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Abstract 

    Repairable system analysis is in nature an evaluation of repair effects. Recent tendency in 
reliability engineering literature was imposing repair regimes and estimate system repair effects 
or linking repair to certain covariate to extract repair impacts. Hinted by engineering tune up 
exercises, we propose a repair model in terms of random variable distribution with a fuzzy 
parameter because fuzziness reflects the evolution of system dynamic rule changes according to 
its design specifications. In this paper, we develop an average chance distribution for random 
fuzzy lifetimes based on the foundational work of self-dual fuzzy credibility measure theory 
proposed by Liu (2004) and the traditional probability measure theory.  We further propose a 
maximum average chance principle for data-assimilated parameter estimation, which will lead 
to two empirical distributions – an average chance empirical distribution and an empirical 
probability distribution with the expected fuzzy parameter as the point estimate for its parameter. 
The differences between the two filtered lifetimes will facilitate the repair effects. © 2007 
World Academic Press, UK. All rights reserved. 

 
1. Introduction 
 
Repairable system analysis is in nature an evaluation of repair effects. Recent tendency in reliability 
engineering literature was imposing repair regimes and estimate system repair effects or linking repair to 
certain covariate to extract repair impacts. Hinted by engineering tune up exercises, we propose a repair 
model in terms of random variable distribution with a fuzzy parameter because fuzziness reflects the 
evolution of system dynamic rule changes according to its design specifications. In this paper, we develop 
an average chance distribution for random fuzzy lifetimes and further propose a maximum average chance 
principle for data-assimilated parameter estimation, which will lead to two empirical distributions – an 
average chance empirical distribution and an empirical probability distribution with the expected fuzzy 
parameter as the point estimate for its parameter. The differences between the two filtered lifetimes are 
expected to facilitate the repair effects. 
 
2. Random Fuzzy Lifetimes 
2.1 Concept of random fuzzy lifetime and average chance distribution 

Liu (2004) defined random fuzzy variable in a very formal way. However, it might be difficult for the 
reliability engineers. Therefore, we will give an intuitive and constructive definition. 

Liu (2004) defined random fuzzy variable in a very formal way. However, it might be difficult for the 
reliability engineers. Therefore, we will give an intuitive and constructive definition. 
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Definition 2.1: A random fuzzy lifetime, denoted as },{ )( Θ∈= θξ θβX , is a collection of positive real-

valued random variables βX >0 defined on the common probability space (Ω ,A,Pr) and indexed by a 

fuzzy variable β(θ) defined on the credibility space (Θ , Θ2 ,Cr).  

A random fuzzy lifetime, denoted by ξ, is a special case of random fuzzy variable. In other words, random 
fuzzy lifetime is a bivariate mapping from ( Θ×Ω , A Θ× 2 ) to the space (R+, B(R+)). 

Definition 2.2: (Liu and Liu, 2002) Let ξ be a random fuzzy variable, then the average chance measure 
denoted by ch{⋅}, of a random fuzzy event {ξ≤x}, is: 

{ } ( ){ }{ }
1

0

ch Cr Pr dx xξ θ ξ θ α α≤ = ∈Θ ≤ ≥∫  (1)

Then function Φ(⋅) is called as average chance distribution if and only if: 

( ) { }xx ≤=Φ ξch  (2)

The nonnegative real-valued function ξφ (⋅) is called average chance density for a random fuzzy variable ξ 

if for ξφ (x)≥0, x∈R such that: 

( ) ( )∫
∞−

=Φ
x

uux dξξ φ  (3)

Liu (2004) mentioned an exponentially distributed random fuzzy variable ξ has a density function: 

( )
⎪⎩

⎪
⎨
⎧

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

otherwise0

0ifexp1 xx
xf ββ  (4)

if the value of β is provided as a fuzzy variable, then ξ is a random fuzzy variable. Accordingly, let fuzzy 
parameter β be defined by a membership function, βμ (⋅), and the probability density is defined by 
Equation (4), then the random fuzzy variable ξ is said to be exponentially distributed.     This example hints 
a constructive definition for specifying or a random fuzzy variable and consequently the average chance 
distribution for the random fuzzy variable. We know that a probability distribution FX can define a random 
variable X, then the parameter of FX  will index random variable X too. If we allow the parameter of the 
distribution ( ) ;XF β⋅  to be a fuzzy variable β  then without any doubts, β  also indexes the random 

variable X, denoted as X β . Conversely, the fuzzy variable β  indexes random variable X, will index the 
corresponding distribution FX too. We state such an equivalence as a lemma.  

Lemma 2.4: Let {F(x;β(θ)),θ∈ Θ } be a family of probability distributions on the probability space 

(Ω ,A,Pr) with a common fuzzy variable (parameter) β on the credibility space (Θ , Θ2 ,Cr), which induces 

a membership function, βμ (⋅), then ( )( ){ } ; ,F β θ θ⋅ ∈Θ  is equivalent to ( ){ },X β θ θ ∈Θ  and therefore 

defines a random fuzzy variable ξ.  

The emphasis on the equivalence between probability distribution group and random variable group is not 
the something new and hence is not the unique creation for random fuzzy variable theory. In homogeneous 
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continuous Markov chain theory, the (conservative) stochastic semi-group { }P , 0t t ≥ and the random 

variable group { }, 0tX t ≥ are equivalent in constructing the process. The next theorem extends the Lemma 
2.4 further. A function Λ  is defined as a 1-1 mapping of probability distribution FX. The familiar examples 
of Λ  are hazard function, survival function, and moment generating function of a random variable X. 
FunctionΛ  in genera can also be used to construct the group equivalent to ( ){ },X β θ θ ∈Θ . 

Theorem 2.5: Let ξ be a continuous random fuzzy lifetime having probability distribution function 
F(t;β(θ)), where the fuzzy parameter β is defined on the credibility space (Θ , Θ2 ,Cr) with membership 

βμ (⋅). Then function Π(⋅) can uniquely define the random fuzzy lifetime ξ if the operator or function Λ  
such that F(t;β)=Λ(Π(t;β)).  

The proof of the theorem is a straight application of Definition 2.1 and Lemma 2.4.  
 
2.2 Continuous random fuzzy lifetime models 

In statistical lifetime modeling and analysis, the elementary lifetime models are exponential, Weibull, Log-
normal, gamma, and bathtub, etc.. These are essential for the construction of random fuzzy lifetimes. Table 
1 lists these models. Whenever dealing with random fuzzy lifetime data analysis, we can construct the 
appropriate model for the data in terms of Theorem 2.5. 

Table 1: Commonly used distributional lifetime models 
Name Probability density & hazard function 

density ( )tββ −exp  Exponential  
hazard β  
density ( )( ) ( )( )ββ ηηηβ tt −− exp1  Weibull 

hazard ( )( ) 1−βηηβ t  
density ( ) ( )( ) ( )( )( )ubtubtu −−− expexpexp1  Extreme - value 
hazard ( ) ( )( )ubtu −exp1  
density ( )( ) ( )( )22 2lnexp21 σμσπ −− tt  Log-Normal 

hazard ( )( ) ( )( )( ) ( )( )( )σμσμσπ −Φ−−− ttt ln12lnexp21 22  
density ( ) ( )( ) tet λβ βλλ −− Γ1  Gamma 

hazard ( ) ( )( ) ( )( )tIet t λββλλ λβ ,11 −Γ −−  
density ( )( ) ( )( ) ( )( )( )111 expexpexp −−− − βββ ηηηηβ ttt  Bathtub 

hazard ( )( ) ( )( )11 exp −− ββ ηηηβ tt  
 
In Table 2, I(β,λt) denotes the incomplete gamma function of the first-type and Φ(⋅) represents the 
cumulative distribution of a standard normal variable. 
 
2.3 Accelerated life testing models 

Accelerated life testing is an important methodology in new product design and warrantee policy decision 
making. The basic assumption is that a change in stress factors only alters the scale, only the shape, of the 
failure time distribution.  
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Definition 3.6: (Accelerated random fuzzy life model) Let F0(t;β) be the baseline failure time distribution 
function for a random fuzzy lifetime ξ having a fuzzy parameter β defined on the credibility space 
( Θ , Θ2 ,Cr) with membership βμ (⋅), then the accelerated random fuzzy life model specifies the 
probability distribution for the random fuzzy failure time under time-independent stress variable z as: 

( ) ( )( )βςβ ;,; 0 ztFztF =  (5)

where function of stress variable ς :R→R+. 

The average chance distribution with stress variable z is therefore: 

( ) ( ) ( )( ){ }∫ ≥=Φ
1

0
0 d;:Cr; ααθβςθ ztFzt  (6)

where stress variable z may be assumed to be either fuzzy or deterministic. The function, ς :R→R+, is 

usually defined in terms of the relationship between the parameter of lifetime distribution and stress 
variable(s).  

Well-known accelerated life models are power rule model: 

0, >= c
z c

λβ  (7)

0,exp >⎟
⎠
⎞

⎜
⎝
⎛= T

T
δλβ  (8)

 
Combined power rule and Arrhenius reaction rate model: 

0,0,exp >>⎟
⎠
⎞

⎜
⎝
⎛= − cT

T
z c δλβ  (9)

Jurkov’s model 

0,exp >⎟
⎠
⎞

⎜
⎝
⎛ −

= T
T

Czδλβ  (10)

Generalized Eyring model: 

0,expexp >⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛= T

T
dzCz

T
T δλβ  (11)

and others.  
 
2.4 Proportional hazards model 

Except accelerated testing model, another covariate model playing very important roles in lifetime analysis 
is Cox’s (1972) proportional hazards (abbreviated as PH) model: 

( ) ( ) ( )ythth Tγςβγβ ;,; 0=  (12)  
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where h0(t;β) is called the baseline hazard function having a fuzzy parameter β defined on the credibility 
space (Θ , Θ2 , r~C ) with membership βμ (⋅), while ς :R→R+ with: 

pp
T yyy γγγγ +++= ...110  (13)

where y=(1,y1,…,yp)T is covariate vector and γ=(γ0,γ1,…,γp)T is covariate effect parameter vector. A 
typically function of ς :R→R+ used is the exponential function ς (x)=exp(x). It is easy to show that the 

accumulated hazard if covariate y is not time-dependent is: 

( ) ( ) yT

etHtH γβγβ ;,; 0=  (14)

And therefore the average chance distribution with covariate y is: 

( ) ( ) ( )( ) ( ) ( ){ }2
1

1 2 0 1
0

, Cr , : ; ln 1
T yt y H t e dγ θθ θ β θ α αΦ = ≥ − −∑  (15)

where covariate y is assumed to fuzzy but parameter γ is assumed to be deterministic. Other options are 
also possible to be formulated. 

It is necessary to mention here, the two types of covariate models are not only powerful in product 
reliability design, analysis but also useful in repairable system maintenance optimal planning and analysis. 
In probabilistic reliability literature, researchers have many useful developments. Therefore, in random 
fuzzy repairable system analysis it is necessary to bring them in.  
 
3. Exponential Random Fuzzy Failure Times 
From the Subsection 2.2, it is easy to see that exponential random fuzzy failure times are probably the 
simplest model to handle.  

Let us use exponentially distributed random fuzzy lifetime which has probability density: 

( )
⎩
⎨
⎧

>
≤

= − 0
00

;
te
t

tf tββ
β  (16)

3.1 Exponential random fuzzy failure time with trapezoidal membership function 

The fuzzy parameter β needs four parameters for its specification. 

( )

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤<
−
−

≤<

≤<
−
−

=

otherwise

dxc
cd
xd

cxb

bxa
ab
ax

x

0

1
βμ

 
(17)

Note that: 

( ){ } tet βθξ −=≤ 1Pr  (18)

Therefore event {θ: Pr{ξ(θ)≤t}≥α} is a fuzzy event and is equivalent to the fuzzy event {θ: 
β(θ)≥−ln(1−α)/t}, now we need to find the credibility measure r~C {θ: β(θ)≥−ln(1−α)/t}. 
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For trapezoidal fuzzy variable β, the credibility measure of event {θ: β(θ)≤x}: 

( ){ }
( )

( )
⎪
⎪
⎪
⎪

⎩

⎪
⎪
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⎪

⎨

⎧

>
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−
−+

≤<

≤<
−
−

≤

=≤

dx

dxc
cd

cdx

cxb

bxa
ab
ax

ax

x

1
2

2
2
1

2

0

:r~C θβθ  (19)

Therefore the credibility measure of the complement event {θ: β(θ)≥x } is: 

( ){ }
( )

( )
⎪
⎪
⎪
⎪

⎩

⎪
⎪
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>
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−
−

≤<
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−
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=≥

dx

dxc
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axb
ax
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0
2

2
1

2
2

1

:r~C θβθ  (20)

Accordingly, the range for integration with α can be determined as shown in Table 2.  
 

Table 2: Range analysis for α 

( )ln 1
x

t
α−

=−

 

Range for α  Expression for 

( ) ( ){ }Cr : ln 1 tθ β θ α≥− −
 

x a−∞< ≤
 

0 1 ateα −≤ ≤ −  1 

a x b< ≤
 

1 1at bte e− −− < ≤ −α
 ( )

1
2

x a
b a
−−
−

 

b x c< ≤
 

1 1bt cte e− −− < ≤ −α
 

1
2

 

c x d< ≤
 

1 1ct dte eα− −− ≤ ≤ −
 ( )

21
2

x d c
d c
+ −−

−
 

x d>  1 1dte−− < ≤α  0  

 
The average chance distribution for the exponentially distributed random fuzzy lifetime is then 

 



 228                                                                                         R. Guo et al.: Random Fuzzy Variable Modeling on Repairable System 

( ) ( ) ( ){ }
1

0

t = Cr : ln 1 dtξ θ β θ α αΦ ≥− −∫  (21)

Note that the expression of ( )ln 1x tα=− − appears in Equation (21), which facilitates the link between 
intermediate variable α  and average chance measure. The average chance distribution for the 
exponentially distributed random fuzzy lifetime is then derived by splitting the integration into five terms 
according to the range of α  and the corresponding mathematical expression for the credibility 
measure ( ) ( ){ }Cr : ln 1 tθ β θ α≥− − , which is detailed in Table 2. Then the exponential random fuzzy 
lifetime has an average chance distribution function: 

( ) ( ) ( )
t 1

2 2

bt at dt cte e e e
b a t d c tξ

− − − −− −Φ = + +
− −  (22)

The average chance density for the exponentially distributed random fuzzy lifetime is then the 
derivative with respect to t : 

( ) ( ) ( ) ( ) ( )2 2t =
2 2 2 2

at bt bt at ct dt ct dte e be ae e e ce de
b a t b a t d c t d c tξφ

− − − − − − − −− − − −+ + +
− − − −  (23)

and the average chance reliability is ( ) ( )1R t tξ ξ= −Φ , i.e., 

( ) ( ) ( )
=

2 2

at bt ct dte e e eR t
b a t d c t

− − − −

ξ
− −+
− −  (24)

With an obvious reason, we work out all the technical details in step-by-step manner for explaining the 
insight of the average chance distribution of an exponential random fuzzy failure time. The other forms 
following this subsection are merely special cases of the trapezoidal membership function.  
 
3.2 Exponential random fuzzy failure time with triangular membership function 

A triangular membership function can be regarded as the special case when the parameter b and parameter 
c  equal each other. In this way, the triangular membership takes the form 

( )

,

,

0, Otherwise

x a a x b
b a
d xx b x d
d bβμ

⎧ −⎪⎪ < ≤⎪⎪ −⎪⎪⎪ −⎪= < ≤⎨⎪ −⎪⎪⎪⎪⎪⎪⎪⎩

 
(25)

Similar to the analysis for α in Subsection 3.1, the average chance distribution for the exponentially 
distributed random fuzzy lifetime is then derived by splitting the integration into five terms according to 
the range of α  and the corresponding mathematical expression for the credibility 
measure ( ) ( ){ }Cr : ln 1 tθ β θ α≥− − , and thus the average chance distribution is: 
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( ) ( ) ( )
t 1

2 2

bt at dt bte e e e
b a t d b tξ

− − − −− −Φ = + +
− −  (26)

The average chance density is 

( ) ( ) ( ) ( ) ( )2 2t =
2 22 2

at bt bt at bt dt bt dte e be ae e e be ce
b a t d b tb a t d b tξφ

− − − − − − − −− − − −+ + +
− −− −  (27)

The average chance reliability is 

( ) ( ) ( )
=

2 2

at bt bt dte e e eR t
b a t d b t

− − − −

ξ
− −+
− −  (28)

 
4. The Revelation of Intrinsic Dynamics of a Repairable System 
To facilitate a repairable system modeling in terms of random fuzzy failure models comes from the 
bivariate mapping nature.  

4.1 A philosophical understanding of fuzzy logic 

The idea to use random fuzzy failure time models for facilitating repairable system modeling roots from 
our basic understanding on fuzzy phenomenon, described by fuzzy set in earlier fuzzy mathematics – 
possibility measure based theoretical framework or by fuzzy variable under fuzzy credibility measure 
theory framework, particularly, the fuzzy parameter for specifying the system failure model. Logically 
speaking, randomness and fuzziness are two different types of uncertainty.  Randomness is logically the 
break down of the law of causality because of the lack of some conditions under which the event 
occurrence is inevitable. This is traditionally a well-received formalization of uncertainty in terms of the 
usage of probability calculus by science and engineering. Fuzziness is logically the break down of the law 
of excluding the middle, but this is less well known and is often ignored by the communities of engineering 
and management, particularly, reliability engineering. Evolution appears in all aspects around us, no matter 
in natural world, social phenomena, or engineering practices.  Any system contains many factors, many 
strata, and many intermediaries. These interconnections, interactions, and within the system strata must 
have intermediate links. Therefore holding on the intermediate strata of the system structure is a necessary 
step to understanding system underlying dynamics in the way of entirety. Fuzzy membership function is 
the appropriate mathematical mechanism reflecting the evolving system state from one strum to another.   

4.2 Random fuzzy model reveals the system state intermediate evolution 

In standard statistical lifetime modeling and analysis reliability function of a system reveals the system 
functioning (probabilistic) behavior. Similarly, the average chance reliability function reveals the system 
co-existing random and fuzzy behavior in general. It is necessary to emphasize here that the average 
chance reliability function reveals also the system state intermediate evolution pattern. 

In order to gain an intuitive perceptions on the average chance reliability function, let us assume that the 
triangular membership function defined by 0.1a= , ( )0.25b c= = , and 0.30d = . Recall that if we 
treat the system obeying an exponential probability law, for example, the exponential random lifetime has 
a parameter ( ) 0.225m Eβ β= = .  

Figure 1 gives a comparison between ( );R tξ β  and ( );0.225R t . It is easy to see that replacing a fixed 
value parameter, for the case in Figure 1, 0.225 by the fuzzy parameter β  with triangular membership (0.1, 
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0.25, 0.30) enables the system state evolution to be revealed. In other words, in case of system failure 
observations, denoted by { }1 2, , , nt t t , is from a exponential random fuzzy system, however, we use an 
exponential random model to analyze it, the system reliability with  exponential random modeling will 
underestimate the “true” reliability, which will lead us into wrong maintenance decision on the system.  
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Figure 1: Average chance reliability ( );R tξ β  (Red) of an exponential random fuzzy failure time with 
triangular parameter ( )0.1,  0.25, 0.30 , corresponding exponential lifetime reliability ( );0.225R t  (Blue), and 

the difference function ( ) ( )( ); , ;0.225d R t R tξ β  (Sienna) 
 

4.3 Maintenance is one of the root the causes for system state intermediate evolution 

What are the root causes which may trigger the system state intermediate evolution? To address this 
problem, we need to examine a system operating environment and system functioning characters. 

Because a complex system is constituted by relevant hard subsystems and soft subsystems, the content of 
reliability analysis and computation of the system operating behavior inevitably involves the reliability of 
every subsystem (no matter soft or hard one) and relationships between subsystems. In this context, the 
fuzzy problem comes from the uncertainty and non-describable knowledge on the operating reliability of 
each individual subsystem and the operating coordination of the subsystems. 

1. Time impacts on reliability of individual subsystems. Time fact affect subsystem 
reliability can be analyzed from two angles: materials constituting of the subsystems 
are wearing our and downgrading according to specifications in long term and the 
shape and strength of materials are changed associated with movements in short term. 

2. Operating environmental impacts on reliability of individual subsystem. Operation 
environment involves  hard side, say, temperature, humidity, dust, light etc and soft 
side, say, work floor culture and in general company and local social culture 
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environment. It is worth to stress here, the environmental factors interact with time 
factors and such relationships are difficult to evaluate and therefore a fuzzy issue 
appears here for consideration. 

3. Human behaviour impacts on reliability of individual subsystem.  In today’s 
globalization environment, more and more complex systems are international-made. 
Inevitably the human factors affect system reliability directly and indirectly during 
the system design, manufacturing, shipping and the end-usage operating. Even 
making the focus narrow to system operating, it is obvious the human and system 
(machine) interaction is often too complicated to describe.  This will be a fuzzy 
problem again. However, more and more complex system with automatic control 
subsystems and human (operator) restricted overriding function can not use simple 
models to handle them. 

4. System design impacts on reliability of individual system. Today’s quality starts at 
design stage. The allocation of reliability to individual subsystem is not known 
completely. As a matter of fact, the system operating behaviour is unknown in 
principle before the system being manufacturing and putting into functioning. 
Therefore, the investigation and analysis of the complex system reliability is enabling 
the system information from fuzzy state, i.e., an intermediate evolution. 

5. System maintenance impacts on reliability of individual system. It is generally 
acknowledged that maintenance should improve the system reliability and thus the 
performance. However, in real-world, the opposite often occurs, i.e., maintenance 
may damage the system.  

In summary, the fuzzy problems appeared in complex system reliability analysis lie in shorting of system 
structural clarity, shorting of the underlying mechanism of the interaction between subsystems and shorting 
of overall information of the system as a whole. Accordingly, identifying the root causes affecting the 
system behaviour will be very difficult.  

Mathematically, the positive impacts which help system improvements and the negative impacts which 
cause system deteriorations can be appropriately modelled by random fuzzy failure time model since the 
system state intermediate evolution is a reflection of fuzzy behaviour. 
Therefore, appropriate maintenance will improve the system reliability and becomes the cause of system 
state intermediate links evolving toward higher reliability.  
 
5. Mean Square Error Filtering  
Filtering is an important approach to fit the failure time dynamics under certain optimal criterion. With the 
fitted failure times under different model assumptions, we may evaluate the system improvement or 
damage impacts from maintenance work. 

It is noticed that in linear model theory, we may assume the system failure times { }1 2, , , nt t t  operated 
under mean square error criterion: 

( )2
1

1 ˆ
n

i i i
i

J w t t
n =

= −∑  (29)

where { }1 2
ˆ ˆ ˆ, , , nt t t  are fitted or filtered time corresponding to { }1 2, , , nt t t  respectively, and 

{ }1 2, , , nw w w  are the weight valued in Equation (29).  If the data { }1 2, , , nt t t  are i.i.d. from 
exponential  
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5.1 Mean square error filtering with exponential density as weight function 

If the data { }1 2, , , nt t t  are assumed to sampled i.i.d. from exponential distribution with fixed parameter 

0β , then let: 

( )0 0exp ,  1,2, ,i iw t i nβ β= − =  (30)

We will have: 

( )2ˆlim
n

J E T T
→∞

⎡ ⎤= −⎢ ⎥
⎣ ⎦

 (31)

However, we notice that 0β  is not available and can be only estimated from data, denoted the estimate as 

0β̂ , the weight should be replaced by: 

( )0 0
ˆ ˆˆ exp ,  1,2, ,i iw t i nβ β= − =  (32)

where 0β̂  is a maximum likelihood estimator for parameter 0β . Then, we can use the genetic algorithm 

search the filtered failure time, { }1 2
ˆ ˆ ˆ, , ,r r r

nt t t  such that the object function 

( )2
1

1ˆ ˆˆ
n

r
i i i

i

J w t t
n =

= −∑  (33)

is minimized, where the superscript r indicates the exponential random failure model. 
 
5.2 Mean square error filtering with random fuzzy exponential density as weight function 
 

If the data { }1 2, , , nt t t  are assumed to sampled i.i.d. from exponential distribution with a fuzzy 

parameter β , then let: 

( ),  1, 2, ,i iw t i nξφ= =  (34)

We will have: 

( )2ˆlim
n

J E T T
→∞

⎡ ⎤= −⎢ ⎥
⎣ ⎦  (35)

However, we notice that the parameters for specifying fuzzy vaiableβ  is not available and can be only 
estimated from data, for example, in terms of maximum average chance principle, denoted the estimate as 

( )1 2
ˆ ˆ ˆ ˆ, , , pθ θ θ θ= , the weight should be replaced by: 

( )ˆˆ ; ,  1,2, ,i iw t i nξφ θ= =  (36)

We can also use the genetic algorithm search the filtered failure time, { }1 2
ˆ ˆ ˆ, , ,rf rf rf

nt t t  such that 
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( )2
1

1ˆ ˆˆ
n

rf
i i i

i

J w t t
n =

= −∑  (37)

is minimized, where the superscript rf indicates the exponential random fuzzy failure time model. 
 
5.3 Grey differential equation filtering 

Grey differential equation model is a small sample based approach without imposing distributional 
assumptions. Guo (2007) give a systematic discussion on grey differential equation filtering and it might 
be very easy to be implemented. 
 
5.4 Repair effects 

Once the filtering sequences are calculated, the repair effect, denoted by ir  at time it , 1, 2, ,i n= , is 
defined by: 

,  1,2, ,r rf
i i ir t t i n= − =  (38)

(i) If 0ir > , we say that the maintenance is adequate to cover the wear out and shock damages so that 
system gets improved; 

(ii) If 0ir < , we say that the maintenance is not adequate to cover system wear out or shock damages 
such that the system is improved; 

(iii) If 0ir = , the maintenance and the wear out or shock damages are balanced so that system remains 
the same. 

 
6. Conclusions 
In this paper, we define the random fuzzy failure time in an intuitive and constructive manner and then 
engage the discussion on the average chance distribution for the random fuzzy failure time. An exponential 
random fuzzy failure time with trapezoidal membership example is detailed developed for illustration 
purpose. Accelerated testing model and proportional hazards model are also reviewed with the intention to 
facilitate a repairable system model counting for all relevant covariate information. Finally, we explore the 
two filtering model so that the maintenance effects are estimated. Note here, the maintenance effect 
estimated here is the difference between the “true” maintenance improvement effect and system wear out 
effect or shock damage effects.  
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