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Abstract 
    This paper studies chaos synchronization of a new chaotic system via nonlinear control. 
Based on Lyapunov stability theory, using a nonlinear controller can synchronize two identical 
systems. By the linear control theory, nonlinear controllers are designed to synchronize two 
different chaotic systems. Numerical simulations show the effectiveness and feasibility of the 
proposed methods. © 2007 World Academic Press, UK. All rights reserved. 
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1. Introduction 
During the last two decades, synchronization in chaotic dynamic systems has received a great deal of 
interest among scientists from various research fields since Pecora and Carroll[1] introduced a method to 
synchronize two identical chaotic systems with different initial conditions. Chaos synchronization has 
many potential applications in laser physics, chemical reactor, secure communication, biomedical and so 
on. Many techniques for chaos control and synchronization have been developed, such as linear feedback 
method, active control approach, adaptive technique, time-delay feedback approach, and back steeping 
method [2-8]. In general, it is known that nonlinear control is an effective method for making two identical 
or different chaotic systems be synchronized. 
This letter mainly investigates the chaos synchronization of a new chaotic system which was introduced by 
Cai et al.[9]. Based on Lyapunov stability theory, a nonlinear controller is proposed to realize two identical 
systems synchronization. Compared with the work in Ref. [10], where three controllers were used to 
achieve the asymptotical synchronization, our controllers can synchronize systems in less time. Then, 
based on linear control theory, a class of nonlinear control scheme is designed to realize the 
synchronization between the new chaotic system and the Liu chaotic system. Finally, numerical 
simulations are also provided for illustration and verification. 
This article is organized as follows. In Section 2, a new chaotic system is introduced. Its chaos 
synchronization of two identical chaotic systems is considered in Section 3. In Section 4, we discuss the 
synchronization problem between the new chaotic system and the Liu chaotic system. Two numerical 
examples are given to demonstrate the effectiveness of the proposed methods in Section 5. Finally the 
conclusion is given in Section 6. 
 
2. The New Chaotic System 

Cai et al [9] introduced a new chaotic system of three-dimensional quadratic autonomous ordinary 
differential equations. This system is described as 

2

( )x a y x
y bx cy xz
z x hz

⎧ = −
⎪ = + −⎨
⎪ = −⎩

                                                                           (1) 

where a, b, c and h are real constants and x, y, z are state variables. 
This system has many interesting complex dynamical behaviors, and it has potential applications in secure 
communication. When a=20, b=14, c=10.6 and h=2.8, it has a chaotic attractor, as shown in Fig. 1. 
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Fig. 1 the new attractor 

 
3 Synchronization of Two Identical Chaotic Systems 

For the chaotic system (1), the drive and response systems can be defined as follows: 
1 1 1
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and  
2 2 2

2 2 2 2 2 1
2

2 2 2 2

( )x a y x
y bx cy x z u

z x hz u

⎧ = −
⎪ = + − +⎨
⎪ = − +⎩

                                                             (3) 

where a=20, b=14, c=10.6 and h=2.8 and u1 and u2 are control inputs to be designed. The aim of this 
section is to determine the control laws ui for the global synchronization of two identical systems. 
Let the error variables be  

1 2 1

2 2 1

3 2 1.

e x x
e y y
e z z

= −⎧
⎪ = −⎨
⎪ = −⎩

                                                                                   (4) 

Substitute Eqs. (2) and (3) into (4), we have the following error dynamics: 
1 2 1

2 1 2 2 2 1 1 1
2

3 1 1 1 3 2

( )

2 .

e a e e
e be ce x z x z u
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⎧ = −
⎪ = + − + +⎨
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                                                        (5) 

For the two identical chaotic systems without control (ui=0, i=1, 2), the trajectories of the two identical 
systems will quickly separate and become irrelevant on the condition that initial values 
(x1(0),y1(0),z1(0))≠(x2(0),y2(0),z2(0)). However, with appropriate control schemes, the two systems will 
approach synchronization for any initial values. 
Theorem 1. Systems (2) and (3) will approach global asymptotical synchronization for any initial 
condition with the following control law: 

1 2 2 1 1 1 2
2

2 1 1 1

2 2

2 .

u x z x z be ce

u e e x

= − − −⎧
⎨

= − −⎩
                                                        (6) 

Proof. Construct a Lyapunov function  
( )V t e PeΤ=                                                                                   (7) 

where 
0.7 0 0
0 1 0
0 0 1

P
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 is positive definite. So ( ) 0V t > . 

With Eq. (6), the time derivative of the Lyapunov function along the trajectories of system (5) is  
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2 2 2
1 2 3( ) 28 21.2 5.6V t e Pe e Pe e e e e QeΤ Τ Τ= + = − − − = −  

where 
28 0 0
0 21.2 0
0 0 5.6

Q
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

Obviously Q is positive definite. Hence, we have ( ) 0V t < . By Lyapunov stability theory, the origin of 
error asymptotically stable. That is to say, systems (2) and (3) achieve global asymptotical synchronization. 

4. Synchronization between the new chaotic system and Liu system 
In order to observe the chaos synchronization behavior in the new chaotic system and Liu system [11], it 

is assumed that the new chaotic system drive Liu system. Thus, the drive and response systems are as 
follows: 
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2
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and 
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                                                                  (9) 

For chaotic synchronization of above different systems, the error dynamical system is described by 
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where 
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                                                                               (11) 

Now we definite the control functions u1, u2 and u3 as follows: 

1 1 1

2 1 1 1 3 3 1 1 2
2 2
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4 0.3

u x y
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                           (12) 

Hence the error system (10) becomes  
1 1 2

2 2

3 3

10 10

2.5

e e e
e e
e e

= − +⎧
⎪ = −⎨
⎪ = −⎩

                                                                        (13) 

The error system (13) is a linear system of the form, w Aw= . Thus by linear control theory, if the system 
matrix A is Hurwitz, the system is asymptotically stable. Hence the error system (13) with 

10 10 0
0 1 0
0 0 2.5

A
−⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

 

has all eigenvalues with negative real parts. This guarantees the asymptotic stability of the system (13), 
which implies that the Liu system (9) synchronize the system (8). 
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5. Numerical simulations 

In this section, to verify and demonstrate the effectiveness of the proposed methods, we consider two 
numerical examples. In the numerical simulations, the fourth-order Runge-Kutta method is used to solve 
the systems with time step size 0.001. 
Example 1. Consider the systems given in (2) and (3). The initial values of the drive system and response 
system are taken as (x1(0), y1(0), z1(0))=(2,4,0), (x2(0), y2(0), z2(0))=(-1,-3,6) respectively. Thus, the initial 
errors are e1(0)= -3, e2(0)= -7 and e3(0)=6. The simulation results are illustrated in Figs. 2 and 3. As we 
respect, one can observe that response system starts to trace drive system and finally becomes the same 
after t ≥2. 

   

 
Fig. 2 State trajectories. drive system states (-), response system states(-.) 

 
Fig. 3 Synchronization errors e1(-),e2(-.),e3(--) 
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Example 2. Consider the systems given in (8) and (9). The initial values of the drive system and response 
system are taken as (x1(0), y1(0), z1(0))=(10,9,1), (x3(0), y3(0), z3(0))=(2,2,8) respectively. Thus, the initial 
errors are (e1(0), e2(0), e3(0))=(-8,-7,7). The simulation results are illustrated in Figs. 4 and 5. From the 
figures, it can be seen that the synchronization errors converge to zero and two different systems are indeed 
achieving chaos synchronization. 

   

 
Fig. 4 State trajectories. drive system states (-), response system states (-.) 

6. Conclusion  

Nonlinear control is an effective method for making two identical or different chaotic systems be  
synchronized. In this paper, using nonlinear control, we have investigated the synchronization of a new 
chaotic system which was introduced in Ref. [9]. Numerical simulations are also provided to show the 
effectiveness and feasibility of the method. 
 

 
Fig. 5 Synchronization errors e1(-),e2(-.),e3(--) 
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