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Abstract

Kolmogorov-Martin-Lof definition describes a random sequence as a sequence which satisfies
all the laws of probability. This notion formalizes the intuitive physical idea that if an event has
probability 0, then this event cannot occur. Physicists, however, also believe that if an event has
a very small probability, then it cannot occur. In our previous papers, we proposed a modification
of the Kolmogorov-Martin-Lof definition which formalizes this idea as well. It turns out that our
original definition is too general: e.g., it includes some clearly non-physical situations when the
set of all random elements is a one-point set. In this paper, we propose a new definition which
avoids such situations and is, thus, a more physically adequate description of randomness.

(© 2007 World Academic Press, UK. All rights reserved.

1 Formulation of the Problem

Intuitive notion of randomness. In the traditional probability theory, we can talk about prob-
abilities of different events, but we cannot distinguish between “random” and “non-random” se-
quences. Intuitively, however, some sequences are random and some are not.

For example, if we have a fair coin which produces heads (denoted by 1) and tails (denoted by 0)
with equal probability, then we expect the actual sequence of the results of flipping this coin to be
random, while the sequence 0101..., in which a sequence 01 is repeated again and again, is clearly
not random.

Kolmogorov-Martin-Lof definition of randomness. The most well-known formalization of
the notion of randomness was proposed in the 1970s by A. N. Kolmogorov and P. Martin-Lof; see,
e.g., [8].

Informally, we call a sequence random if it satisfies all the laws of probability. Laws of probability
usually state that some property holds with probability 1, i.e., that this property holds for all
sequences (function, objects, etc.) except for sequences from a set of the probability measure 0.
For example, the large numbers theorem states that with probability 1, the frequency f of 1’s in a
sequence tends to 1/2. A central limit theorem states that with probability 1, the distribution of
the difference f — 1/2 between the actual frequency f and 1/2 tends to Gaussian, etc.

It is natural to say that a sequence satisfies the large numbers law if for this sequence, the
frequency of 1s tends to 1/2. Similarly, we say that a sequence satisfies the central limit theorem if
for this sequence, the distribution of the deviations f — 1/2 tends to the normal distribution, etc.

In other words, we say that a sequence is random if it does not belong to any set of measure 0
which describes exceptions to a law of probability. Of course, we cannot define a random sequence
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as a one which does not belong to any set of measure 0 — because, e.g., in the probability measure
corresponding to coin flipping, every infinite sequence has measure 0. However, we can do this if
we restrict ourselves to measurable sets of measure 0, i.e., sets which can be described by closed
formulas.

Every formula is a finite word in a finite alphabet (used to describe the corresponding mathemat-
ical theories). There are no more than countably many such words, hence no more than countably
many definable sets of measure 0. The union of all such sets still has measure, so by deleting
all of them we keep the set of measure 1. Elements of this set are called random in the sense of
Kolmogorov-Martin-Ldf.

From efficient to definable sets of measure 0. In the original definition of a Kolmogorov-
Martin-Lof random sequences, the authors only considered computable sets of measure 0, i.e., sets
corresponding to efficient tests of randomness.

From the viewpoint of computational statistics, when our main objective is to check whether a
sequence is indeed random with respect to a given distribution, thus restricted definition is sufficient.
However, in physical applications, we may be interested in more general properties which are not
necessarily described by computable sets of measure 0. To handle such properties, P. Benioff, in his
pioneer paper [1] on the use of randomness in physics, extended the original definition to the general
case of definability.

In order to formally describe the corresponding notion, let us recall what definability means; for
details, see, e.g., [6]. To make formal definitions, we must fix a formal theory £ that has sufficient
expressive power and deductive strength to conduct all the arguments and calculations necessary
for working physics. For simplicity, in the arguments presented in this paper, we consider ZF, one
of the most widely used formalizations of set theory.

Definition 1 Let L be a theory, and let P(x) be a formula from the language of the theory L, with
one free variable x for which, in the theory L, there exists a set {x | P(x)}. We will then call the set
{z| P(x)} L-definable.

Crudely speaking, a set is £-definable if we can explicitly define it in £. The set of all real num-
bers, the set of all solutions of a well-defined equation, every set that we can describe in mathematical
terms is L-definable.

This does not mean, however, that every set is L-definable: indeed, every L-definable set is
uniquely determined by formula P(z), i.e., by a text in the language of set theory. We have already
mentioned that there are only countably many words and therefore, there are only countably many
L-definable sets. Since, e.g., in a standard model of set theory ZF, there are more than countably
many sets of integers, some of them are thus not £-definable.

In our definitions, we need to make mathematical statements about £-definable sets. Therefore,
in addition to the theory £, we must have a stronger theory M in which the class of all £-definable
sets is a set — and it is a countable set.

Denotation. For every formula F from the theory L, we denote its Gédel number by | F|.

Comment. A Godel number of a formula is an integer that uniquely determines this formula. For
example, we can define a Godel number by describing what this formula will look like in a computer.
Specifically, we write this formula in IXTEX , interpret every IATEX symbol as its ASCII code (as
computers do), add 1 at the beginning of the resulting sequence of 0s and 1s, and interpret the
resulting binary sequence as an integer in binary code.
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Definition 2 We say that a theory M is stronger than L if it contains all formulas, all axioms,
and all deduction rules from L, and also contains a special predicate def(n,x) such that for every
formula P(x) from L with one free variable, the formula Yy (def(| P(x)]|,y) <> P(y)) is provable in
M.

The existence of a stronger theory can be easily proven; see, e.g., [6]. Now, we are ready for a
formal definition.

Comment. In this paper, we will consider several different definitions of randomness. To distinguish
between different versions, Kolmogorov-Martin-Lof randomness will be denoted by an index 0 and
its consequent modifications by indices 1, 2, ...

Definition 3 Let  be a definable measure on a definable set X. We say that an element x € X 1is
randomyg if it does not belong to any definable set of pu-measure 0.

In the following text, the set of all randomg-elements will be denoted by Ry.

Limitations of Kolmogorov-Martin-Lof definition. The above definition, in effect, says that
if an event has probability 0, then this event cannot happen. Physicists actually believe in a stronger
statement: if an event has a very small probability, then this event cannot happen.

For example, according to physicists, the result of flipping a fair coin cannot start with 10,000
heads. This argument is used in statistical physics, to explain why processes with a very small
probability — e.g., that all the molecules in a gas gather in one half of the bottle — simply cannot
occur.

How to overcome these limitations? A challenge. We cannot simply fix a threshold py < 1
and claim that all events with probability < pg cannot happen. Indeed, in a coin flipping example,
all sequences of a given length n are equally probable, with probability 27™. So, if we prohibit
a sequence starting with 10,000 1s because its probability is too small 2710000 < po - then we will
prohibit all sequences of this length — but this does not make physical sense, because we can easily
flip a coin 10,000 times and get some result 0110...

Levin’s suggestion. A solution to the above challenge was first proposed by L. Levin [7, 8].
Levin’s idea is that for a simple easy-to-describe event like “a sequence starts with 10,000 heads”,
the condition that u(E) < po should be sufficient to conclude that E is impossible. However,
when we go to more complex, more difficult-to-describe events, e.g., that the sequence starts with
the “random” subsequence 0110... of the same length, the impossibility threshold should be much
smaller — definitely larger than 2710000,

In other words, the threshold should depend on the complexity of an event. Complexity can
be described in algorithmic terms — e.g., as Kolmogorov complexity K(x), the shortest length of a
program which generates a given object [8], so this definition can be formalized.

Limitations of Levin’s definition. Kolmogorov complexity is defined in terms of algorithms.
Its asymptotic properties do not depend on what programming language we use to describe the
corresponding algorithms, but its numerical value for a given object strongly depends on the choice
of this language. So, strictly speaking, we have different numerical functions describing complexity.

Different functions lead to different definition of randomness. We do not know which definition
is physically most adequate. It is therefore desirable, instead of defining a single calls of random
sequences, to describe a collection of such classes, i.e., to provide an ariomatic descriptions of the
corresponding sets.
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Our previous definition of randomness. Such a definition was proposed and analyzed in our
papers [2, 3, 6].

What does it mean that events with small probability cannot happen? For coin flipping, we
can consider events A, meaning that the results of flipping start with n heads. We know that
Aoy 2 A D ... D A, D ..., and that the probability u(A,) = 27" of the event A, tend to 0 as
n — oo. Tending to 0 means that as n increases, these probabilities become smaller and smaller.
Eventually, this probability will become so small that the corresponding event simply cannot happen,
i.e., all events from the corresponding set Ay will be non-random.

We do not know for which N this will happen, it depends on physics, a physicist must tell us
whether a sequence of 50 heads is already impossible — or it is possible but a sequence of 10,000
heads is not. In any case, we know that for some sufficiently large N, a sequence starting with N
heads is impossible.

Similarly, for every other definable sequence A,, O A,,;+1 for which u(A,) — 0, there must exist a
value N({A,}) depending on this sequence for which all elements from the set Ay are not random.
We have mentioned that this value N({A,}) depends on the complexity of the sequence {4,} —
in some sense, this value can be taken as a measure of this complexity: for simple sequences, N is
smaller, for more complex sequences, this IV is larger.

For monotonically decreasing sequences of sets A,, the condition p(A,) — 0 is equivalent to
u(NAy,) = 0. Thus, we arrive at the following definition.

Definition 4 Let i be a definable measure on a definable set X. We say that a non-empty set S is
a set of all random; elements (or Ri-set, for short) if for every definable sequence of sets { Ay} for
which Ay O Apt1 and u(NA,) =0, there exists an integer N for which SN Ax = 0.

Comment. Tt is easy to see that we cannot formulate this property for all (not necessarily definable)
sequences {A,} with the above properties. Indeed, for coin flipping, for every random sequence
x € S, we can consider sets A, consisting of all sequences which share the first n results with z. For
this sequence of sets, A, 2 A,+1, and p(A,) =27" — 0 — but since x € NA4,, and z € S, we cannot
require that SN Ay = ) for some N.

From randomness to typicalness. In some physical situations, we do not know the correspond-
ing probability measure, but we still want to distinguish between “degenerate” (abnormal, physically
impossible) elements and “typical” (physically possible) ones.

For example, the equations of general relativity allow many solutions; some of them are degener-
ate in the sense that small deviations from the initial conditions would lead to a drastically different
dynamics. Physicists believe that such solutions are not physically possible; see, e.g., [9].

How can we formalize this notion of “typicalness”? Here, we do not know the probability measure

(o)
1, SO we have to restrict ourselves only to sequences for which p < N An) = 0. The only set whose
n=0

measure is always 0 for all measures is an empty set, so we arrive at the following definition:

Definition 5 Let X be a definable set. We say that a non-empty set S is a set of all typical;
elements (or Ti-set, for short) if for every definable sequence of sets { Ay} for which Ay, O Any1 and

oo
N A, =0, there exists an integer N for which SN Ay = 0.
n=0

Comment. Similarly to the random case, we also believe that we cannot drop the requirement that
the sequence {A,} is definable. However, in contrast to the random case, we do not have a proof
that such “dropping” will make the corresponding notion inconsistent.
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Known properties of these definitions. First, we must prove existence.

Proposition 1 ([6]) Let X be a set, and let p be a definable probability measure on the set X in
which all L-definable sets are pu-measurable. Then, for every e > 0, there exists an Ri-set S that is
p-measurable and for which pu(S) > 1 —«€.

Comment. For example, all arithmetic subsets of the interval [0, 1] are Lebesgue-measurable, so
for an arithmetic theory £ and for the Lebesgue measure u, every definable set is measurable. It
is worth mentioning that some other set theories have non-measurable definable subsets of the set
[0, 1].

Proposition 2 ([6]) Let X be a set, and let p be a definable probability measure on the set X in
which all L-definable sets are p-measurable. Then, for every e > 0, there exists a Ti-set S that is
p-measurable and for which pu(S) > 1 —«€.

These definitions have many useful properties. For example, if X is a definably separable metric
space, then every Rj-set and every Tj-set is precompact (i.e., its closure is compact). This is im-
portant for inverse problems, when we want to reconstruct the state (e.g., the density distribution)
z € X from the results f(x) of the measurements, where f : X — Y is a definable continuous
function. In general, even if we can uniquely reconstruct  from f(z), the inverse mapping f~! from
Y to X is not necessarily continuous — i.e., small changes in the measurement result can lead to
drastic changes in the reconstructed x. Such problems are called ill-defined. It is known that if we
restrict ourselves to a compact set Xo C X, then the problem becomes well-defined [11]. Thus, if
we require that x is random or typical, all inverse problems become well-defined [6].

Similarly, it is known that it is not possible to have an algorithm which, given a continuous
function f(z), returns the point xp,.x where this function attains its maximum. However, if we
restrict ourselves to typical functions (e.g., functions from a Tj-subset of the set of all functions),
then algorithmic optimization becomes, in some sense, possible [2] — “in some sense” because for
this determination, we need to know the values N({4,}) provided by the physicists.

Limitations of our original definition. Stephen G. Simpson noticed if S is an R;- or a Tj-set,
then every non-empty subset S’ C S is also correspondingly, an Ri- or a T-set. In particular, if we
take any point s € S, then the corresponding 1-element set S’ = {s} is also a Rj-set.

The situation when the set of all random elements is a one-point set is clearly not very physically
adequate. It is therefore desirable to modify our original definition to make it more physically
adequate.

What we do in this paper. In this paper, we propose new definitions which provide a more
physically adequate description of randomness.

2 Analysis of the Problem: Properties of Our Previous Definitions

In order to describe these definitions, let us first analyze the situation, i.e., investigate the properties
of the above definitions. Actually, we had three definitions: of the set Ry of all Kolmogorov-Martin-
Lof sequences, of Rj-sets, and of Ti-sets. Before we start analyzing these properties one by one, let
us describe the relation between these three notions.

Proposition 3 FEvery Ri-set S is a subset of the set Ry of all objects which are random in the sense
of Kolmogorov-Martin-Lof.
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Comment. In other words, the notion of an Ri-set is a refinement of the notion of Kolmogorov-
Martin-Lof randomness.

Proof. We will prove that if z &€ Ry, then x ¢ S. Indeed, by definition of the set Ry, the fact that
x € Ry means that x belongs to some definable set A of measure 0. We can then take a sequence
Ap = Ay = ... = A. For this sequence, 4, O A,4+1 and u(NA,) = 0. So, by the definition of a
R;-set, there exists an N for which Ay NS = (). This means that the element x € A = Ay does not
belong to S. The proposition is proven.

Comment. 1t is easy to see that the two notions of randomness differ even for the simplest prob-
ability measures. Indeed, for the coin-flipping measure, as we have mentioned, the measure of the
set Ry is 1. On the other hand, for every Ri-set, for the sequence A,, of the sequences which start
with n heads, we have Ay NS = (. Thus, a complement to S contains a set Ay of measure 27V
and thus, u(S) <1 —27" < 1. So, the set Ry of measure 1 cannot be a Rj-set.

Proposition 4 Let X be a set, and let pu be a definable probability measure on the set X in which
all L-definable sets are u-measurable. Then:

o cvery Ri-set is a T1-set;

e if S is a Ri-set, then SN Ry is an R-set.
Comment. In other words, a sequence is random; if and only if it is typical; and randomy.

Proof. Every sequence {A,} with NA,, = () has the property u(NA,) = 0, hence every R;-set is
indeed a Tj-set.

Vice versa, let S be a Tj-set. Let us show that the intersection S N Ry is a Ri-set. Indeed,
let {A,} be a sequence of sets for which 4,, O A,;+1 and u(NA,) = 0. Since the sequence A, is

oo
definable, its intersection A def N A, is also definable and has a measure 0. By definition of Ry, we
n=0

have Rg N A = (). Thus, for the sequence A/, 4, — A, we have Al D Al and ﬂ Al = 1. Since

S is a Ty-set, we conclude that there exists an integer N for which A\ NS = 0. Thus AynNS CA.
Due to AN Ry = 0, we have A C —Ry, hence Ay NS C —Ry and thus, An N (SN Ry) =0. So,
S N Ry is indeed a Ti-set. The proposition is proven.

Proposition 5
e A union S =51U...US, of finitely many Ry-sets S; is an Ry-set.
o A union S =51U...US, of finitely many T1-sets S; is a T} -set.
e An arbitrary subset ' C S of an Ry-set S is an R-set.
o An arbitrary subset S' C S of a Ty-set S is an Ri-set.

The proofs of these results directly follow from the definitions. For Tj-sets, there are two more such
easy-to-prove properties:

Proposition 6
e Fwery finite set is a T -set.

o If S isaTi-set, and f: X —Y is a definable function, then the image f(S) is also a Ti-set.
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Comment. The result for the image follows from the fact that A, O A,+1 and NA,, = () imply

that A7, O Aj ., and NA;, = 0, where A], def f71(Ay). Thus, for some N, we have A\, NS =
fHAN)NS =0, hence f(S)N A, = 0.

3 A New Definition of Randomness and Typicality: the Corre-
sponding Sets Must Be Maximal

Main idea. As we have mentioned, a physicist must supply us with a mapping N({A4,}) which
describes what cannot happen. This mapping, in effect, provides a measure of complexity for different
sequences of sets. Once this mapping is in place, we can determine the corresponding Ri-set S of
random elements.

In principle, we can then arbitrarily dismiss some of the elements from this set S and consider
a smaller subset S’ C S. However, this additional narrowing from S to S’ is no longer motivated
by any physics. It is therefore reasonable to restrict ourselves only to those narrowing which are
motivated by physics. In other words, from all R;-sets which are consistent with a given complexity
measure N ({A4,}), we select the one which is the C-largest.

Thus, we arrive at the following definitions.

Definition 6

e By a complexity measure, we mean a mapping N({A,}) which puts into correspondence, to
every definable sequence { Ay} for which A, 2 Ap+1 and u(NA,) =0, an integer N.

o We say that an Rj-set S is consistent with the complexity measure N({An}) if for every
definable sequence {A,} for which Ap, 2 Any1 and p(NAy) = 0, we have SN Ay(ga,y) = 0.

o We say that an Ri-set S is maximal with respect to a complexity measure N({Ay,}) if it is
consistent with this measure, but no proper superset S’ is consistent with it.

o We say that a set S is a set of all randoms elements (or Rag-set, for short) if it is an Ry-set,
and it is maximal with respect to some complexity measure.

Definition 7

e By a complexity measure, we mean a mapping N({A,}) which puts into correspondence, to
every definable sequence {A,} for which A, 2 Ap+1 and NA, =0, an integer N.

o We say that a Ty -set S is consistent with the complexity measure N ({A,}) if for every definable
sequence {An} for which Ay 2 Apy1 and NA, =0, we have SN An(a,y) = 0.

o We say that a Ti-set S is maximal with respect to a complexity measure N({Ay}) if it is
consistent with this measure, but no proper superset S’ is consistent with it.

o We say that a set S is a set of all typicaly elements (or Ty-set, for short) if it is a Ty-set, and
it 18 mazximal with respect to some complexity measure.

Let us first prove the existence of such sets.

Proposition 7

e For every Ri-set S, there exists an Ry-set S' D S.
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e For every Ty-set S, there exists a To-set 8" D S.

Proof. In the previous section, we have described a simple relation between R;- and Ti-sets. It is
easy to show that there is a similar relation between Ro- and Th-sets. Thus, in all the proofs, it is
sufficient to consider only T5-sets: Ra-sets are simply intersections of these sets with the set Ry of
all Kolmogorov-Martin-Lof random elements.

Let S be a Tj-set. By definition, this means that there exists a complexity measure N({4,})
with which this set S is consistent. Let us now take, as S’, a complement to the union U of all the
sets An({a,}) corresponding to all definable sequences {4, }. Clearly:

e this complement S’ is consistent with the given complexity measure, and

e every Th-set S” which is consistent with the complexity measure N({A,}) must have no inter-
sections with all the sets An({a,}) and thus, with their union U, so it must be a subset of S’
S’ c s

So, this set S’ is indeed maximal, i.e., a Th-set, and S C S’. The proposition is proven.

Proposition 8 Let X be a set, and let p be a definable probability measure on the set X in which
all L-definable sets are p-measurable. Then, for every e > 0, there exists an Ro-set S that is
p-measurable and for which p(S) >1—e¢.

Proposition 9 Let X be a set, and let p be a definable probability measure on the set X in which all
L-definable sets are pu-measurable. Then, for every e > 0, there exists a To-set S that is p-measurable
and for which p(S) > 1 —«¢.

Comment. These results are simple corollaries of Propositions 1, 2, and 7.

Discussion. One can easily see that the new definitions indeed drastically decrease the number
of possible random (typical) sets. Indeed, we know that every subset of Rj-set is also R;. We also
know that in many situations, there exists an Rj-set S of cardinality continuum N; — e.g., a set of
measure > 1 — ¢. In this case, we have at least as many Rj-sets as there are subsets in the set S.
So, the number of possible R;-sets is 287,

On the other hand, every Rg-set is a complement to a union of a family of definable sets. Since
there are at most countable many (Rg) definable sets, there are at most 2% Ry-sets. So, there are
> 281 Ri-sets and < 280 R,-sets.

Under the usual assumptions of the Continuum Hypothesis, when 2% = X; and 2% = Ry, we
conclude that there are > Ny Ri-sets and < Ny Rg-sets.

Similarly, we can prove that there exist > 28 (i.e., > Ry) Tj-sets and < 2% (i.e., < N;) Th-sets.

4 Topological Interpretation of the New Definition

Corresponding topology. Let us show that the above definitions can be naturally reformulated
in topological terms. Indeed, once can easily check that the intersection of two definable sets is
definable. Thus, an intersection of finitely many definable sets is also definable. Hence, definable
sets form a basis of a topology. We will call this topology D-topology (D from “definable”). In
general, open sets are defined as unions of sets from a basis; see, e.g., [5].

Definition 8 A set S is open in D-topology (D-open, for short) if and only if it is a union of
definable sets.
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Proposition 10 A set S is closed in D-topology (D-closed, for short) if and only if it is an inter-
section of definable sets.

Proof. Closed sets are complements to open sets. From Definition 8, it follows that a set is closed
if and only if it is an intersection of complements to definable sets. However, a complement to a
definable set is also definable — and vice versa. The proposition is proven.

Comment. In the particular case when we have Ai-definable sets, the corresponding topology is
known as the Gandy-Harrington topology. This topology has been actively used to prove deep
theorems in descriptive set theory; see, e.g., [4, 10].

Proposition 11 A Ti-set S is a T-set if and only S is D-closed.

Proof. 1°. In our proof of Proposition 7, we proved, in effect, that every Ts-set is an intersection
of definable sets and is, thus, D-closed.

2°. To complete our proof, we must now show that every D-close Ti-set S is indeed a T5-set, i.e.,
that S is maximal with respect to some complexity measure.

As such a complexity measure, let us take the following mapping: for every sequence {4,}, as
N({A,}), we take the smallest N for which Ay NS = 0.

2.1°. We know, from the proof of Proposition 7, that among all the Tj-sets which are consistent
with this complexity measure, there is the maximal one S’ = —U, where U = UA N({A,})- Since this
set S’ is maximal, we have S’ O S.

2.2°. Let us prove that S = S. For that, let us show that if S is contained in a definable set A,
then S’ is contained in the same set.

Indeed, since S C A, for a definable sequence Ay = —A, Ay = ... = A, = ... = (), the
corresponding N({A,}) is equal to 0. Since the set S’ is consistent with the same complexity
measure, we conclude that S’ N Axa,y) =0, i.e., 8N (-A4) = 0 and thus, S’ C A.

The set S is an intersection of definable sets A. Since the set S’ is contained in each of these
sets, it must be also contained in their intersection S: S’ C S.

Since we have already proved that S C S’, this implies that S = S’, hence S is indeed a T)-set.

The proposition is proven.

Topological reformulation of the original definition. It turns out that the original definition
of a Tj-set can also be naturally reformulated in terms of this topology.

Let us recall that in topology, a set A is called precompact if and only if from every cover
A C UU,, of this set by open sets U,, there exists a finite subcover A C U,, U...UU,,; see, e.g., [5].

Definition 9 We say that a set S is D-precompact if from every definable cover S C UU, of S by
definable sets U;, there exists a finite subcover S C U;; U...UU;, .

Proposition 12 A set S is a T1-set if and only if it is D-precompact.

Proof. 1°. Let us first prove that if S is a T}-set, then S is D-precompact. Indeed, let U, be a
definable open cover of S. Since the family U, is definable, its union U = UU, is also definable.
Let us now take A, = U — (U; U...UU,). Due to this definition, this sequence {4, } is a definable
sequence of sets for which A, D A, and NA, = (). Since S is a Ti-set, we conclude that for some
N, we have SN Ay = (). We assumed that S C U, i.e., every point from S belongs to U. By
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definition of A,,, the fact that S N Ay = () means that S has no points outside U; U... U Uy — i.e.,
that SC Uy U...UUy.

2°. Vice versa, let us prove that every D-precompact set S is a Ti-set. Indeed, let S be a D-

precompact set, and let {4, } be a definable sequence for which A,, 2 A1 and NA4,, = (. From the

fact that NA,, = (), we conclude that UU,, = X, where U, def —A,,. Thus, the definable family U,

forms a definable cover for the set S. Since the set S is D-precompact, there exists a finite subcover
SCU,U...ul;,.

By definition of U,, = —A,,, from A,, O A,,+1, we conclude that U,, C Uy4;. Thus, U;,U...UU;, =
Uy, where N def max(iy,...,i,). From S C U, = —A,, we conclude that SN A, = 0.

The proposition is proven.

Comment. Combining Propositions 11 and 12, we can conclude that a set S is a T5-set if and only
if it is D-closed and D-precompact. Thus, we get a simple topological reformulation of the notion
of a T-set.

Remaining open problems. The problem with the new definition is that it still allows one-
point sets of random elements. For example, on the interval [0, 1], every point can be described as
an interval of (definable) intervals with rational endpoints. Since every one-point set is a T}-set, we
thus conclude that it is also a Th-set, and thus, that it is an Ro-set.

To avoid such situations, we must explicitly disallow such sets. We must also disallow sets for
which in some neighborhood, there is only one random element. In other words, we would like to
make sure that if a non-definable sequence belongs to a T-set, then in its every neighborhood, there
should be another non-definable element. In topological terms, this means that we would like to
require that the set of non-definable typical elements is perfect.

For flipping coins and for the uniform measure on the interval [0, 1], such a set is indeed possible.

Proposition 13 Let X = [0,1], let p be a uniform measure on X, and let L be such that all L-
definable sets are p-measurable. Then, for every e > 0, there exists a perfect p-measurable Ts-set S
for which u(S) >1—e.

Proof. 1°. Let us start with a Ty-set S for which u(S) > 1 — e. The existence of such a set follows
from Proposition 9.

If this set S is already perfect, we are done. If it is not perfect, this mean that it has isolated
points. With each isolated point, comes the entire interval which contains no other points from S;
thus, there are no more than countably many such points.

1.1°. If an isolated point = is definable, we simply take an intersection of S with the definable set
—{a}.

1.2°. If an isolated point is not definable, we pick a small rational-valued interval which contain x
and intersect S with the definable complement to this interval.

As a result of all such intersections, we get a new set S’ which is S minus all isolated points.

2°. Let us prove that S’ is a Th-set. According to Proposition 11, it is sufficient to prove two
statements:

e that S’ is a T}-set and

e that S’ is D-closed, i.e., that S’ is an intersection of definable sets.
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2.1°. Let us first prove that S’ is a Tj-set.
Indeed, the set S’ is a subset of the previous set S which was a Ti-set. Thus, S’ is also a T7-set.
2.2°. Let us now prove that S’ is an intersection of definable sets.

Indeed, the set S was a Th-set, hence an intersection of definable sets. Our new set S’ is an
intersection of S and other definable sets — thus, it is also such an intersection. So, S’ is indeed a
T5-set.

3°. Since we deleted countably many points, the measure does not change: u(S") = u(S) > 1—e.

The proposition is proven.

Comment. It is desirable to extend the above definition and the corresponding result to a more
general case.
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