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Abstract

This paper proposes a new design method of fuzzy robust control, which is used for aerospace
vehicle’s (ASV’s) attitude dynamics during the re-entry phase. For the complicated flight condi-
tion during re-entry phase, the attitude T-S fuzzy model with parameter uncertainty is considered,
based on which, a guaranteed cost fuzzy controller with disk pole constraints is designed via out-
put parallel-distributed compensation (OPDC) approach, by solving linear matrix inequalities
(LMIs) problem, the robust fuzzy controller guarantee the closed-loop system with satisfactory
transient and stead-state performances. The simulation results demonstrate the effectiveness of
the proposed method.

(©2007 World Academic Press, UK. All rights reserved.
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1 Introduction

Attitude control plays an important role during the re-entry phase as far as ASV (aerospace vehicle)
is concerned. One of the biggest difficulties is that attitude dynamics of an ASV are high complex
nonlinear dynamics. Therefore, a non-model-based method is suitable to be considered for design.
Fuzzy method is a popular for modeling and control unknown nonlinear system [13]. There are
two common inference methods: Mamdani’s fuzzy and T-S (Takagi-Sugeno) fuzzy [12]. These two
methods are the same in many respects, such as the procedure of fuzzifying the inputs and fuzzy
operators, and have been applied in many practical designs. In Ref. [15] and Ref. [16], re-entry vehi-
cle’s attitude control was considered by using Mamdani fuzzy. Although Mamdani fuzzy approach
is successful to a certain extent, its lack of precise mathematical description makes it difficult to be
applied in further general design and fuzzy systems analysis.

T-S fuzzy was first introduced in 1985 [12], which can compensate some shortcomings of Mamdani
fuzzy in aspect of mathematical analysis. Furthermore, the advantage of using T-S fuzzy models
is that a large class of nonlinear plants can be well represented by local linear models, without the
need to modify the original nonlinear dynamics in any significant way [7, 4, 11]. In Ref. [8] and
Ref. [10], T-S fuzzy-model-based control was applied to attitude dynamics, and the designed robust
fuzzy controllers guaranteed the stability of attitudes. However, stabilization is only a minimum
requirement for control systems. In most practical situations, a good controller should also deliver
sufficiently fast and well-damped time responses. An efficient way to guarantee satisfactory transient
performance is to place the closed-loop poles in a suitable region of the complex plane. In Ref. [3],

*This work was supported by the National Natural Science Foundation of China (Grant No. 9045011) and the
Doctorate Innovation Foundation of Nanjing University of Aeronautics and Astronautics (Grant No. BCXJ06-06).



292 Y. H. Wang, et al.: Guaranteed Cost Fuzzy Output Feedback Control Via LMI Method

Chilali discussed analysis and synthesis techniques for robust pole placement in LMI (linear matrix
inequality) regions, but the proposed method could only be used for linear uncertain systems, as
presented in Ref. [6] and Ref. [14].

In this study, pole placement in LMI region is extended to a class of nonlinear systems by us-
ing T-S fuzzy technique, which can be used for ASV’s re-entry attitude control. For complicated
flight conditions and acutely changed parameters during re-entry phase, the attitude dynamics with
parameter uncertainty are considered and represented by T-S fuzzy model, based on which, guar-
anteed cost control is taken to achieve the system’s stability under the limited control input, and
disk pole placement is considered to achieve fast decay, good damping, and reasonable controller
dynamics. Combined the advantages of guaranteed cost control with disk pole constraints, a T-S
fuzzy controller is designed via OPDC (output parallel distributed compensation) [2] approach, and
it is derived in terms of LMIs with equation constraint. By Lemma 3.2, the equation constraint
is eliminated and the design problem is transformed to LMIs problem without equation constrain,
which can be solved by using Matlab tool.

This paper is organized as follows. In Section 2, we define the ASV’s re-entry attitude dynamics
based on T-S fuzzy, and show that the fuzzy plant rule and control rule. Section 3 presents the
fuzzy robust control scheme and the proofs of the stability and the problem solutions. In section 4,
simulation results are illustrated to confirm the feasibility and superiority of the proposed method.
Finally, conclusion remarks are included in Section 5.

2 Problem Formulation
The dynamical equations of rotational motion of ASV in re-entry mode are given:
w=J ' Qw)Jw+ JIGs (1)

Y =EM)w, (2)

where w = [p,q,7]" is the angular rate, .J is the inertia, v = [¢,3,a]” is the attitude angle, § =
[6e, Oay Ory 0z, 8y, 02]T is the control surface deflection, p,q,r, ¢, and « are the pitch rate, the roll
rate, the yaw rate, the bank angle, the sideslip angle and the attack angle respectively, dc, dq, 0y, 0, 0y
and J, are the elevator deflection, the aileron deflection, the rudder deflection, the equivalent control
surface deflection of x-axis, y-axis and z axis to the body frame respectively, and

0 r  —q
Quw)y=[ - 0 p |, (3)
qg -p 0

cosae 0 sina
Z(y) =1 sina 0 —cosa |, (4)
0 1 0

Ipse Ipsa 9pbr 9ps. 0 0
G = gq’éﬁ g(L(Sa gq767‘ 0 O gq,l;z ° (5)
9rse  9réa  9ri. 0 g’r,éy 0

Matrix G is the control allocation of control torque to control surface. Here, only the expression of
Jq,6. as an example is given:

QQ76e = qS[CCmyée + Xcg(CD76eSin(a) + CLy(;eCOS(a))]? (6)
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where g is aerodynamic pressure (kg/ms), S is reference area (m?), ¢ is mean aerodynamic chord
(m), X4 is longitudinal distance from momentum reference to vehicle (m). Cp,s,,Cps, and Cr, 5,
are pitching moment increment, drag increment coefficient, and lift increment coefficient for left
elevon, respectively, and all of them are functions of the angle of attack o, the Mach number Mach
and the altitude H.

To design the controller conveniently, the method of backstepping is used to convert the stabi-
lization problem into a regulation problem [8]. Considered equation (2), a virtual control vector is
designed as following:

we = —k1E7 1. (7)

Define the error variable z as:
Z2=w—we=w+ ki Z . (8)

Then, the differential equations (1) and (2) can be rewritten as
f= (T2 = E )T + k) 2+ Ry (-J*lg(z k=l gEl =Y - klzfl) ~
+J7las (9)
ﬁ/ =Zz— kl’ya

where (271" denotes the time derivative of 2~'. And define the output of system (9) is:

y =z, (10)
the input of system (9) is:
w0, (11)
and 1 £ 21,72 = 20,73 = 23,74 = x5 = 16 = a1, = [11,32,73)7, 24 = [24, 25,267 and
z £ [2, 211", Then Eq.(5) is equal to
(1) = f(@)alt) + g(e)u) )
y(t) = Ca(t),

where f(x),g(x) and C are
f(z) = (T —kETY) T+ k) K <—J’1Q(z — kB ) JE 4@ - k15—1> ]

= —k113x3

g9(x) = [ 176

O3x6

Based on T-S fuzzy, system (12) can be well represented by local linear models. However,

because of limited fuzzy rules, modeling error is always existed. Furthermore, during the re-entry

phase, the high complicated flight conditions and acutely changed parameters greatly affect the flight

performance of ASV. To avoid the above problems, the uncertain system of ASV based on T-S fuzzy
model is considered. The ¢th IF-THEN rule is:

], C = Isxz 0O3x3 |.

Plant rule i: IF yy(t) is My and - yn,(t) is My,
THEN &(t) = (A; + AA)x(t) + (B + AB;)u(t) (13)
y(t):Cl'(t) 7::1,2,"',7’,

where x(t) € R™ is the state vector, u(t) € R™ is the input vector, y(t) € R™ is the output vector,
fori=1,2,---,mj=1,2,--- ,ny, M;; is the grade of membership of y;(t) for the ith rule, r is the
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number of fuzzy rules. Matrices A; € R™*™ B; € R"*™ (C € R™*" AA;, AB; are the uncertainties
of A;,B; respectively, and have the form:

[AA,‘ ABZ'] = D,Fl(t) [Eh' Egi], (14)

where D;, E1;, E9; are constant matrices with proper dimensions which reflect uncertain structure,
F;(t) are unknown matrices containing Lebesgue measurable elements and satisfy F (t)F;(t) < I.
For the system (12), we design robust fuzzy control law by the approach of OPDC [2], and the

ith control rule is:
Control rule i: IF yi(t)is My and --- yn,(t) is Mip, (15)

So, the global controller is
u(t) =Y hiy(t)) Niy(t), (16)
i=1

and the closed-loop system is

£(t) = Z Z hi(y)hj(y) (Ai + BiN;C + D; Fi(Ev; + EoiIN;C)) (1), (17)
=1 j=1

where h; is defined by
oty = B M)
22:1 Hjil M;j(y;(t))
Note that the normalized weights h; satisfy h;(y(t)) > 0 and Y ;_, hi(y) =1 for all ¢ > 0.

3 Main Results

Guaranteed cost control is a method of synthesizing a closed-loop system, in which the controlled
plant has large parameter uncertainty. Here, a linear quadratic cost function is considered as a
performance index of the closed-loop fuzzy system (17). Given symmetric positive definite matrices
Q@ and R , the cost function is:

Jo = /OOO (2" (£)Qx(t) + u” (t) Ru(t)] dt. (19)

Synchronously, to achieve satisfactory transient performance, disk pole placement is taken to
make the system achieve fast decay, good damping, and reasonable controller dynamics. Here, a
disk D(q,r) with center at (—qg + j0) and radius r < ¢ is considered as shown in Fig.1.

$1m
T ~
HI?'h.. |.1".:.‘I_
q - i
="
-

Fig.1 Disk region D(q, )
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If A € D(q,r), it follows that the damping ratio & > [1 — (3)2}%, damped natural frequency wg < r,

T
the natural frequency w, € [q¢ —r,q + 7] [6].
Next, inspired by the idea of Ref. [6], we associate guaranteed cost control with disk pole con-
straints, the following definition is proposed.

Definition 3.1 For the given disk and cost function (19), for all F;(t) which satisfy FI F; < I, if
symmetric positive definite matrix P satisfy
_p-1 (Atql)

Al _p 4 Q-+ CTNIRN,C

<0, (20)

then matrix P is a fuzzy quadratic-D cost matrix of the system (17) under disk pole constraints,
where
A= A; + Bz'NjC + D,FZ(EM + EQiNjC),i,j =1,2,---,7.

Remark 3.1: In Ref. [6], the idea is only appropriate for linear systems, based on T-S fuzzy theory,
it can be extended to solve the control problems of nonlinear systems.

Noted that the inequalities (20) are not LMIs, for which can be solved by using Matlab tool, the
following lemma is given.

Lemma 3.1 ([1]) For matrices Y, D and E with given proper dimensions, where Y is symmetric,
then for all F' which satisfy

FTF<I1,Y+DFE+ETFTDT <0
if and only if there exists a € > 0 such that
Y +eDDT + e 'ETE <.

Under Definition 3.1 and Lemma 3.1, we show the following key theorem.

Theorem 3.1 For the given disk D(q,r) and cost function (19), if there exist real symmetric
positive definite matrix V', real matrices W; and scalar e such that

W, <05 \Ifij+\1’ji<0;CV=MC 1<j<r (21)
where
[ -V AV +BW;C+qV D; 0 0 0 |

« 2V 0 rvQ: VEL+CTWIEL rC"WIR:
- * * -1 0 0 0

* * —el 0 0

* * * * —I 0

* * * * * —el

have feasible solutions (€, V, W;), then u(t) = S°1_, hi(y(t))W; M ~'y(t) is the guaranteed cost fuzzy
output feedback control law with disk pole constraints and the upper bound of cost function of Jo
is Jo = ad (T%P) zo.( where * denotes the transposed terms for symmetric positions)
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Proof. By Definition 3.1, (20) is equivalent to

—P~1 A, + B;N;C + D;F;(Ey; + Eo;N;C) + qI “0 (22)
* —r2P +r2Q + rQCTNJTRNjC '
And (22) can be rewritten as:
—p! A; —i—BZN]C—l-qI I
* —T2P+T2Q+T2CTNJTRNJ‘C (23)
23

D T T D r
o |FLO Eu+ExN;C |+ [0 Eu+EuN;C | F'| 71 <0

By Lemma 3.1, for all F; which satisfy FZ-TFi < I, the above matrix inequalities hold if and only if
there exists an € > 0, such that

—p1 Az—I—BZNJO—l—qI I
*  —r*P+r*Q+r*CT"N/RN;C (24)
41| D T 0 ‘ .
‘ [ 0| Lo 0 Twe| s ey | [0 But Eave ] <0
that is
—pP~ '+ 'DDT A; + B;N;C +qI
(=P +Q + CT"NIRN;C) <0. (25)
* +€(E1i + EziNjC)T(Eli + EQiNjC)
Pre-multiply and post-multiply each side of (25) by using the following matrix,
Vel 0
( 0 \/Ep—l ) (26)
then we have . . .
|: —eP :— DD E(Ai + BZNJUC + qI)P ] <0, (27)

where
U=r?(—P '+ P'QP '+ PT'C"N/RN,;CP™") + P~ (Ey; + ExiN;C)" (Ey; + EoiN;C) P~

Denote V = eP~!, we have

-V +DD” (A; + BiN;C + qI)V
T‘Q(—V 4 VCSV I VCTN]TERNJ-CV) <0. (28)
* —|—V(E1Z‘ + EQZ‘NjC)T<E1i + EQZ‘N]‘C)V

Inequalities (28) are a problem of bilinear matrix inequalities (BMIs) about V' and Nj;, and it can be
transformed to LMI problem by adding equation constraint as CV = M C, where M is nonsingular
matrix. Then the following inequalities is obtained

~V +DDT (A4; + B;N;C + qI)V
TasT T X
T2(—V—|— VC;ZV +C M NJ.ERN]MC) <0. (29)
* —l—(EMV—l- EQzNJMC)T(EMV—{—EQZNJMC)
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Denote W; = N; M, we get
-V +DDT A;V + BW;C + qV
CTWTRW,C
* 7‘2(—V + V?V + . / ) + (EliV + EQimc)T(EliV + EQinC)

€

<0. (30)

Then by Schur complement, matrix inequalities (21) are obtained.

From the above proof steps, we know if (€, V) is the feasible solutions of (21), then P (P = éV 1)
is the fuzzy quadratic-D cost matrix of system (17).

Next we show the upper bound of cost function. By Definition 3.1 and Schur complement, (20)
is equal to

(A+q)"P(A+qI) —r*P +r*Q+ r*CT N/ RN;C <0 (31)
that is
AT 1 L 2r g ¢ —r? r? r? T nrT
ATP4+ PA< ——ATPA - P—-—Q—-—C"N/RN;C
q q q q

2 (32)
< —;(Q + CTN/RN;C).

Consider the Lyapunov function V' (z) = 27 Pz, and its time derivative along the trajectory of system
(17) is

ror 2 r
V() =33 hihjaT (PA+ ATP)z < —%xT S hi(@+CTNTRN;C) | 2 <0, (33)
i=1 j=1 j=1
Then we have
r’ T . T ArT y
i > " hi(@+CTNRN;C) | & < —V(x). (34)
j=1

Integrate both sides of (34) from ¢ = 0 to ¢ = co and considering the initial condition, we obtain

9] r r2
/ o | X0 h(@Q + CTNRN,C) | it < V(2(0)) = f P (35)

And the upper bound of J¢ is
Jo = / (27 (0)Qu(t) +u () Ru(t)] di < Jo = o (L P) ay. (36)
0
Hence the proof is complete.

Remark 3.2: The problem of (21) is a series of LMIs with equation constraint, and it can not
be solved in matlab code. In general case, the following lemma is used to eliminate the equation
constraint of LMIs (21).

Lemma 3.2 ([5]) Suppose matrices L € R"* 7 € R"*? are column full rank, then there exists
symmetric positive definite matrix V such that VL = Z if and only if L”Z = ZTL > 0, while

V=2zL"2)"1 2" + Lt x(LHT (37)

where X € R("=0x(n=9) ig positive definite matrix, and L' denotes orthogonal complement matrix
of L.
The next theorem shows the LMI term without equation constraints.
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Theorem 3.2 For the given disk D(g,r) and cost function (19), if there exist real symmetric
positive definite matrix X, nonsingular matrix M, real matrices IW; and scalar € such that

W, < 0; \I/ij+\l’ji<0 1<j<r (38)
where -~ .
ST Sy + BinC +S3 D; 0 0 0
. Sy 0 S5 S¢+CTWIEL rCTWIR:
Uy = * * -1 0 0 0 7

* * *  —el 0 0

* * * * I 0

* * * * * —el

S =-CcTM"(cc™M")"'MC - CcTX(CTHT,

Sy = A4,CTMT(CCTMTY tMC + A,0T LX(CTHT,

Sz = qCTMT(CCTMTYIMC + qCTHX(CTHT,

Sy =—r*CTMT(CCTMT)T'MC — r?CTHX (CTH)T,

S5 = rCTMT(COTMT) ' MOQ3? +rCTHX(CTHTQ3,

Ss = CTMT(CCTMT) ' MCE], + T+ X (C™H)T BT,
have the feasible solutions (¢, M, X, W;), then u(t) = S°/_, hi(y)WiM~'y(t) is the guaranteed cost
fuzzy output feedback control law with pole constraints and the cost function of Jo has upper bound

Jo = (T%P) z0.

Proof. Since V is symmetric matrix, the equation constraint CV = MC is equal to VCT = CT M.
By Lemma 3.2, if denote L = CT, Z = CTMT™, there has

v =cTMT(cc™m?)y=*mC + ot x(CcTHT. (39)

Then the LMIs (38) are obtained from LMIs (21) with equation constraint by using Eq.(39).
And problem (38) can be solved by Matlab LMI toolbox. Then the quadratic-D cost matrix

P=¢ (CTMT(CCTMT)*lMC + C“X(CTL)T) .

Hence the proof is complete.

4 Results

To verify the performance of the proposed method, we give the initial point (that is given the altitude
H = 65km and the Mach number Mach = 20.2 as the initial states) during the re-entry phase of
ASV. And the symmetric, positive definite moment of inertia tensor is given as follows [9]:

554486 0 —23002
J = 0 1136949 0
—23002 0 1376852

In re-entry mode y; € [-0.5,0.5], (i = 1,2,3), and the corresponding membership functions are
shown in Fig. 2.
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about 0.5
A

Fig.2 Membership functions of the fuzzy sets M;;(y;)
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Then we choose nine operating points: [y1, y2,y3] = [-0.5,—0.5,—0.5], 0,0, —0.5],[0.5, 0.5, —0.5],
[—0.5,—0.5,0], [0,0,0], [0.5,0.5,0],[~0.5, —0.5,0.5], [0,0,0.5], [0.5,0.5,0.5]. Under the membership
functions and the nine operating points, nine plant rules and nine control rules can be defined
(reference (13) and (15)). And A; and B; can be obtained easily by the substitution of each of the nine
operating points to f(z), g(z) with k1 = 8. Then we choose D; = D = 0.01/5, and suppose matrices
A;, B; exist 30%,50%, parameter perturbation respectively, that is AA; = 0.34;, AB; = 0.5B;.

By solving LMIs problem (38), the fuzzy robust controller for ASV’s attitude dynamics can be
designed. The fuzzy output feedback control gains and the fuzzy quadratic-D cost matrix are shown

as follows:

—1.39
—1.46
—3.28

Ny =

1.35
1.71
0.96

Ny

-0.99
—1.28
—2.57

N3 =

2.87
0.66
5.10

N, =

—0.53
—2.27
—0.18

N5 =

[ —1.03
—2.37
0.04

[ —3.33
—2.42
| —5.41

-3.68 1.79 0.51 1.79
—-2.64 -1.13 0.20 1.67
—4.29 —-0.39 0.23 3.62
1.33 1.21 0.50 1.62

2.83 073 031 2.04

2.80 —1.30 0.23 3.45

0.52 —-3.30 0.51 1.60
1.95 —5.28 0.43 2.57
—-0.21 —-6.08 0.23 3.44
4.00 —0.01 0.50 2.22

1.35 —0.94 0.22 0.86

742 —-0.27 0.29 3.60

—-0.95 041 0.49 2.08
—-3.89 0.85 0.30 2.05
—-0.34 041 0.29 3.45
—-1.72 041 0.50 2.12
—4.05 —-0.85 0.37 3.59
0.01 0.41 0.29 3.53
—4.79 —-0.23 0.49 2.58
—-3.84 —0.30 0.28 0.15
-9.68 166 0.35 3.48

—1.04
—3.04
—2.01

—-1.93
—3.08
—-1.95

—2.83
—-3.12
—1.77

—1.10
—2.84
—2.29

—-1.91
-3.01
—1.93

—2.58
-3.05
—-1.33

—1.44
—2.85
—2.47

T

T

?

T

T

T

)

1T

1T

)

9
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1.35
2.17
0.14
0.49
2.58
| —2.25

Ny =
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1.60 3.02 —0.34 047 248 —1.91 7"
Ng=| 437 524 120 0.29 2.01 -3.01 ,

3.25 251 358 034 331 —-1.93
287 197 ] [ 34567 21940 24545 0 0 0 i
2.88 1.70 21940 34811 24001 0 0 0
1.86  2.18 p_ 24545 24001 38426 0 0 0
032 035 |’ 0 0 0 271090 —-27725 7925.6
4.17  3.56 0 0 0 —27725 1719400 —8073
-3.13 —-1.12 | . 0 0 0 7925.6  —8073 4179000 |

Next the system response under the proposed controller is simulated. The state response figures
with different initial conditions are shown in Fig.3 and Fig.4, respectively.

State Responcse

0.4

§1
: 2
0.2}---%------ R . T
¥y
*g

X

1) N GO R | S—,

-0.4

Tirne sec

Fig.3 State response with initial conditions
x(0) = [0.4,0,—0.4,0.05,0, —0.05]

From definition of g, ts ~

4

State Responcse

0.4

Time sec

Fig.4 State response with initial conditions
x(0) = [~0.3,0,0.4, —0.05, 0, 0.05]"

7, if based on the considered disk, because of 4.8 = ¢ —r < §w, <

q+7r = 5.2, ts should in the regio?l [0.77,0.83]s. However, from the Fig.3 and Fig.4, the settling time
is about 1s. The simulation results differ from the theoretical value, which may be mainly caused
by two reasons. One of them is model error can not be estimated accurately. Though nine linear
subsystems under nine fuzzy rules are applied to approximate the ASV’s attitude dynamics, the T-S
fuzzy model can not completely describe the complex attitude dynamics without any deviation, it
will effect the control results. Another is that the LMIs problem (38) for this example is feasible but
not strictly feasible, depending on the 45 inequalities needed to be solved and the pole constraints
employed in (38). Despite the simulation results have a little bias, the proposed controller still
deliver satisfactory transient and steady-state performance for ASV’s attitude dynamics.

Cantrol Input,deg

Time sec

Fig.5 Control input with initial conditions
z(0) = [0.4,0,—0.4,0.05,0, —0.05]

—
_________ Lptgee iy T A
; Yy
H——u,
"""" T""""""E'__us'
VlEmasls

1 ]
1 2 £

Control Input,deg

30 ,
|
i > — ]
_________ P 2 -
20 ; ! u3
: | —%—u,
10 FER ——————————— — — U]
¥ ; e
._. ||||||||||||||||||||| : ......................
-10 ;
0 1 7 3

Tirne, sec

Fig.6 Control input with initial conditions
x(0) = [-0.3,0,0.4, —0.05, 0, 0.05]7
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In general cases of flight control, the control input is a bounded vector, and the surface deflection
is required in the region [—30,30]deg. If not in the region, the prospective control effect can not be
attained. From Fig.5 and Fig.6, we can see that the control surfaces satisfy the constraint condition.
They show that the designed T-S fuzzy controller can guarantee the control input without saturation.

0.4
method in this study
° P — — —method in Ref.8
£ 03 P R method in Ref.10
;\@ 1 v == method in Ref.15
< o2
e \
-
f 0.1§ \
O (.
K \
2 do~ —_ ~
2 0 ( 7N ,
/7 \N_7
\
-0.1%- .
0 10 20 30
Time,sec

Fig.7 Control input with initial conditions
x(0) = [0,0.4,-0.4,0.1,0,0.1)7

Fast convergence is always our object, especially for the real time control during the re-entry phase.
In Fig.7, we give the response waves of angle of attack («). Compared with the proposed methods
in Ref.[8,10,15], the response time is obviously accelerated. The convergence time in this study is
not exceed 1s with no oscillation, which is very important to practical missions. That is due to fast
tracking and good robust are the powerful guarantees for missions completion.

5 Conclusion

Although stabilization is considered to be one of the most basal requirements in ASV’s attitude
control, fast response robust controller is our object, especially for in real time mode. Based on the
idea of fuzzy guaranteed control, there has no saturation for control input, by doing this, it guarantee
the state’s stabilization under the limited input. In addition, disk pole placement is considered to
provide the system satisfactory transient performance, such as fast decay, and good damping. The
simulation results show that the proposed method can obtain attitude’s stabilization during re-entry
phase, which also extend a new technique for complex nonlinear systems robust control.
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