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Abstract

The Black-Scholes formula has been derived under the assumption of constant volatility in
stocks. In spite of evidence that this parameter is not constant, this formula is widely used by
the markets. This paper addresses the question whether a model for stock price exists such that
the Black-Scholes formula holds while the volatility is nonconstant. We give new as well as recent
results concerning this question providing as complete as possible an answer at this stage. It is
remarkable that while in general for the Black-Scholes formula the answer is ‘no’, it is ‘yes’ for a
similar question concerning the Bachelier formula.
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1 Introduction

A most spectacular application of mathematics to financial markets has occurred in the past thirty
years after the discovery the Black-Scholes formula [1]. This formula gives the price of an option when
the stock price is modelled by the Black-Scholes-Merton model. The reason this formula has made
such an impact is because it allowed for a new way of looking at risk with wide ranging implications.
This formula not only gives the price for an agreement to enter into business transaction in the
future, but it also shows how can a riskless profit be made if the price is different to the one given
by this formula, eg. [15], [12]. Although the Black-Scholes formula is a product of a complex theory
of pricing of assets by no free lunch approach, one would be pressed to find another mathematical
formula used so much in practice. Its widespread use motivates mathematicians to examine its
assumptions and extend its domain of validity.

Generally speaking all the assumptions used in this formula are widely accepted but one. This
is the assumption on the volatility parameter appearing in the model for the price of stock. It is
widely believed and experimentally verified that stocks do not have a constant volatility, rather this
parameter varies with time, see e.g. [10], [5], [6], [16]. In this paper we discuss the question of
existence of a model in which options prices are given by the Black-Scholes formula yet volatility
is not constant. This question is of great interest in financial mathematics as well as in practical
applications, see [2], [14], [4] and [3]. We show here that, under broad assumptions the answer to this
question is negative. That is to say that if the Black-Scholes formula holds with some “volatility”
parameter not necessarily related to the model of stock, then the model must be the Black-Scholes-
Merton model. This paper gives new as well as published results concerning this question providing
as complete as possible answer at this stage. The main ideas of proofs are given but the proofs
themselves are omitted due to their technical nature, and the interested reader can find them in the
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quoted papers, or they will be forthcoming in a more specialized outlet. It is structured as follows.
In the next section we describe the Black-Scholes-Merton model and give the Black-Scholes formula.
Then we give results showing why there is no other model with the same option pricing formula,
and finally we comment that the same question can be answered in the affirmative if instead of the
Black-Scholes model the Bachelier model is used.

2 The Black-Scholes and Other Option Pricing Formulae

We start with the usual set-up of a stochastic basis (Ω,F ,Ft), on which we define various probability
measures and Brownian motions generically denoted Wt (regardless of the probability measure being
used).

The Black-Scholes-Merton model, herein denoted St, is described by a randomly perturbed ex-
ponential growth. Its evolution is given by the stochastic differential equation

dSt = µStdt + σStdWt. (1)

The strength of the random perturbation is determined by the positive parameter σ, which is known
as the volatility of the stock. The above model was used by Merton, Black and Scholes to find the
price of an option on stock, such as an agreement to buy the stock at some future time T for the
specified at time t < T price K. Their formula states that the price of such an option at time t is
given by

CS(T, t,K, σ, St) = StΦ(h)−Ke−r(T−t)Φ
(
h− σ

√
T − t

)
, (2)

where Φ denotes the standard normal distribution function and

h =
log St

K + (r + σ2

2 )(T − t))
σ
√

T − t
.

Remarkably, the parameter µ does not enter the formula, but σ does, as well as r, the riskless rate
available in a savings account.

As stated in the introduction, a main feature and weakness of the Black-Scholes model (1) is its
constant volatility assumption. In this paper, we are concerned with processes, herein denoted Xt,
that display non-constant volatilities. Xt will simply denote a process that is adapted to Ft. It may,
for example, take the form

dXt = µXtdt + θtXtdWt, (3)

where θt is a function of time that may or may not be random. For example, θt can be a function
of stock Xt, as well as include other independent sources of randomness. There is a large literature
on non-constant volatility models, both deterministic and stochastic (see e.g. [9]).

In the next paragraph we recall the basic facts on option pricing see e.g. [15], [12]. We assume
without loss of generality that the riskless interest rate r = 0, otherwise we work with discounted
prices, Xte

−rt.
The First Fundamental theorem of asset pricing states that a model does not admit arbitrage if

and only if there exists an equivalent probability measure Q such that Xt is a Q-martingale. The
price at time t of a call option that pays (XT −K)+ at time T is given by

Ct = EQ[(XT −K)+|Ft], (4)

where EQ is the expectation under Q.
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In particular, (2) is obtained by applying (4) to the Black-Scholes model (1), which under the
martingale measure Q, satisfies the reduced stochastic differential equation

dSt = σStdWt. (5)

The aim of this paper is to solve the inverse problem of finding another model (Xt, θt) such that

EQ[(XT −K)+|Ft] = CS(T, t,K, θt,Xt).

A precise formulation of this problem is given in the Results Section.
Second to the Black-Scholes model is the Bachelier model, which under the martingale measure

Q, is simply described as a scaled Brownian motion

dBt = σdWt. (6)

The Bachelier formula is then obtained by applying (4) to Bt,

CB(T, t, K, σ,Bt) = σ
√

T − t(Φ′(h) + hΦ(h)) (7)

where h = (Bt −K)/σ
√

T − t.
More generally, one may consider a model of the form

dZt = σb(Zt)dWt, (8)

for some function b (with sufficient smoothness and boundedness conditions to guarantee the exis-
tence and weak uniqueness of the process Zt). As in (2) and (7, one can in theory obtain an option
pricing formula

EQ[(ZT −K)+|Ft] = EQ[(ZT −K)+|Zt] = CZ(T, t, K, σ, Zt). (9)

Similarly, we seek a solution to the inverse problem of finding a model (Xt, θt) such that

EQ[(XT −K)+|Ft] = CZ(T, t,K, θt,Xt).

3 Results

In this section we investigate the inverse problems previously eluded to. In fact we look at five
situations, four of which yield a non-existence result, while the fifth leads us to the construction of
a new family of processes with interesting properties. We begin with a general non-existence result.

3.1 General Non-existence Result – The Case of A Continuum of Strikes

Assume that under the no-arbitrage measure Q, the stock price process satisfies (8), dZt = σb(Zt)dWt,
where σ is the volatility parameter.

Theorem 1 Let Xt and θt be two adapted processes. Assume that Xt is positive (or bounded from
below) or a martingale and that there exist three terminal times T1 < T2 < T3 such that for all K
and all t ≤ Ti,

E
[
(XTi −K)+|Ft

]
= CZ(Ti, t, K, θt,Xt) (10)

Then for all t ≤ T1, θ2
t = θ2

0. Furthermore, if Ft is generated by Wt, then (Xt)t≤T1

d= (Zt)t≤T1.

We stress that in this result no assumptions are made on the dynamics of Xt or its relationship
with θt other than identity (10).

The main tool in establishing this result is to show by using (11) below that Mt = eθ2
t (Ti−t)φ(Xt)

are martingales. Then we use the fact that if Mt, MtYt and MtY
α
t , for some α > 1, are local

martingales, then Yt must be almost surely constant. In this case Yt = eθ2
t (T2−T1).
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3.2 Finitely Many Strikes

Theorem 1 is in fact an immediate consequence of the following proposition and the fact that, for
any C2 function φ,

φ(x) = φ(0) + φ′(0)x +
∫ +∞

0
(x−K)+φ′′(K)dK. (11)

Let A denote the infinitesimal generator of the general stock price process given by (8),

Af(x) =
1
2
b(x)2f ′′(x).

Proposition 2 Let Xt and θt be two adapted processes. Assume that Xt is a martingale and that
there exist three terminal times T1 < T2 < T3 such that for all t ≤ Ti,

E [φ(XTi)|Ft] = E [φ(ZTi)|Zt = z]σ=θt,z=Xt
, (12)

where φ is C2 and satisfies Aφ = φ. Then for all t ≤ T1, θ2
t = θ2

0. Furthermore, if Ft is generated

by Wt, then (Xt)t≤T1

d= (Zt)t≤T1.

Next we argue how this result could be used to lessen the unrealistic requirement that (10) be
satisfied for all strikes. Instead, we assume that it is satisfied for finitely many strikes, 0 < K1 <
K2 < . . . < Kn.

Using (11), one obtains the following approximation,

φ(x) ' φ(0) + φ′(0)x +
1
2

n∑

i=1

(x−Ki−1)+φ′′(Ki−1)(Ki −Ki−2),

where K0 = K−1 = 0. A graphical representation of this approximation, in the case φ(x) = x2, is
given below.

in the case φ(x) = x , is given below.
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For a martingale Xt, this approximation in turn yields

E [φ(XTi)|Ft] ' E [φ(ZTi)|Zt = z]σ=θt,z=Xt
.

It is therefore natural to replace (approximate) the requirement that (10) be satisfied for finitely
many strikes by (12).
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3.3 Local Black-Scholes – Maturity-independent Volatility

The special case of the Black-Scholes model is, of course, of great importance. It is discussed at
length in [7]. We reproduce here the main findings.

Proposition 3 Let Xt and θt be two adapted processes. Assume that Xt is a martingale and that
there exist three terminal times T1 < T2 < T3 such that for all t ≤ Ti,

E
[X 2

Ti
|Ft

]
= E

[
S2

Ti
|St = s

]
σ=θt,s=Xt

. (13)

Then for all t ≤ T1, θ2
t = θ2

0. Furthermore, if Ft is generated by Wt, then (Xt)t≤T1

d= (St)t≤T1.

Observe that in this case Af(x) = 1
2x2f ′′(x) and φ(x) = x2 satisfies Aφ = φ.

Again using the approximation,

x2 '
n∑

i=1

(x−Ki−1)+(Ki −Ki−2),

where K0 = K−1 = 0, one can argue that no other martingale than Zt satisfies (10) for finitely many
strikes and three terminal times.

3.4 Local Black-Scholes – Maturity-dependent volatility

In this section we consider the case when the process θt is allowed to depend on the maturity T .
The Black-Scholes model with time varying but non-random spot volatility, V (t), is given by

dSt = V (t)StdWt.

Then the random variable ST is Lognormal, and the Black-Scholes formula holds with the averaged
future volatility

ϑ2(t, T ) =
1

T − t

∫ T

t
V 2(u)du.

That is
E

[
(ST −K)+|Ft

]
= CS(T, t,K, ϑ2(t, T ),St).

The next result shows that if the Black-Scholes formula holds locally, this is the only model.

Theorem 4 Assume that for some T ∗, XT ∗ > 0, that X is a continuous martingale, and that the
Black-Scholes formula holds locally for t ≤ T ∗, with a predictable process θ(t, T ∗),

E[X 2
T ∗ |Ft] = E[S2

T ∗ |St = s]σ=θ(t,T ∗),s=Xt
(14)

Then

θ2(t, T ∗) =
〈L(X ),L(X )〉T ∗ − 〈L(X ),L(X )〉t

T ∗ − t
,

where L(X ) is a stochastic logarithm of X .
In particular, if F0 is trivial then 〈L(X ),L(X )〉T ∗ is non-random.
Further, suppose that Black-Scholes formula holds locally for t ≤ T and all T ≤ T ∗. Then there

exists a non-random function V (t), such that dXt = V (t)XtdWt, moreover, for all T ≤ T ∗, and all
t ≤ T ,

θ2(t, T ) =
1

T − t

∫ T

t
V 2(u)du. (15)

Recall that we call stochastic logarithm of X , a process X such that X = X0E(X), see for
example [11] and [12], p. 236.
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3.5 Non-Gaussian Martingales with Gaussian Marginals

In this section we address the inverse problem of finding a model such that the Bachelier formula
holds for all strikes, all maturities but a single point in time taken for simplicity to be 0. That is,
we seek a martingale Xt for which, for all K and all T ,

EQ[(XT −K)+] = CB(T, 0,K, σ,X0).

Since the function HT (K) = EQ[(XT−K)+] defines the distribution of XT , this problem is equivalent
to that of finding a non-Gaussian martingale the one-dimensional marginals of which are Gaussian
coincide with the marginal one-dimensional distributions of the Bachelier model (mean zero and
variance t).

In [13], the authors use Azèma-Yor’s solution to the Skorokhod embedding problem to obtain
such a process. In [8], we construct an entire family of processes with the desired property. Here we
give the main results and refer to [8] for details.

3.5.1 A Two-step Process

The main idea in our construction starts with a two-step process (Y1, Y2) that has the desired
property of being a non-Gaussian martingale for which both Y1 and Y2 are Gaussian. This initial
step relies on the following observation.

Proposition 5 For any triple (R, Y1, ξ) of independent random variables, such that R takes values
in [0, 1] and, ξ is standard normal and Y1 is normal with mean zero and variance q2, the random
variable Y2 = p(

√
RY1 + q

√
1−Rξ) is normal with mean zero and variance p2q2. However, (Y1, Y2)

is a bivariate normal pair if and only if R is non-random.

This is easily seen as the conditional joint distribution of (Y1, Y2) given R is bivariate normal with
zero means and covariance matrix

(
q2 pq2

√
R

pq2
√

R p2q2

)
.

Since the marginals of a bivariate normal pair have distributions that do not depend on their corre-
lation, the unconditional distribution of Y2 is shown to be normal. However, (Y1, Y2) is clearly not
a bivariate normal pair unless R is non-random.

Now, the two-step process (Y1, Y2) is a martingale if and only if

Y1 = E[Y2|Y1] = E[p(
√

RY1 + q
√

1−Rξ)|Y1] = pE[
√

R]Y1,

in other words R must satisfy the condition E
[√

R
]

= 1/p.

The processes we are about to define reproduce the above at all times s < t. Indeed, we look for
a process X such that for any 0 < s < t, the random variables Xs and Xt satisfy the representation:

Xt =

√
t

s

(√
Rs,tXs +

√
s
√

1−Rs,tξs,t

)
. (16)

It turns out that this is possible whenever the distributions of Rs,t form what we call a log-convolution
semi-group (plus one extra requirement that ensures that the process is indeed a martingale). The
precise definition is given in the next section. By construction, these processes will be Markovian,
albeit time non-homogeneous.
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3.5.2 The Transition Densities

As Markov processes, our constructs can be defined by their transition density functions. We use
(16) to obtain these. First, we introduce the concept of a log-convolution semi-group.

Definition 6 The family of distributions on (0,+∞) (Gp)p≥1 is a log-convolution semi-group if
G1 is the Dirac mass at 1 and the the distribution of the product of any two independent random
variables with distributions Gp and Gq, is Gpq.

Proposition 7 Define, for x ∈ R, s > 0 and t = p2s ≥ s, Ps,t(x, dy) as,

P0,t(x, dy) =
1√

2π
√

t
exp

(
−(y − x)2

2t

)
dy (17)

and

Ps,t(x, dy) = γ(p)εpx(dy) +

[∫

(0,1)

1√
2π
√

t
√

1− r
exp

(
−(y − p

√
rx)2

2t(1− r)

)
Gp(dr)

]
dy, (18)

where γ(p) = Gp({1}).
If (Gp)p≥1 is a log-convolution semi-group on (0, 1] then the Chapman-Kolmogorov equations

hold. That is, for any u > t > s > 0 and any x
∫

Ps,t(x, dy)Pt,u(y, dz) = Ps,u(x, dz) (19)

and, for any u > t > 0, ∫
P0,t(0, dy)Pt,u(y, dz) = P0,u(0, dz). (20)

It is then natural to seek a representation of log-convolution semi-groups. This is easily done by
relating them to (classical) convolution semi-groups and use the well-known Lévy-Khinchin repre-
sentation. This yields to the main theorem of this section.

Theorem 8 Assume that the family (Gp)p≥1 is a log-convolution semi-group with Laplace exponent

ψ(λ) = − lnE
[
eλ ln Rp

]

ln p
= βλ +

∫ ∞

0

(
1− e−λx

)
ν(dx).

If ψ(1/2) = 1, then there exists a Markov martingale Xt starting at zero with transition probabilities
Ps,t(x, dy) given by (18) and (17) the marginal distributions of which are Gaussian with mean zero
and variance t.

Basic properties of the process Xt can then be obtained (see [8] for details). In particular, we have
the following result.

Theorem 9 The (predictable) quadratic variation of Xt is

〈X ,X〉t = δt + (1− δ)
∫ t

0

X 2
s

s
ds,

where δ = ψ(1)/2.
Further, the process Xt is continuous if and only if Rs,t ≡ s/t, in which case Xt is a standard

Brownian motion.
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We end this section with some explicit constructions. These fall into two categories according to
whether or not Gp({1}) = 0 uniformly in p > 1. Indeed, if Rp has distribution Gp, then

E
[
eλ ln Rp

]
= P[Rp = 1] + E[eλ ln Rp , Rp < 1]

and
γ(p) = P[Rp = 1] = lim

λ↑∞
Lp(λ) = lim

λ↑∞
exp (−ψ(λ) ln p) .

That is, uniformly in p > 1,
γ(p) = 0 ⇔ lim

λ↑∞
ψ(λ) = ∞.

3.5.3 The Case γ(p) > 0

Proposition 10 Let Gp be a log-convolution semi-group for which γ(p) = Gp({1}) > 0, γ is differ-
entiable at 1 and lim

λ↓0
ψ(λ) = 0. Then the infinitesimal generator of Xt on the set of C2

0 -functions is

given by A0f(x) = 1
2f ′′(x) and for s > 0,

Asf(x) =
x

2s
f ′(x) +

−γ′(1)
2s

∫
[f(x + z)− f(x)]

∫

[0,1)
φ((
√

r − 1)x, s(1− r), z)Ḡ(dr)dz,

where Ḡ(dr) = lim
p↓1

(Gp(dr ∩ [0, 1))/Gp([0, 1))) is a probability measure on [0, 1), and the limit is

understood in the weak sense.

This result explains in detail the behaviour of the process. The process X starts off as a Brownian
motion. While in positive territory, Xt continuously drifts upwards and has jumps that tend to be
negative. In negative region, the reverse occurs; Xt drifts downwards and has (on average) positive
jumps.

Example 11 Log-Poisson distribution, namely − lnRp is distributed as a Poisson random variable
with parameter c ln p, with c = 1/(1 − e−1/2). This corresponds to the case γ(p) = p−c, β = 0,
ν(dx) = cε1(dx), ψ(λ) = c(1− e−λ) and

Asf(x) =
x

2s
f ′(x) +

c

2s

∫
[f(x + z)− f(x)]φ(−x/c, s(1− e−1), z)dz.

From the form of the generator we deduce that the process jumps at the rate of
c

2s
with a size

distributed as a Gaussian random variable with mean −x
c and variance s(1− e−1). A simulation of

a path of such a process is given below.
ss is given below.
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3.5.4 The Case γ(p) = 0

Theorem 12 Assume that β = 0. For any polynomial f and any s > 0,

Asf(x) =
x

2s
f ′(x) +

1
2s

∫
[f(x + y)− f(x)]

∫ +∞

0
φ((e−ω/2 − 1)x, s(1− e−ω), y)ν(dω)dy. (21)

Example 13 Inverse Log-Gamma distribution, namely − lnRp is distributed as Gamma(a, b) with

a = 1/ln
(

1 +
1
2b

)
. That is Rp has density

gp(r) =
ba ln p

Γ(a ln p)
(− ln r)a ln p−1rb−1, 0 < r < 1.

This corresponds to β = 0, ν(dx) = ax−1e−bxdx and ψ(λ) = a ln
(

1 +
λ

b

)
. A simulation of a path

of such a process is given below.
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