch ⋅

xξ≤ , is 

{ } ( ){ }{ }
1

0

ch Cr |Pr dx xξ≤ = θ∈Θ ξ θ ≤ ≥α α∫ . (A2) 

Then function  is called as average chance distribution if and only if: ( )Ψ ⋅

( ) { }Chx xΨ = ξ≤ . (A3) 

Now, let us to derive the average chance distribution for a normal random fuzzy variable , where the 

mean
( 2,

d
Nξ ζ σ∼ )

ζ is a triangular fuzzy variable and standard deviationσ is a given positive real number. Note that fuzzy event 

( ){ }{ } ( )

( ) ( ){ } ( ) ( ){ }1 1

: Pr :

: :

x
x

x x− −

⎧ ⎫⎛ ⎞⎪ ⎪−ζ θ ⎟⎪ ⎪⎜ ⎟θ ∈Θ ξ θ ≤ ≥α ⇔ θ∈Θ Φ ≥α⎜⎨ ⎬⎟⎜ ⎟⎪ ⎪⎜ σ⎝ ⎠⎪ ⎪⎩ ⎭
⇔ θ∈Θ ≥ζ θ +σΦ α ⇔ θ∈Θ ζ θ ≤ −σΦ α .

 (A4) 

The fuzzy mean is assumed to have a triangular membership function 

( )

,

,

0, otherwise

w a
a w b

b a

c ww b
c b

ζ
ζ ζ

ζ ζ

ν
ζ ζ

ν ν

⎧ −⎪⎪ ≤ <⎪⎪ −⎪⎪⎪⎪ −⎪µ = ≤ <⎨⎪ −⎪⎪⎪⎪⎪⎪⎪⎪⎩

w aζ  (A5) 

and 

( ) { }
( )

( )

0,        

,
2

Cr w
2

,
2

1,           

w a
w a

a w b
b a

w
w c b

b w c
c b

w c

ν

ζ
ζ ζ

ζ ζ

ζ ζ
ζ ζ

ζ ζ

ζ

⎧ <⎪⎪⎪⎪ −⎪⎪ ≤ <⎪⎪ −⎪⎪Λ = ζ≤ =⎨⎪ + −⎪ ≤ <⎪⎪ −⎪⎪⎪⎪ ≥⎪⎪⎩

 
(A6) 

which gives the credibility distribution for the fuzzy mean, ζ . 

Then the critical step is to derive the expression of ( ) ( ){ }{ }Cr |Pr , xζ θ ∈Θ ξ ω θ ≤ ≥α . For normal random 

fuzzy variable with a triangular fuzzy mean,  

( ) ( ){ }{ } ( ) ( ){ }1    : Pr , :x x −ζ θ ξ ω θ ≤ ≥α ⇔ θ∈Θ ζ θ ≤ −σΦ α  (A7) 

where ( ) 2 2d
s us e−

−∞
Φ = ∫ u  denotes the standard normal cumulative distribution function. 
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Then the range for the integration of the integrand ( ) ( ){ }1Cr : x −θ ∈Θ ζ θ ≤ −σΦ α  with respect to α  is listed 

in Table 2.  
 

Table 2. Integration range with respect to α  
 

( )g α  Range for α  ( ) ( ){ }1Cr : x −θ ∈Θ ζ θ ≤ −σΦ α  

( )g aζα−∞ < <  1
x aζ−⎛ ⎞

Φ < α⎜ ⎟σ⎝ ⎠
<  0 

( )a g bζ ζα≤ <  x b xζ ζ− −⎛ ⎞ ⎛
Φ < α < Φ⎜ ⎟ ⎜σ σ⎝ ⎠ ⎝

a ⎞
⎟
⎠

 ( )
( )

1

2
x a

b a

−
ζ

ζ ζ

− σΦ α −

−  

( )b g cζ ζα≤ <  x c xζ ζ− −⎛ ⎞ ⎛
Φ < α < Φ⎜ ⎟ ⎜σ σ⎝ ⎠ ⎝

b ⎞
⎟
⎠

 ( )
( )
1 2

2
x c b

c b

−
ζ ζ

ζ ζ

− σΦ α + −

−  

( )g cζα ≥  0
x cζ−⎛ ⎞

< α < Φ⎜ ⎟σ⎝ ⎠
 1 

 
where ( ) ( )1g x −ζ = α = −σΦ α . 

Then we obtain the average chance measure for the event ( ){ }, xξ ω θ ≤ : 

( ){ } ( )
( )

( )
( )

1 1

0

2
ch , d d 1 d

2 2

x a x b x c

x b x c

x a x c b
x

b a c b

ζ ζ ζ

ζ ζ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜Φ Φ⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜σ σ⎝ ⎠ ⎝ ⎠ ⎝ ⎠− −
ζ ζ ζ

⎛ ⎞ ⎛ ⎞ζ ζ ζ ζ− −⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜Φ Φ⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜σ σ⎝ ⎠ ⎝ ⎠

−σΦ α − −σΦ α + −
ξ ω θ ≤ = α+ α+ × α

− −∫ ∫

− ⎟⎜ ⎟⎜Φ ⎟⎜ ⎟⎟⎜ σ

∫
 

(A8) 

which leads to the average chance distribution: 

( )
( )

( )

( )
( )

( )
( )

2

2
2

d d
2 2

x a x b

x b x c

x a x a x b
x

b a

x c b x b x c
c b

x c
u u u u u u

b a c b

ζ ζ

ζ ζ

ζ ζ ζ

ζ ζ

ζ ζ ζ ζ

ζ ζ

− −

σ σ
ζ

− −ζ ζ ζ ζ

σ σ

⎛ ⎞⎛ ⎞ ⎛ ⎞− − − ⎟⎜ ⎟ ⎟⎜ ⎜ ⎟⎟ ⎟Ψ = Φ −Φ⎜ ⎜ ⎜ ⎟⎟ ⎟⎜ ⎜ ⎜⎟ ⎟⎟⎜ ⎜⎜ σ σ− ⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞+ − − − ⎟⎜ ⎟ ⎟⎜ ⎜ ⎟⎟ ⎟+ Φ −Φ⎜ ⎜ ⎜ ⎟⎟ ⎟⎜ ⎜ ⎜⎟ ⎟⎟⎜ ⎜⎜ σ σ− ⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞− σ σ⎟⎜ ⎟+Φ − φ − φ⎜ ⎟⎜ ⎟⎜ σ − −⎝ ⎠ ∫ ∫ .

 

(A9) 

Take the derivative with respect to , the average chance density is obtained x

( )
( ) ( )

( ) ( )

1
2 2

21     
2 2

x a x b x a x a x b
x

b a b a

x b x c x c b x
c b c b

ζ ζ ζ ζ ζ

ζ ζ ζ ζ

ζ ζ ζ ζ

ζ ζ ζ ζ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − − −⎟ ⎟⎜ ⎟ ⎟ ⎜ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟⎟ ⎟ ⎟ ⎟ψ = Φ −Φ + φ −φ⎜ ⎜⎜ ⎜ ⎜ ⎜⎟ ⎟⎟ ⎟ ⎟ ⎟⎜ ⎜⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎟ ⎟⎜ ⎜ ⎜ ⎜⎜ ⎜σ σ σ σ− − σ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞− − + −⎟⎜ ⎟ ⎟⎜ ⎜ ⎟⎟ ⎟+ Φ −Φ + φ⎜ ⎜ ⎜ ⎟⎟ ⎟⎜ ⎜ ⎜⎟ ⎟⎟⎜ ⎜⎜ σ σ− − σ⎝ ⎠ ⎝ ⎠⎝ ⎠

( )

( )

1

1     
2

1     
2

b x c x c

x a x a x b x b
b a

x b x b
c b

ζ ζ

ζ ζ ζ ζ

ζ ζ

ζ ζ

ζ ζ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −⎟⎜ ⎟ ⎟⎜ ⎜ ⎜⎟⎟ ⎟−φ + φ⎜ ⎜ ⎜ ⎜⎟⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟⎟⎜ ⎜ ⎜⎜ σ σ σ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − − ⎟⎜ ⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜ ⎟⎟ ⎟ ⎟ ⎟− φ − φ⎜⎜ ⎜ ⎜ ⎜ ⎟⎟ ⎟ ⎟ ⎟⎜⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎟⎜ ⎜ ⎜ ⎜⎜ σ σ σ σ− ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞− −⎟⎜ ⎟− φ⎜ ⎟⎜ ⎟⎜ σ σ− ⎝ ⎠

ζ ⎟⎟⎟⎟σ

.
x c x cζ ζ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − ⎟⎜ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎟⎟ ⎟ ⎟− φ⎜ ⎜ ⎜ ⎜ ⎟⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟⎟⎜ ⎜ ⎜⎜ σ σ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

(A10) 
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Finally, if the fuzzy mean is assumed to have a isosceles triangular membership function 

( )

, 0

, 0

0, otherwise

w h h w
h

h ww w
hζ

⎧ +⎪⎪ − ≤ <⎪⎪⎪⎪⎪ −⎪µ = ≤ <⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

h , (A11) 

the average chance density takes the form 

( ) 1 1
2

1         
2

         
2

x h x h x hx
h

x h x h x h x h
h

x h x h x h
h

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − −⎟⎜ ⎟ ⎟⎜ ⎜ ⎜ψ = Φ −Φ + φ⎟⎟ ⎟⎜ ⎜ ⎜ ⎜⎟⎟ ⎟⎜ ⎜ ⎜⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠σ σ σ σ⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛+ + − − ⎟⎜ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜− φ − φ ⎟⎟ ⎟ ⎟⎜⎜ ⎜ ⎜ ⎜ ⎟⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝σ σ σ σ⎝ ⎠

⎛ ⎛ ⎞ ⎛ ⎞+ + −⎜ ⎟ ⎟⎜ ⎜+ φ −φ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠σ σ σ⎝
.
⎞⎟⎟⎟⎜ ⎟⎠

⎟⎟⎟

⎞⎟⎟⎟⎠

 
(A12) 

 




