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Abstract

Invariance is one of the most important notions in applications of mathematics. It is one
of the key concepts in modern physics, is a computational tool that helps in solving complex
equations, etc. In view of its importance, it is desirable to come up with a definition of invariance
which is as general as possible. In this paper, we describe how to formulate a general physically
meaningful (e.g., unit-invariant) notion of physical invariance in categorial terms. c© 2007 World
Academic Press, UK. All rights reserved.

Invariance is important. Invariance is one of the most important concepts in applications of
mathematics. In addition to its role as a computational tool in the solution of complex equations
(see, e.g., [3, 6]), invariance (symmetry) is perhaps the most important notion in the conceptual
foundations of modern physics; see, e.g., [5, 12]. Invariance has a central role in contemporary
metaphysics insofar as it relates to the problem of individuation. For example, Robert Nozick
describes objectivity in terms of invariance under transformation and describes necessary truths
as those which are invariant in all possible worlds [9]. While this paper treats invariance only in
physical contexts, our analysis is conducted with an eye to basic metaphysical questions of the type
that Nozick informally addressed.

It is important to provide a general definition of invariance. Since the notion of invariance
plays such a central role in foundational research, it is desirable to provide a formal definition of
invariance which is as general as possible.

In mathematics, such general definitions are usually provided by category theory; see, e.g., [1, 8].
In this paper, we will therefore attempt to describe how to formulate a general notion of invariance
in categorial terms.

Before outlining the problem, let us first briefly review the main notions of category theory.

What are categories: motivation. In mathematical theories, we usually have a class of objects
and corresponding mappings. For example, objects of set theory are sets, and mapping are functions
(mappings) between these sets. In topology, objects are topological spaces, and natural mapping
are continuous functions. In order theory, mappings are ordered sets, and natural mappings are
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monotonic functions. In linear algebra, linear spaces are objects, and linear functions are natural
mappings, etc.

In all these cases, the identity mapping f(x) = x (that maps each element x into itself) is a
natural mapping. Also, a composition f(g(x)) of two natural mappings is also natural: e.g., a
composition of two continuous functions is continuous, a composition of two monotonic functions is
monotonic, etc.

Categories: a formal definition. In precise terms, a category consists of objects A, B, C, . . . ,
and morphisms (also called arrows) f , g, h, . . .

For every arrow f , there are given objects A (called domain of f) and B (called codomain of f).
This is usually denoted by f : A → B.

For every two arrows f : A → B and g : B → C, there is an arrow g ◦ f : A → C called a
composition of f and g. Composition is associative in the sense that h ◦ (g ◦ f) = (h ◦ g) ◦ f for all
f : A → B, g : B → C, and h : C → D.

For every object A, there is a special identity morphism 1A : A → A for which f ◦1A = f = 1B ◦f
for all f : A → B.

Comment. While category theory is generally introduced by reference to sets and functions, it is
important to recognize that categories have more general bearing and that there are useful categories
in which morphisms are not functions; see, e.g., [1, 8]. In this sense, category theory addresses the
most general features of morphisms.

From the intuitive notion of invariance towards a formal category definition: analysis of
the problem. Informally, invariance means that after we perform some transformation, the result
of a certain operation remains unchanged. For example, invariance of energy means that after we
apply the corresponding transformation (e.g., rotate and/or shift a configuration of electric charges)
the energy remains the same.

In physics, transformations which preserve certain quantities are often called symmetries. It
is known that symmetries form a group in the sense that a composition of two symmetries is a
symmetry, and an inverse transformation to a symmetry is also a symmetry. Such a group is usually
called a symmetry group. There is also a known deeper relation between invariants and symmetry
groups – provided by Noether’s theorem; see, e.g., [5].

Let us describe the situation of invariance in terms of sets, in such a way that we will be able to
reformulate this description categorially.

In set theoretic terms, we have a set S of possible states. A transformation can be naturally
described as a mapping t that transform each state s ∈ S into a new state t(s) ∈ S.

To describe the quantity (such as energy) which remains invariant under this transformation, we
must describe the set V of values of this quantity, and we must be able to assign, to each state s ∈ S,
the corresponding value v(s) of this quantity at the state s. In other words, we need to describe a
mapping v that maps every state s ∈ S into a value v(s) ∈ V .

In these terms, invariance can be described as follows. For each state s, prior to the transfor-
mation, the analyzed quantity had the value v(s). After the transformation, we have a new state
s′ = t(s) in which this quantity has the value v(s′) = v(t(s)). Invariance means that the value of
the quantity does not change after the transformation, i.e., that v(t(s)) = v(s) for all s ∈ S.

The expression v(t(s)) is a composition of v and t; so, invariance means that the composition of
v and t coincides with v. So, we arrive at the following definition:
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Formal definition of invariance: first try. We say that a morphism v : S → V is invariant
under the morphism t : S → S if v ◦ t = v.

Limitations of this definition. From a purely mathematical perspective, the above definition
may seem to capture the intuitive notion of invariance perfectly.

However, as we will show, from a physical perspective, this definition is far from perfect. Consider
for instance invariance of energy. We can certainly define energy as a mapping v from states to real
numbers. However, this mapping does not necessarily capture all significant features of the notion
of energy and as such should not be taken as representing energy itself.

Clearly, for example, we can use different units to measure energy. If we use a different unit
for energy (e.g., joules from SI instead of ergs in the old SGS system of units), then the numerical
value of energy will change. So, if v(s) denotes energy as expressed in the original units and v′(s)
denoted energy as expressed in the new units, then v(s) 6= v′(s). Thus, from the mathematical (and
categorial) viewpoint, we have two different functions v(s) and v′(s). By contrast, from the physical
viewpoint, both mappings represent the same physical quantity – energy.

In other words, our intial definition of invariance required that we fix a unit for the preserved
quantity (e.g., for energy) – while from the physical viewpoint, the notion of invariance does not de-
pend on what unit we choose for representing the preserved property. We are interested in capturing
the invariant features of the physical properties themselves apart from the details of the choices of
representational artifacts.

It is not only the choice of units, we may have more complex choices of different scales. For
example, the energy of a noise can be described in absolute units, and it can be also be described in
logarithmic scale of decibels. Consequently, in order to generate a meaningful categorial definition
of physical invariance it is desirable to modify the above definition in such a way that it should not
depend on the choice of units (or, more generally, on the choice of a scale) or on the choice of a
coordinate system.”.

Towards a more physically adequate definition. How can we improve upon our initial defini-
tion? In order to control for choice of unit and scale in our definition, let us first describe the notion
of re-scaling in more general terms. Let v(s) ∈ V be the value of the quantity in the original scale.

A change of a measuring unit means that we go from the original value v = v(s) to the new
value v′ = λ · v, where λ is the ratio between the two measuring units. For example, going from
meters to centimeters (a new unit which is 100 times smaller than the original one) means that all
the numerical values are multiplied by 100. A logarithmic re-scaling means that we go from v to
v′ = log(v). In general, we go from the original value v to the new value r(v), where r is the new
function which represents the re-scaling procedure.

In the above two examples, re-scaling goes from the set of values to the same set of values.
However, it is possible that we have different ranges. For example, when we change the unit of
measuring angle from degree to a radian, we also changes the range: originally, we had V = [0, 360],
now, we have V ′ = [0, 2π].

So, in general, a re-scaling can be described as a mapping r : V → V ′. If originally, we had a
quantity v = v(s), then after re-scaling, we have a new quantity v′(s) = r(v(s)). In category theory
terms, this means that v′ = r ◦ v.

In these terms, a reasonable description of invariance means not only that the original quantity
v is invariant relative to the transformation t, but also that all re-scaled expressions of this quantity
must also be invariant.

How do we describe this class of possible re-scaled transformations of a quantity? The only
reasonable requirement is that if a morphism v : S → V belongs to this class, then for every re-
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scaling (i.e., for every mapping) r : V → V ′, the composition r ◦ v should also belong to this same
class. Classes with this property are known in category theory as left ideals [7, 11]. Thus, we arrive
at the following formal definition.

Formal definition of invariance: second try. By a left ideal, we mean a class V of morphisms
such that if a morphism v : S → V belongs to this class, then for every r : V → V ′, the composition
r ◦ v also belongs to this class.

We say that a left ideal V is invariant under the morphism t : S → S if v ◦ t = v for all v ∈ V.

Limitations of this definition. The above definition is intuitively reasonable if we consider
transformations like shift or rotation that transform the state of an object into a different state of
the same object. However, the notion of invariance in physics goes well beyond such transformations.
For example, physicists talk about C-symmetry which maps a particle (such as an electron e−) into
the corresponding anti-particle (e.g., positron e+).

In such examples, it often makes sense to talk about invariance – in the sense, e.g., that in similar
situations, the electron and positron will have the same energy. However, the “transformation” of
the state of an electron into the corresponding state of a positron is no longer a physically possible
transformation.

In other words, in this situation, we no longer have a single set of states S: we have a set of
states S1 of an electron, we have a set S2 of states of a positron, and the transformation is a mapping
t : S1 → S2. Instead of a single mapping v, energy can now be described by two different mappings
v1 : S1 → V and v2 : S2 → V , and invariance means that v2(t(s)) = v1(s) for all s.

The above definition does not capture this meaning. How can we capture it?

Towards a more physically adequate definition. We would like to describe the fact that even
if we fix a single scale, still a quantity (such as energy) does not correspond to a single mapping
v : S → V , but rather to several mappings v1 : S1 → V , v2 : S2 → V from several different objects
S1, S2, . . .

Of course, once we fix the object (= set of states) Si, the energy should be uniquely defined for
all states s ∈ Si. So, for every object Si, we can have at most one function vi : Si → V .

Such a construction also exists in applications of category theory – namely, the notion of a local
section. This notion is usually defined in the context of fiber bundles [2, 10], but it can also be
applied to more general cases. For instance, if we have a mapping π : E → B, then its section is a
mapping f : b → E from some subset b ⊆ B into E such that π(f(x)) = x for all x ∈ b. In categorial
terms, this condition can be described as π ◦ f = 1b.

This is directly related to the notion of an inverse morphism. Namely, in a category, a mapping
f : A → B is called inverse to a mapping π : B → A if π ◦ f = 1A and f ◦ π = 1B. In the above
definition, only one of these two requirements is postulated, and only locally (i.e., for a subset b ⊆ B,
so we can call a section a local right inverse.

In our case, in every category, we have a mapping which maps every arrow v : S → V into its
domain S. What we want is a local section that assigns, to some objects S, a morphism vS : S → V .
In these terms, if we have a state s ∈ S, then the value of the desired quantity in this state can be
described as vS(s).

How can we describe invariance in these terms? Suppose that we have a transformation t : S →
S′. Originally, the energy of a state s ∈ S is vS(s); after the transformation, we have the new state
t(s) ∈ S′, and the new value of energy vS′(s′) = vS′(t(s)). Invariance means that the new value of
energy is the same as the old value, i.e., that vS′(t(s)) = vS(s) for all s ∈ S. In category terms, this
means that vS′ ◦ t = vS .



Journal of Uncertain Systems, Vol.1, No.3, pp.201-206, 2007 205

In this definition, we did not take re-scaling into account. To take into account, instead of
individual local sections, we should consider left ideals of local sections – defined similarly to left
ideals of morphisms. Thus, we arrive at the following definition.

Formal definition of invariance: our final result. Let V be an object. By a V -local section
v, we mean a mapping which assigns to some objects S from the category, a mapping vS : S → V .
By a local section, we mean a V -local section corresponding to some codomain V .

We say that a local section v is invariant under the morphism t : S → S′ if v is defined for both
S and S′ and vS′ ◦ t = vS .

For every V -local section v and a morphism r : V → V ′, we can define a composition v′ def= r ◦ v
as a V ′-local section which assign to an object S a mapping v′S = r ◦ vS : S → V ′.

By a left ideal of local sections, we mean a class V of local sections such that if a V -local section
v belongs to this class, then for every r : V → V ′, the composition r ◦ v also belongs to this class.

We say that a left ideal of local sections V is invariant under the morphism t : S → S′ if all local
section v ∈ V are invariant under this morphism.

Comment. In this paper, we use category theory to provide a new physically meaningful definition of
an invariance with respect to a transformation – or with respect to a transformation group. A similar
category approach has been used to show that a more natural definition of a class of transformations is
not a group (a class in which composition is well defined for every two transformations) but a groupoid
– crudely speaking, a class in which composition is defined only for some pairs of transformations
(as in a category); see, e.g., [4]. It is desirable to analyze the relation between our approach and the
groupoid approach.

Conclusion. The main objective of this paper was to formulate a general notion of physical in-
variance in category terms. Surprisingly, producing such a definition turns out to be more complex
than we originally thought.

Our definition captures features of invariance that we believe to be crucial in the physical context.
Since the notion of invariance is extremely important in working science, we want to present this
definition to interested readers for critical analysis. We canvassed two intermediate definitions before
arriving at one that we believe to be final. It may be that our definition is indeed final; in this case,
the readers’ critical analysis is necessary to confirm this fact.

It could also be that our definition is not really final, it is just one more step towards the ideal
definition. In other words, it is possible that we missed some subtle features of invariance, that
would require us to produce a more adequate albeit more complex definition. It is likely also to be
the case that the effort to characterize physical invariance will depend, in part on the state of our
physics. As such, we remain open-minded with respect to our definition.
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