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Abstract

In his papers, J. Hobbs has observed that when people make crude estimates, they usually feel
reasonably comfortable choosing between alternatives which differ by a half order of magnitude
(HOM). He also provided an explanation for this level of granularity based on the need for the
resulting crude estimates to represent both the original data and the result of processing this
data. According to this explanation, HOM are optimal – when we limit ourselves to these first
crude estimates. In many practical situations, we do not stop with the original estimate, we refine
it one or more times by using granules of smaller and smaller size. In this paper, we show that
the need to optimally process such refined estimates leads to the same HOM granularity. Thus,
we provide a new explanation for this level of granularity. c© 2007 World Academic Press, UK.
All rights reserved.

Half-orders of magnitude: empirical fact. People often need to make crude estimates of a
quantity, e.g., estimating the size of a crowd or someone’s salary. In [4, 5, 6], it was observed that
when people make these crude estimates, they usually feel reasonably comfortable choosing between
alternatives which differ by a half order of magnitude (HOM).

For example, a person can reasonably estimate whether the size of a crowd was closer to 100, or
to 300, or to 1000. If we ask for an estimate on a more refined scale, e.g., 300 or 350, people will
generally be unable to directly come up with such estimates. On the other hand, if we ask for an
estimate on a coarser scale, e.g., 100 or 1000, people may be able to answer, but they will feel their
answer is uninformative.

An interesting example of HOM is presented by coinage and currency. Most countries have, in
addition to denominations for the powers of ten, one or two coins or bills between every two powers
of ten. Thus, in the United States, in addition to coins or bills for $.01, $.10, $1.00, $10.00, and
$100.00, there are also coins or bills in common use for $.05, $.25, $5.00, $20.00, and $50.00. These
latter provide rough HOM measures for monetary amounts.

Half-orders of magnitude: the existing explanation. In [5, 6], an explanation for this level
of granularity based on the need for the resulting crude estimates to represent both the original data
and the result of processing this data. According to this explanation, HOM are optimal – when we
limit ourselves to these first crude estimates.
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Towards a new explanation. In many practical situations, we do not stop with the original
estimate, we refine it one or more times by using granules of smaller and smaller size. In this
paper, we show that the need to optimally process such refined estimates leads to the same HOM
granularity. Thus, we provide a new explanation for this level of granularity.

Estimating vs. data processing: main difference. Estimation is a one-time process which
provides a crude estimate for the quantity of interest. In many practical situations, this estimate is
quite sufficient for decision making.

In other situations, however, the original crude estimate is not sufficient, and we must refine it.
Let us describe this refinement in precise terms.

Refined estimates: a description. What does it mean to have a value m as a granularity level?
Crudely speaking, this means that we consider granules of the sizes 1, m, m2, . . . , mk, . . .

A rough estimate means that we simply compare the actual value v with the sizes of these
granules. The largest granule mk for which mk ≤ v is then used as a rough estimate of the quantity
v: mk ≤ v < mk+1. This rough-estimate granule means that we can estimate v from below by using
granules of size mk, but not by using larger granules.

Once we know that the granules of size mk can be used to estimate v, a natural next question
is how many granules of this size we can fit within v. Of course, we can only have ck < m granules.
(Otherwise, we would be able to fit m ·mk values in v, and we would have v ≥ mk+1, i.e., we would
conclude that the next granule also fits within v – contrary to our choice of mk as the largest granule
that fits within v.) So, in this next approximation, we are looking for the value ck < m for which
ck ·mk ≤ v < (ck + 1) ·mk. The resulting value ck ·mk – i.e., the size k plus the value ck – provides
a more accurate description of v than simply the size k of the largest granule.

The difference between the actual value v and the estimate ck ·mk cannot be fitted with granules of
size mk. Thus, to get an even more accurate description of v, we must use granules of next smaller size
mk−1 to cover this difference. In other words, we must find the largest value ck−1 for which ck−1·mk−1

is contained in the difference v− ck ·mk, i.e., for which ck−1 ·mk−1 ≤ v− ck ·mk < (ck−1 +1) ·mk−1.
This is equivalent to selecting ck−1 for which

ck ·mk + ck−1 ·mk−1 ≤ v < ck ·mk + (ck−1 + 1) ·mk−1.

A further refinement of this estimate means that we use granules of even smaller size mk−2 to
estimate the difference between the actual value v and the estimate-so-far ck ·mk + ck−1 ·mk−1, etc.
One can see that this refined estimation process leads to an m-ary representation of integers:

v = ck ·mk + ck−1 ·mk−1 + . . . + c1 ·m1 + c0.

Example. For example, to represent the number v = 256 with decimal granules 1, m = 10, 100,
1000, etc., we first find the largest granule which fits within 256 – the granule 100. This granule is
our first (order-of-magnitude) representation of the number 256.

To get a better representation, we can describe how many times this granule fits within 256, i.e.,
approximate 256 as 2 · 100.

To get an even more accurate representation, we need to use granules of next smaller size 10
to represent the difference 256 − 200 = 56 between the original number 256 and its approximate
value 200. We can fit this granule 5 times, so we get an approximation 5 · 10 for the difference and
correspondingly, the approximation 2 · 100 + 5 · 10 = 250 for the original number 256. With this
approximation, we still have an un-approximated difference 256− 250 = 6.

To get a more accurate approximation, we use the granules of smaller size 1. Within 6, this
granule fits 6 times, so we get a representation 2 · 100 + 5 · 10 + 6 · 1 for the original number.
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Conclusion: selecting granularity level means, in effect, selecting a base for number
representation. The above general description and example both show that the use of a certain
granule size m means, in effect, that we use m-ary system to represent numbers.

Which value m is the best for m-ary number representation? In view of the above obser-
vation, the question of which granule size is the best can be reformulated as follows: for which m
the m-ary representation is the best?

Aren’t binary numbers the best? They are used in computers. Normally, people use
decimal numbers, with m = 10, and computers use binary numbers, with m = 2. It may seem that
the fact that well-designed and well-optimized computational devices such as computers use binary
numbers is an indication that (at least empirically) m = 2 is the best choice.

However, this is not necessarily true. The computer engineering choice of m = 2 is largely moti-
vated by specific electronic hardware technologies, in which it is easier to manufacture an electronic
switch with 2 possible states than with 3 or 10. Our objective is to explain human behavior, and for
human data processing, these hardware considerations do not apply.

Binary numbers have been used in human data processing as well: Russian peasant
multiplication algorithm. Binary numbers for electronic computers are a recent (20 century)
phenomenon. However, it is worth mentioning that binary numbers were, in effect, used in data
processing for several millennia. According to [7], binary-related algorithm for multiplication was
used by ancient Egyptian mathematicians as early as 1800 B.C.E. This method is called Russian
peasant multiplication algorithm because it was first observed in the 19 century by the Western
visitors to Russia – where this method was widely used by the common folks (i.e., mainly peasants)
[1, 7]. Later, a similar method was found (and decoded) in an ancient Egyptian papyrus.

This algorithm is especially useful if we want to multiply different numbers x by a given number
n. This happens, e.g., if a merchant wants to compute the prices of different amounts of the item
that he is selling: in this example, n is the price of a single item, and x is the number of such items.

In this procedure, we first transform the fixed number n into the binary code, i.e., represent n
as a sum of powers of two. Interestingly, the transition to binary code was performed in the ancient
Egypt in exactly the same way as it is done now: by sequentially dividing a number by 2 and then
reading the remainders from bottom up.

Once such a binary representation is found, we can compute the product n · x as follows:

• first, we add x to itself, resulting in 2x;

• then, we add 2x to itself, resulting in 4x = 22 · x;

• after that, we add 22 · x to itself, then getting 8x = 23 · x, etc.

• once we have the values 2i · x, we add those values which correspond to the representation of
n as the sum of powers of 2, thus getting n · x.

Example. For example, n = 13 is represented in binary code as 11012 = 23 + 22 + 20 = 8 + 4 + 1.
For n = 13, the conversion to binary is performed as follows:

13 / 2 = 6 rem 1
6 / 2 = 3 rem 0
3 / 2 = 1 rem 1
1 / 2 = 0 rem 1
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Reading remainders from bottom up, we get the binary representation 11012.
Now, to compute 13x, we consequently compute 2x, 4x, 8x, and then add x + 4x + 8x.

This method is often faster than using decimal numbers. To compute 13x, we need 3
additions (namely, doubling) to compute all three powers of two, and then 2 more additions to
compute x + 4x and then 13x as (x + 4x) + 8x. Overall, we need 5 additions.

This number is much smaller than what we would have needed if we decided to reduce multipli-
cation to addition in the standard decimal representation, in which we would need to compute x,
2x, 3x, . . . , 10x, and then add 3x + 10x, to the overall of 11 additions.

A similar method is used in cryptosystems. The efficiency of binary-based multiplication
prompted the use of a similar technique in cryptosystems. In particular, in the most widely used
RSA techniques (see, e.g., [2]), techniques which are used every time we access a secure webpage
or make financial transactions online. Cryptosystems make computer communications secure by
encoding messages, largely by raising a number x (representing a message) to a given power n (to
be more precise, they compute the power xn modulo some large number N). The efficiency of
RSA and similar cryptosystems is based on the fact that it is computationally efficient to compute
xn but (unless we know factors of N) it is very computationally difficult to recover x from the
transmitted message M

def= xn. This exponentiation is time-consuming, it forms the dominant part
of cryptoalgorithms running time; see, e.g., [3]. So, to make cryptosystems more efficient, it is
important to compute xn fast.

At present, exponentiation is mainly done by using the binary representation of n. Namely, we
use multiplication to compute x2 = x · x, x4 = x2 · x2, x8 = x4 · x4, . . . , and then we multiply the
powers corresponding to the powers of 2 that are present in the binary expansion of n.

For example, to compute x13, we compute x2, x4, x8, and then multiply x · x4 · x8. Overall, just
like we need 5 additions to multiply a given number by 13, we need 5 multiplications to raise a given
number x to the 13-th power.

Binary-based methods are widely used but they are not always optimal. In practice,
binary techniques are so much faster than decimal-based ones that it was originally conjectured that
they are optimal for all n. Specifically, it was conjectured that if we want to compute a product
n ·x by using only additions (or, equivalently, compute the power xn by using only multiplications),
then the above binary-based procedure is optimal.

This turned out to be only true for n ≤ 14. For n = 15, the binary procedure requires that we
compute 2x, 4x, 8x, and then compute x + 2x + 4x + 8x, to the total of 6 additions. However, we
can compute 15x in only 5 additions: 2x = x + x, 3x = x + 2x, 6x = 3x + 3x, 9x = 6x + 3x, and
15x = 6x + 9x; see, e.g., [7].

Fastest known methods: methods based on m-ary number representations. At present,
the fastest known algorithms for multiplication via addition (or, equivalently, for fast multiplication)
are based on the use of m-ary number representations for an appropriate m (not necessarily m = 2)
[3, 7]. Specifically, once we have an m-ary representation

n = ck ·mk + ck−1 ·mk−1 + . . . + c1 ·m1 + c0,

we can compute n · x as follows:

Compute 2x = x + x, 3x = 2x + x, . . . , (m− 1) · x = ((m− 2) · x) + x.
a ← 0
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for i = k to 0 by −1
a ← m · a
a ← a + (ci · x)

return a.

Let us briefly explain this algorithm. At first, we take a = 0 and i = k. For this value i, we first
get a ← m · 0 = 0 and then a ← 0 + ck · x, so after this iteration, we get a = ck · x.

On the next iteration, we take i = k − 1. On this iteration, we first multiply the current value
of a by m, resulting in a = ck · m · x, and then add ck−1 · x. So, after this iteration, we get
a = (ck ·m + ck−1) · x.

Similarly, after the next iteration corresponding to i = k − 2, we get a = (ck · m2 + ck−1 · m
+ck−2) · x, . . . , and after the last iteration corresponding to i = 0, we get the desired value a =
(ck ·mk + ck−1 ·mk−1 + . . . + c0) · x = n · x.

Similarly, we can compute xn as follows:

Compute x2 = x · x, x3 = x2 · x, . . . , xm−1 = xm−2 · x.
a ← 1
for i = k to 0 by −1

a ← am

a ← a · xci

return a.

Let us briefly explain this algorithm. At first, we take a = 1 and i = k. For this value i, we first
get a ← 1m = 1 and then a ← 1 · xck , so after this iteration, we get a = xck .

On the next iteration, we take i = k − 1. On this iteration, we first raise the current value of
a to the m-th power, resulting in a = (xck)m = xck·m, and then multiply by xck−1 . So, after this
iteration, we get a = xck·m+ck−1 .

Similarly, after the next iteration corresponding to i = k− 2, we get a = xck·m2+ck−1·m+ck−2 , . . . ,
and after the last iteration corresponding to i− 0, we get the desired value

a = xck·mk+ck−1·mk−1+...+c0 = xn.

These methods is mainly used when m = 2p, because then computing m · a requires only p ad-
ditions (doublings) and, correspondingly, computing am requires only p multiplications (squarings).

Computational complexity (running time) of m-ary methods with m = 2p. For m = 2,
the above method requires blog2(n)c doublings and ≤ blog2(n)c additions. So, in the worst case, we
need 2blog2(n)c additions.

In practice, if ci = 0, then we do not need to add the corresponding value 2i · x. On average,
for each digit ci, all m possible values 0, 1, . . . , m − 1 are equally probable. In particular, with the
probability 1/m, we get ci = 0, in which case we do not need to add the corresponding term. For
m = 2, this probability is 1/2, so on average, we need blog2(n)c doublings and (1/2) · blog2(n)c
additions, to the overall of (3/2) · blog2(n)c additions.

For m = 2p, we need 2p − 2 additions to compute 2x, 3x, . . . , (m − 1) · x, blog2(n)c doublings
(to compute am), and at most blog2(n)c/p additions of ci · x. The overall worst-case complexity is
thus 2p − 2 + (1 + 1/p) · blog2(n)c additions.

In the average case, we only need the addition of ci · x when c 6= 0, i.e., with probability
1− 1/m = 1− 1/2p. Thus, the average-case complexity is equal to

2p − 2 +
(

1 +
1
p
·
(

1− 1
2p

))
· blog2(n)c
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additions [3].
It is known that we get the asymptotically fastest computations for

p = log2(log2(n))− 2 log2(log2(log2(n))).

When are methods with m = 2, m = 4, and m = 8 actually better? Analysis based
on worst-case complexity. In some practical situations, it is important to guarantee that the
computation finishes on time. In this case, it is desirable to minimize the worst-case complexity,
because this is the complexity which provides the desired guarantee. Let us therefore compare the
worst-case complexity tp corresponding to different values m = 2p.

For p = 1, we get t1 = 2blog2(n)c. For p = 2, we get t2 = 2 + 1
1
2
· blog2(n)c. For p = 3, we get

t3 = 6 + 1
1
3
· blog2(n)c.

The value m = 2 (corresponding to p = 1) is optimal when t1 ≤ t2, i.e., when 2blog2(n)c ≤
2 + 1

1
2
· blog2(n)c. This is equivalent to

1
2
· blog2(n)c ≤ 2, i.e., to blog2(n)c ≤ 4 and n < 25 = 32.

The value m = 4 (corresponding to p = 2) is optimal when t1 > t2 (i.e., when n ≥ 32) and t2 ≤ t3,

i.e., when 2 + 1
1
2
· blog2(n)c ≤ 6 + 1

1
3
· blog2(n)c. This condition is equivalent to

1
6
· blog2(n)c ≤ 4,

i.e., to blog2(n)c ≤ 24 and n < 225 ≈ 3 · 107.
Thus, for the values n which do not exceed 30 million (i.e., in practice, in all practical cases when

we need estimates), the granularity values of m = 2 and m = 4 are optimal – and m = 2 is only
optimal for small values n, when we do not really need any estimation. Crudely speaking, we can
say that the worst-case complexity corresponds to m = 4.

When are methods with m = 2, m = 4, and m = 8 actually better? Analysis based on
average-case complexity. In some practical situations, we need to perform several computations,
with several different values x; in some such situations, the individual computation time is not crucial,
what is important is that the overall computation time be as small as possible. In such situations,
it makes sense to consider the average time complexity tp as an optimality criterion.

For p = 1, we get t1 =
3
2
· blog2(n)c. For p = 2, we get

1
2
·
(

1− 1
4

)
=

1
2
· 3
4

=
3
8
,

so t2 = 2 + 1
3
8
· blog2(n)c. For p = 3, we get

1
3
·
(

1− 1
8

)
=

1
3
· 7
8

=
7
24

,

so t3 = 6 + 1
7
24
· blog2(n)c.

In this case, the granularity value m = 2 corresponding to p = 1 is optimal when t1 ≤ t2, i.e.,

when
3
2
· blog2(n)c ≤ 2 + 1

3
8
· blog2(n)c. This condition is equivalent to

(
1
2
− 3

7

)
· blog2(n)c ≤ 2,

i.e., to
1
14
· blog2(n)c ≤ 2, blog2(n)c ≤ 28, and n < 229 ≈ 5 · 108. Thus, for all practical values, the

granularity value m = 2 is optimal.
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Conclusion. J. Hobbs has observed that for human experts, it is natural to express their rough
estimates in terms of half-orders of magnitude (HOM), when there are approximately two possible
estimates within each order of magnitude (i.e., within each factor of 10). For example, when estimat-
ing a size of a crowd, a human naturally distinguishes between “low hundreds”, “high hundreds”,
“low thousands”, “high thousands”, etc. How can we explain this granule size?

In this paper, we show that for values appropriate for human estimation, from the viewpoint of
data processing under refined granularity, the optimal granule size is either m = 4 (for the more
typical case of individual problems), or m = 2 (for mass problems). In both cases, we have a granule
size which is similar to half-order of magnitude. So, we get a new theoretical explanation for the
HOM phenomenon observed by J. Hobbs.
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