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Abstract 

 
    Geological investigations are carried out under particularly high uncertainties. Assessment of these 
uncertainties is very important for project planning. This paper presents a methodology to evaluate 
uncertainty associated with geological structures such as ore deposits and aquifers. In order to assess 
the uncertainty of the geological systems observed, fuzzy clustering and spatial measures are used. 
Then, the heterogeneous zones are evaluated using conditional probabilities. The posterior 
probabilities obtained from testing data provide useful information for assessing the uncertainty. © 
2007 World Academic Press, UK. All rights reserved. 
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1. Introduction 
 
Geoscientists are always interested in understanding and evaluating the behaviours of geological structures. 
Assessment of these structures is directly related to available information and uncertainties. Uncertainty 
represents partial ignorance or the lack of perfect knowledge on the part of the analyst [1]. According to 
Bardossy and Fodor [4], two main sources of uncertainties can be distinguished in geosciences: 

- Uncertainties due to natural variability 
- Uncertainties due to human imperfections and incompetency.  

 
This paper focuses on the first type of geological uncertainty and we assume that variability represents 
diversity or heterogeneity in a geological population that is irreducible by additional measurements. In the 
heterogeneous structures, the geological properties observed at different locations do not have the similar 
values and different zones are observed [15].  
 
The treatment of uncertainty in analysis is going through a paradigm shift from a probabilistic framework 
to a generalized framework that includes both probabilistic and nonprobablistic methods. The well known 
probability theory and related statistics are the most common traditional tools to handle uncertainties. In 
recent years, geostatistical methods have been broadly applied to quantify the geological uncertainties. The 
geostatistical approach allows the quantitative assessment of spatial uncertainty using geostatistical 
simulation procedures [13]. Although integrating geostatistics with fuzzy set theory is a novel direction its 
applications in uncertainty evaluation are very limited. Most geological investigations deal with random 
(stochastic) events and this is the reason why the probability theory and statistics are at present the basic 
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tools to handle uncertainties in geosciences [5]. On the other hand, another important type of uncertainty, 
referred to as fuzziness, is uniquely connected with fuzzy sets. It is thus applicable to fuzzy set theory. Due 
to its soft property, in recent years, fuzzy set approach has been widely used in uncertainty analyses [3]. 
 
In the present study, heterogeneities of geological structures are analyzed using both fuzzy and 
probabilistic tools. In the first stage, structure identification of the site considered is carried out using the 
combination of two different tools: fuzzy clustering and geostatistical techniques. Then, the structure 
defined in the previous step is tested based on conditional posterior probabilities derived from testing 
observations.  
 
 The rest of the paper is organized as follows: Section 2 describes the proposed methodology. In this 
section, fuzzy clustering, spatial variation and conditional probability approaches are introduced, 
respectively. Section 3 presents two applications for both simulated and real data sets. Section 4 gives a 
brief evaluation and the conclusions. 
 
2. Methodology 
 
The methodology considers uncertainty in geological sites combining fuzzy clustering with spatial 
measures and conditional probabilities. The method first uses fuzzy clustering for determining the 
heterogeneous zones in geological site considered. After that, search (control) domains are established for 
each cluster based on point semimadogram (PSM) measures which determine the zone of influence (search 
radius) around each cluster center. In the final stage, the uncertainty evaluation for each zone is carried out 
using the domains. 

 
2.1   Clustering 
 
Data clustering is employed to organize observed data into meaningful structures. In general, cluster 
analysis refers to a broad spectrum of methods which try to subdivide a data set X into c subsets (clusters) 
which are pair-wise disjoint, all nonempty, and reproduce X [6]. Cluster analysis encompasses a number of 
different classification algorithms. Recently, fuzzy algorithms have been widely used as a method for data 
clustering. Fuzzy clustering partitions a data set into fuzzy clusters such that each data point can belong to 
multiple clusters.  
 
Fuzzy c-means (FCM) clustering algorithm [6] is a well-known clustering technique that generalizes the 
classical (hard) c-means algorithm and can be employed when the number of clusters is not known. The 
FCM algorithm has been used in grade estimation studies for evaluation of uncertainty in geosciences [17].  
 
FCM partitions a collection of n vector xi, i=1,...,n into c fuzzy groups, and finds a cluster center in each 
group such that a cost function of dissimilarity measure is minimized [10]. The fuzzy partition matrix is of 
probabilistic property as follows: 
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The objective function for FCM is given by Eq. 2. 
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where ijμ  takes values between 0 and 1, ci is the cluster center of fuzzy group i, jiij xcd −=  is the 

Euclidean distance between ith cluster center and jth data point and m>1 is a weighting exponent. Cluster 
centers and membership matrix are calculated as follows: 
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The FCM algorithm determines the cluster centers ci and the membership matrix U using the following 
steps [11]: 

1. Initialize the cluster centers ci (i = 1,2,…,c). 
2. Determine the membership matrix U by (4). 
3. Compute the objective function according to (2). Stop if it is below a certain threshold level or its 

improvement over the previous iteration is below a certain tolerance. 
4. Update the cluster centers according to (3). 
5. Go to step 2. 

 
Determining the optimal number of clusters is an important step in fuzzy clustering. In this study, the 
cluster validity index proposed by Tutmez et al. [18] is used. This method is based on reproducing the 
variability in the value of cluster centers with minimum number of clusters. 

 
2.2 A Stochastic Approach to Spatial Variation: Point Semimadogram 
 
Fuzzy clustering focuses on the dissimilarity between data values based on metric distances. Therefore, the 
clustering algorithm may be used to identify heterogeneous areas [18]. The fact that spatial variation 
appears to be random suggests a way forward [19]. The madogram is a function of underlying stochastic 
process. In geosciences, two sampled values g(x) and g(x+h) at two points x and x+h separated by the 
vector h are spatially correlated. As the distance between these values increases, one would expect that the 
spatial correlation decreases and vice versa. This type of behaviour is modelled by variogram functions in 
geostatistics, which is commonly used in evaluation of uncertainties in geology. The variogram function is 
defined as the variance of the differences between two attribute values.  

   [ ])()()(2 hxgxgVarh +−=γ                                                               (5)                      
where g(x) and g(x+h) are random measurements defined at locations x and x+h, Var is the variance 
operator and 2γ(h) is the variogram at distance h. In practice, the variogram function (5) is estimated as 
follows: 
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N(h) is the number of pairs used in calculating the variogram at distance h. 
 
The variogram characterizes the structures of the spatial distribution of the attribute considered. Starting 
from the origin, γ(0)=0, the variogram increases in general with increasing distance. The variogram may 
become stable beyond some distance ah = called the range. Beyond this distance a, the mean square 
deviation between two grades g(x) and g(x+h) no longer depends on distance h between them and the two 
values are not correlated (Fig.1). The range gives an exact sense to the conventional concept of the zone of 
influence of a sample [8]. However, the classical variogram is not suitable for describing the local 
variability. Therefore point semivariogram (PSV) has been proposed [15].  
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Fig.1. A typical variogram 

 
Madograms are particularly useful for establishing the range parameter [7]. In a recent work, point 
semimadogram (PSM) was suggested as an alternative measure for evaluating the local spatial behavior of 
data [18]. By this measure, the zone of influence around each observation can be determined.  This 
function uses the absolute difference instead of squaring the difference between gm and gm+h. If data set 
employed includes the outlier values and the number of data is limited, the PSM is more resistant to outlier 
values [18],  
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Point cumulative semimadogram (PCSM), which is an extended form of PSM, is computed by the 
cumulative sum of PSMs. The PCSM leads to a non-decreasing function with distance. Because the PCSM 
gives the regional effect of all the other data locations within the study area on the location concerned, it 
can be used for determining the search (control) domains around each cluster center. According to Eq. (8), 
a location x is defined to belong to domain Ω  if the Euclidean distance between cluster center ci and xj is 
not greater than the range a of the location considered. 

ciNjaxcdx jij ,...,2,1,...,2,1),( if ==≤Ω∈                                     (8) 
where N is the number of data. If a location belongs to more than one cluster domain, the closest cluster 
center is considered.  

 
2.3 Conditional Probability 

For a given site clustered by fuzzy clustering, the following  question can be asked: “What is the chance of 
an observed data belonging to cluster1 on the second sampling given either a cluster 2 or a cluster 3 on the 
first sampling”-. This is a problem of conditional probability, the probability of an event given that 
specified events have occurred in the past. Conditional probability can be formalized by determining the 
probability that event A occurs given that arbitrary event E, where  

Pr(E)
E)Pr(AE)\Pr( ∩

≡A .                                                               (9) 

Rearranging this definition gives 
 Pr(E)E)\Pr()Pr( AEA =∩ .                                                         (10) 

Eq. (10) is known as the multiplication rule of conditional probability. Further, since 
)Pr()Pr( EAAE ∩=∩ , Equation (10) implies that 

 Pr(A)A)\Pr(EPr(E))E\Pr( =A .                                                         (11) 
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If nAAA ,...,, 21  denotes the prior information, or a partition of a universal set X, and XE ⊂ represents 
the arbitrary event as shown in Figure 2 [2], the theorem of total probability can be stated as follows 

 )A\Pr()Pr(...)A\Pr()Pr()A\Pr()Pr()Pr( n2211 EAEAEAE n+++=                    (12) 
where =)Pr( iA  the probability of the event iA and =A\E  the occurrence of E given Ai , where i = 
1,2,…,n. This theorem has considerable importance in computing the probability of the event E, especially 
in practical cases where the probability cannot be computed directly, but the probabilities of the 
partitioning events and the conditional probabilities can be computed [3].  
 

 
Fig.2. Bayes’ theorem. 

 
The theorem presented by Bayes is based on the same conditions of partitioning and events as the 
theorem of total probability and is very useful in computing the posterior (reverse) probability of 
the type  E),\Pr( iA for i = 1,2,…,n. The posterior probability can be computed as follows: 
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ii
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n
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=              (13) 

According to Bayes approach, from prior probabilities )Pr( iA and new evidence expressed in terms of 
conditional probabilities ),A\Pr( iE  posterior probabilities E)\Pr( iA  are computed. When further 
evidence becomes available, the posterior probabilities are employed as prior probabilities and the 
procedure of probability updating, is repeated [12]. In this paper, posterior probabilities are employed to 
evaluate the heterogeneity of the geological structure considering clustering information and spatial 
measures. 

 
3 Case Studies 
The methodology presented in this paper is illustrated using two data sets. In the first case, the method is 
used for evaluating a simulated data obtained from an Andesite (rock) quarry. In the second case study, a 
real data set is used and this time, the proposed method is used for the purpose of evaluating aquifer 
porosity. 

 
3.1 Case Study 1 

The data set was obtained via conditional simulation using the lower-upper (LU) simulation technique [7]. 
Simulation is carried out on a 21x21 regular grid with 7 unit grid spacing, yielding a total of 441 values. A 
standardized set (49 records) is randomly drawn from this data set and are shown in Fig.3. 
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Fig. 3. Simulated data set. 

 
Clustering 
 
In the first stage, data clustering was carried out. The most important component of this stage is 
determining number of clusters. If the number of clusters is unknown, various methods might be employed 
to find a suitable number of clusters [14]. In this study, a novel cluster validity approach, which was 
performed in different problems [16,18] for appraising the geological structures, has been used. It is based 
on reproducing the variability of the sample data in the value of cluster centers with minimum number of 
clusters. For the simulated data set, the optimum number of clusters is determined to be five. 
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Fig. 4. The map of membership values for the simulated data. 
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In addition to cluster centers, the FCM algorithm produces a partition (membership) matrix, 
whose ijth element [ ]1,0∈ijμ  is the membership degree of data jx  in cluster i. The one-
dimensional fuzzy sets ikAμ can be projected onto the space of the input variables kx . where, the 
ith row of U contains a pointwise definition [9] of a multidimensional fuzzy set. For this 
procedure, the expresion )(proj)( ijkkjikA x μμ = has been employed. As a result of this application, 
the maximum memberships for each observation (location) are computed. A map of membership 
values is shown in Fig. 4. 

 
Spatial measure 
When the spatial distribution of an attribute is heterogeneous, individual PCSMs for the sample 
values show different behaviour. Calculated PCSMs are plotted on vertical axis versus the 
corresponding distances on horizontal axis. As an example, the PCSM plot of cluster1 and its 
domain is shown in Figures 5 and 6, respectively. 
 
As seen in Fig. 4, the quarry has five different zones. The number of observations in each zone 
denotes the probabilities belonging to clusters.  These probabilities can be computed as follows: 

P(C1) = 15/49 = 0.306            P(C2) = 9/49 = 0.184        P(C3) = 7/49 = 0.143 
P(C4) = 9/49 =0.184               P(C5) = 9/49 = 0.184. 

where, C1-5 are the clusters and P(C) is the probability related to the cluster considered.  
 
Similarly, the prior probabilities can be obtained from the membership matrix using a basic 
categorization.  For this purpose, five levels (intervals) have been designed and the prior 
probabilities of each level have been determined as shown in Table 1, where N denotes the 
number of data values within the interval defined and P(p) denotes the prior probabilities. For 
example, the prior probability 0.510 is obtained from the division 25/49. 

 
 

range=14

variance

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25

Distance

P
C

S
M

 
Fig. 5. Experimental PCSM plot for cluster 1. 
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Fig. 6. Control domain for cluster 1. 

   
According to prior discrete probabilities, the following mean probabilities for each cluster can be computed 
by Eq. (14): 
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C1 → PX  = 0.05(0.510) + 0.2(0.204) + 0.4(0.102) + 0.6(0.102) + 0.85(0.082) = 0.238 
C2 → PX = 0.05(0.531) + 0.2(0.224) + 0.4(0.082) + 0.6(0.061) + 0.85(0.102) = 0.228 
C3 → PX = 0.05(0.531) + 0.2(0.326) + 0.4(0.082) + 0.6(0) + 0.85(0.061)        = 0.177 
C4 → PX = 0.05(0.592) + 0.2(0.184) + 0.4(0.102) + 0.6(0.020) + 0.85(0.102) = 0.206 
C5 → PX = 0.05(0.510) + 0.2(0.286) + 0.4(0.041) + 0.6(0.041) + 0.85(0.122) = 0.227 

 
Table 1. Levels and prior probabilities. 

 
Cluster 1 

 
Cluster 2 

 
Cluster 3 

 
Cluster 4 

 
Cluster 5  

Levels 
 
Na 

 
P(p)b 

 
N 

 
P(p) 

 
N 

 
P(p) 

 
N 

 
P(p) 

 
N 

 
P(p) 

µ < 0.1 25 0.510 26 0.531 26 0.531 29 0.592 25 0.510

0.1 ≤ µ ≤ 0.3 10 0.204 11 0.224 16 0.326 9 0.184 14 0.286

0.3 ≤ µ ≤ 0.5 5 0.102 4 0.082 4 0.082 5 0.102 2 0.041

0.5 ≤ µ ≤ 0.7 5 0.102 3 0.061 0 0 1 0.020 2 0.041

µ > 0.7 4 0.082 5 0.102 3 0.061 5 0.102 6 0.122

a: Number of data    b: Prior probability 
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Because the events computed above are not independent, the joint probabilities can be determined as 
follows: 

0728.0306.0*238.0)()C\()( 1111 ===∩→ CPXPCXPC  
0420.0184.0*228.0)()C\()( 2222 ===∩→ CPXPCXPC  
0253.0143.0*177.0)()C\()( 3333 ===∩→ CPXPCXPC  
0379.0184.0*206.0)()C\()( 4444 ===∩→ CPXPCXPC  
0418.0184.0*227.0)()C\()( 5555 ===∩→ CPXPCXPC . 

 
As can be seen from the outcomes of calculations outlined above, cluster 1 has the biggest contribution 
capacity. Therefore, the further analyses may be presented based on the parameters of this cluster.  
 
Assume that a testing data was sampled from the quarry investigated and this observation was found in 
cluster1 (x1). The prior distribution in Table 1 needs to be re-evaluated to reflect the new information. This 
revised distribution is named the posterior distribution )(' pPp and can be calculated as follows: 
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The other posterior probabilities can be determined as follows: 

171.0
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)2.0(204.0)2.0(' ==pP  

171.0
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)4.0(102.0)4.0(' ==pP  

257.0
238.0

)6.0(102.0)6.0(' ==pP  

293.0
238.0

)85.0(082.0)85.0(' ==pP  

The resulting probabilities computed above add up to 1. The average probability of 0.238 can be accepted 

as a normalizing factor for calculating these probabilities. The posterior mean probability )(Xp
−

is 
determined using new posterior distribution as follows: 

_

( ) 0.05(0.107) 0.2(0.171) 0.4(0.171) 0.6(0.257) 0.85(0.293)
0.511.

p X = + + + +
=

 

The posterior probability (0.511) is bigger than the prior mean probability (0.238). This outcome resulted 

from the sampled testing location. For this observation, the mean complement probability )(CXp
−

 is 1-
0.511 = 0.489. Now, assume that a testing data was sampled from the quarry and this observation was 
found out of cluster1. This time, the revised posterior distribution is determined based on complement 

posterior probability )(
_

CXp . Where, the relationship 0.1)()(
__

=+ CXpXp  should be noted.   The revised 

distribution is the posterior distribution )(' pPp can be computed as follows: 
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The mean complement probability )(CXp
−

 is computed as follows: 
_

( ) 0.95(0.208) 0.8(0.280) 0.6(0.210) 0.4(0.210) 0.15(0.090)
0.646.

p CX = + + + +
=

 

From this, the posterior mean probability is 1-0.646 = 0.354. It can be stated that the posterior mean 
probability decreases as testing observation is beyond the control domain.  

 
 

3.2 Case Study 2 
 
For the real application, the coastal area between Mersin and Tarsus cities is investigated. This area is 
located in Southern part of Turkey and it contains agricultural, industrial and settlement areas. 
Groundwater is used as a main source of water in this region. Since the groundwater is widely used for 
water supplies, efficient groundwater management is important for this area [16]. Porosity distribution of 
the area has been analyzed using 27 well logs.  
 
The FCM clustering was performed for determining number of clusters and partition (membership) matrix. 
For this application, the appropriate number of clusters has been defined as four. Figure 7 shows spatial 
data set and cluster centers determined.                    
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Fig. 7. Real set and cluster centers. 
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By using information derived from data clustering, spatial measures have been performed. As a result of 
these measures, ranges for search domains have been determined (Fig. 8) using PCSM graphs.            
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Fig. 8. Experimental PCSMs. 

 
Observed number of data within each cluster describes the propagations of the clusters. These 
propagations may be quantified using probabilities which give the weights of zones in the site 
considered. The probabilities can be computed as follows: 

P(C1) = 9/27 = 0.33            P(C2) = 6/27 = 0.22  
                                    P(C3) = 7/27 = 0.26            P(C4) = 5/27 =0.19  
The prior probabilities have been obtained from the membership matrix using five intervals. The 
mean values of the intervals are defined as [0.1 0.3 0.5 0.7 0.9]. Table 2 indicates these 
probabilities for each cluster. 
 
According to prior discrete probabilities, following mean and joint probabilities have been computed: 

C1 → PX  = 0.1(0.629) + 0.3(0.111) + 0.5(0.148) + 0.7(0.074) + 0.9(0.037)    = 0.255 
C2 → PX = 0.1(0.704) + 0.3(0.074) + 0.5(0.037) + 0.7(0.074) + 0.85(0.111)   = 0.263 
C3 → PX = 0.1(0.741) + 0.3(0.074) + 0.5(0.074) + 0.7(0.0) + 0.9(0.111)         = 0.233 
C4 → PX = 0.1(0.592) + 0.3(0.148) + 0.5(0.037) + 0.7(0.0) + 0.9(0.222)         = 0.322 

084.033.0*255.0)()C\()( 1111 ===∩→ CPXPCXPC  
058.022.0*263.0)()C\()( 2222 ===∩→ CPXPCXPC  
060.026.0*233.0)()C\()( 3333 ===∩→ CPXPCXPC  
061.019.0*322.0)()C\()( 4444 ===∩→ CPXPCXPC  
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Table 2. Prior probabilities. 

 
Cluster 1 

 
Cluster 2 

 
Cluster 3 

 
Cluster 4  

Levels 
 
N* 

 
P(p)** 

 
N 

 
P(p) 

 
N 

 
P(p) 

 
N 

 
P(p) 

µ < 0.2 17 0.629 19 0.704 20 0.741 16 0.592 

0.2 ≤ µ ≤ 0.4 3 0.111 2 0.074 2 0.074 4 0.148 

0.4 ≤ µ ≤ 0.6 4 0.148 1 0.037 2 0.074 1 0.037 

0.6 ≤ µ ≤ 0.8 2 0.074 2 0.074 0 0.0 0 0.0 

µ > 0.8 1 0.037 3 0.111 3 0.111 6 0.222 

*: Number of data   **: Prior probability 
 
Results show that cluster 1 has the biggest contribution. Because of this, the further analyses may be 
performed using this cluster. For this case study, a testing data set was sampled from the aquifer. The first 
observation in this set is found within cluster1. Posterior probabilities )(' pPp and posterior mean 

probability )(Xp
−

 have been determined as follows: 

                                          247.0
255.0

)1.0(629.0)1.0(' ==pP  

131.0
255.0

)3.0(111.0)3.0(' ==pP  

290.0
255.0

)5.0(148.0)5.0(' ==pP  

203.0
255.0

)7.0(074.0)7.0(' ==pP  

130.0
255.0

)9.0(037.0)9.0(' ==pP  

469.0)130.0(9.0)203.0(7.0)290.0(5.0)131.0(3.0)247.0(1.0)(
_

=++++=Xp  
 
The procedure presented above has been carried out for each test data. For example, for 5th observation, 
which is beyond cluster 1, the following calculations have been performed: 

054.0
418.0

)1.01(025.0)1.0(' =
−

=pP  

159.0
418.0

)3.01(095.0)3.0(' =
−

=pP  

495.0
418.0

)5.01(414.0)5.0(' =
−

=pP  
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244.0
418.0

)7.01(340.0)7.0(' =
−

=pP  

029.0
418.0

)9.01(120.0)9.0(' =
−

=pP  

 
516.0)(

484.0)029.0(1.0)244.0(3.0)495.0(5.0)159.0(7.0)054.0(9.0)(
_

_

=

=++++=

Xp

CXp
 

Table 3 indicates the results of the calculations and mean probabilities for entire test data set. The results 
are also shown in Figure 9. The figure gives the effect of observations which are beyond the cluster 
considered.  

Table 3. Prior and posterior distributions for cluster 1. 

 0.1 0.3 0.5 0.7 0.9 )(Xp
−

 
)(CXp

−

 

P(p) 0.6290 0.1110 0.1480 0.0740 0.0370 0.2550 0.7450

Post.1 (X)a 0.2467 0.1306 0.2902 0.2031 0.1306 0.4687 0.5313

Post.2 (X) 0.0526 0.0836 0.3096 0.3034 0.2508 0.6232 0.3768

Post.3 (CX)b 0.1257 0.1553 0.4108 0.2416 0.0666 0.4936 0.5064

Post.4 (X) 0.0255 0.0944 0.4162 0.3426 0.1214 0.5880 0.4120

Post.5 (CX) 0.0556 0.1604 0.5051 0.2495 0.0295 0.5073 0.4927

Post.6 (X) 0.0110 0.0948 0.4978 0.3442 0.0523 0.5664 0.4336

Post.7 (X) 0.0019 0.0502 0.4394 0.4254 0.0830 0.6075 0.3925

Post.8 (CX) 0.0044 0.0896 0.5597 0.3251 0.0212 0.5538 0.4462

Post.9 (X) 0.0008 0.0485 0.5054 0.4109 0.0344 0.5859 0.4141

Post.10 (CX) 0.0001 0.0248 0.4313 0.4910 0.0528 0.6143 0.3857

Post.11 (X) 0.0 0.0121 0.3510 0.5595 0.0774 0.6404 0.3596

Post.12 (X) 0.0 0.0057 0.2741 0.6115 0.1087 0.6647 0.3353

Post.13 (X) 0.0 0.0026 0.2062 0.6440 0.1472 0.6872 0.3128

Post.14 (X) 0.0 0.0011 0.1500 0.6561 0.1928 0.7081 0.2919

Post.15 (CX) 0.0 0.0027 0.2570 0.6743 0.0661 0.6607 0.3393

Post.16 (X) 0.0 0.0012 0.1944 0.7144 0.0900 0.6786 0.3214

Post.17 (X) 0.0 0.0005 0.1433 0.7369 0.1193 0.6950 0.3050

(X)a: in the cluster,  (CX)b: beyond the cluster 
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3.3 Discussion 
 
The main motivation of this paper is integrating the soft and probabilistic computing in the same ground. 
In addition, geoscientists need to evaluate uncertainties and make decisions based on limited information. 
The results show that the methodology presented in this paper provides a new tool for handling the 
geological uncertainties. The case studies indicate that there is a close relationship between uncertainty and 
spatial variability. The posterior mean probabilities are changed in connection with the spatial positions of 
the observations. As can be seen from the case studies that the average probability is approaching 1 as 
more and more testing data are used.   

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Observation

Po
st

er
io

r p
ro

ba
bi

lit
y

0.1 0.3 0.5 0.7
0.9 X CX

Fig. 9. 
Posterior distributions for cluster 1. 

 
 

4 Conclusions 
 
The conditional probability has been employed for appraising uncertainty in the geological sites based on 
fuzzy and geostatistical approaches. By the proposed methodology, first spatial data have been classified 
using fuzzy clustering and spatial measures have been performed by PCSM functions. Finally, the 
posterior probabilities, which allow to characterize the geological uncertainties, have been computed based 
on testing observations. The results from simulation and real data indicate that the posterior mean 
probability decreases as the testing observation is beyond control domain. 
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