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Abstract

The success of type-2 fuzzy sets has been largely attritatdteir three-dimensional membership
functions to handle more uncertainties in real-world peofd. In pattern recognition, both feature and
hypothesis spaces have uncertainties, which motivateingsgfrating type-2 fuzzy sets with conventional
classifiers to achieve a better performance in terms of thiestoess, generalization ability, or recognition
accuracy. In this state-of-the-art paper, we describe itapbadvances of type-2 fuzzy sets for pattern
recognition. Interests in type-2 fuzzy sets and systemsoiddwide and touches on a broad range of
applications and theoretical topics. The main focus ofjhaiser is on the pattern recognition applications,
with descriptions of how to design, what has been achievatindat remains to be don@) 2007 World
Academic Press, UK. All rights reserved.

1 Introduction

The advances of type-2 fuzzy sets (T2 FSs) and systems [H heen largely attributed to their three-
dimensional membership functions (MFs). As an extensiotypé-1 fuzzy sets (T1 FSs), T2 FSs were
initially introduced by Zadeh [2], and a subsequent ingzdton of properties of T2 FSs and higher types
was done by Mizumoto and Tanaka [3, 4]. Klir and Folger [5]lakped that the T1 MFs might be problem-
atical, because a representation of fuzziness is made oséngbership grades that are themselves precise
real numbers. Thus it is natural to extend the concept of T4tBS 2 FSs and even higher types of FSs.
In particular, they called interval type-2 fuzzy sets (IT3d} as interval-valued FSs. Recently Mendel and
John [6] introduced all new terminology to distinguish betm T1 and T2 FSs, by which T2 FSs can be rep-
resented in vertical-slice and wavy-slice manners regmdget They also illustrated the concept of embedded
FSs, which shows potential expressive power of T2 FSs fatdlmanuncertainty. To order T2 fuzzy numbers,
Mitchell [7] ranked all embedded T1 fuzzy numbers assodiatéh different weights. Set operations are
foundations in the theory of T2 FSs, which were first studigdvizumoto and Tanaka [3]. Their works
were later extended by Karnik and Mendel [8] for practicgbaithms to perform the union, intersection, and
complement between T2 FSs. In [6] Mendel and John reformdlatl set operations in both vertical-slice
and wavy-slice manners. They concluded that practicalhegsd T2 FSs operationmeet*” and join “LI",
are too complex to implement, whereas IT2 FSs [9] use ongnial arithmetics leading to very simple op-
erations. Without loss of generality, we focus on IT2 FSspfattern recognition unless otherwise stated. As
the theoretical foundation of T2 FSs, Liu and Liu [10] esigtied T2 fuzzy possibility theory and introduced
T2 fuzzy variables. In [11] Mendel summarized developmemid applications of T2 FSs before the year
2001. The advances of theoretical and computational issues fnZEy sets and systems since the y2r1
can be found in [1].

The T2 MF evaluates the uncertainty of the inputy thefuzzyprimary membership, which is bounded
by the lower MFh(z) and the upper MF(z) as shown in Fig. La). The fuzzy membership is further
described by the secondary MF in Fig(d or (c). The footprint of uncertainty (FOU) is the shaded region
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Figure 1: The three-dimensional type-2 fuzzy membershigtian. (a) shows the primary membership with
the lower (thick dashed line) and upper (thick solid line)mbership functions, wheiig(z) andh(z) are the
lower and upper bounds given the inputThe shaded region is the foot print of uncertainty) shows the
Gaussian secondary membership functi@f.shows the interval secondary membership funct{@h shows
the mearu has a uniform membership function.

bounded by lower and upper MFs. The FOU reflects the amoume#rtainty in the primary membership,
i.e., the larger (smaller) the amount of uncertainty, thhgda (smaller) will the FOU be. Fig. @b) shows
an example of Gaussian secondary MF. An IT2 FS has an inteetalecondary MF in Fig. (). Because
all the secondary grades are unity, we can represent theS$T#/khe interval of upper and lower MFs, i.e.,
[h(z), h(z)]. In this case, an IT2 FS can be completely described by itsdiw@nsional FOU in Fig. 1d).
The result of the calculation between the fuzzy primary mersiips of IT2 FSs is also an fuzzy variable
with uniform possibilities according to the interval aritbtic [9]. For example, if the two fuzzy primary
memberships ar, k1] and[h,, hs], then the sum and product dig + h,, h1 + hs] and[hy hy, h1hs)].

The T2 MF can be viewed as amsembleof embedded T1 MFs witlfuzzyparameters. Fig. 1a) is
the T1 Gaussian MF with fuzzy mean which is bounded by an intervgl, zz]. We assume the mean vary
anywhere in this interval, which results in the movemenhefT1 MF to form the FOU in Fig 1a). We see
that if such movement is uniform, i.e., the mean has a unifidifrin Fig. 1 (@), then the FOU is also uniform
with equal possibilities, so does the secondary MF in Fig:)1 More specifically, if the mean is a fuzzy
variable [10] with the uniform MF in Fig. 1a), the outputh(z), h(z)] of the inputz is also a fuzzy variable
with the uniform MF in Fig. 1(c). However, if the mean is with the Gaussian MF, the output fsidely not
associated with the Gaussian secondary MF in Fig)1Therefore, in practice it is convenient to define the
secondary MF directly without considering the MF of the fuparameters of the original T1 MF, though we
know that there is a complex relationship between MFs ofyffymarameters and fuzzy outputs.

T2 FSs may be applicable when [6]:

1. The data-generating system is known to be time-varyinghaumathematical description of the time-
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variability is unknown (e.g., as in mobile communicatigns)

2. Measurement noise is non-stationary, and the mathemhascription of the non-stationarity is un-
known (e.g., as in a time-varying noise);

3. Features in a pattern recognition application havessizdl attributes that are non-stationary, and the
mathematical descriptions of the non-stationarity arenomi;

4. Knowledge is mined from a group of experts using questions that involve uncertain words;

5. Linguistic terms are used that have a nonmeasurable domai

Observe that pattern recognition is concerned with all fagions, which motivates us of using T2 FSs for
handling uncertainties in pattern recognition [12].

In the next section we discuss the types of uncertainty irgpatecognition. In Section 3 we demonstrate
by information theory that T2 FSs can provide additionabinfation for pattern recognition especially for
outliers. After integrating with other classifiers, T2 fyzgystems may have thgotential to outperform
their counterparts. In Section 4 we study the recent T2 fyztyern recognition systems for real-world
problems, i.e., classification of MPEG VBR video traffic [18yaluation of welded structures [14], speech
recognition [15-17], handwritten Chinese character raitimm [12, 18, 19], and classification of battlefield
ground vehicles [20]. Based on these systems, we summasyst@matic method of applying T2 FSs to
pattern recognition. Section 5 discusses some implenientatoblems of T2 fuzzy systems in terms of the
complexity and performance trade-offs.

2 Uncertainty in pattern recognition

Pattern recognition typically involves the partition obthnknown observatioX (pattern) according to the
class model (rulej,,,1 < w < C, whereC' is the number of classes. Fig. 2 shows a pattern recognition
system [21, Chapter 1.3] including five basic componentssisg, segmentation, feature extractifeafure
space, classification, and post-processing. This system refl@dtinctional relationship between the input
and output decision. We shall choose a particular set os dasandidate functions known agpotheses
before we begin trying to determine the correct functione &hility of a hypothesis to correctly classify data
not in the training set is known as igeneralization The process of determining the correct function (often
a number of adjustable parameters) on the basis of examiglgsut/output functionality idearning Based

on the above, we have three tasks in pattern recognition:

1. Extract features that can be partitioned;
2. Choose the set of hypotheses that contains the corrgeseyation of the decision function;

3. Design the learning algorithm that determinestibstdecision function from the feature and hypoth-
esis spaces.

Inevitably there are uncertainties in both of the feature laypothesis spaces. In statistical pattern recog-
nition, we assumeandomnessn both spaces. In the feature space, random observatiengeaerally ex-
pressed by the class-conditional probability density fiems (PDFs). In the hypothesis space, the parameters
of the decision function are random variables with some knpvior distributions, and training data convert
this distribution on the variables into posterior probigpitiensity. Whereas in T2 FSs we take all possibili-
ties of uncertain parameters in T1 FSs into account, Bayesithods [21, Chapter 3.3] select only the best
precise parameters to maximize the posterior probabiétysdy. Thus classification is made by minimizing
the probability of error. However, the insufficient and noigining data often make the decision function
not always the “best” as shown in Fig(8) and(b). Furthermore, we find that randomness may be difficult
to characterize the following uncertainties [12,19, 22]:
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Figure 2: The structure of the pattern recognition system.

1. Uncertain parameters of the decision function becauigedghsufficient and noisy training data;

2. Non-stationary observation that has statistical atteiy, and the mathematical description of the non-
stationarity is unknown [6, 13];

3. Uncertain measurement of the matching degree betweeab#gevation and class model.

One of the best sources of general discussion about umagrisiKlir and Wierman [23]. Regarding the
nature of uncertaintythey state that three types of uncertainty are now recedniz

1. Fuzzinesgvagueness), which results from the imprecise boundafiESs;

2. Non-specificityinformation-based imprecision), which is connected wsgiites (cardinalities) of rele-
vant sets of alternatives;

3. Strife (discord), which expresses conflicts among the variousoéetisernatives.

Observe that the types of uncertainty in pattern recognitiay be certain fuzziness and non-specificity
resulting from incomplete information, i.e., fuzzy deoisifunctions (uncertain mapping), fuzzy observations
(non-stationary data), and fuzzy similarity match (uraiertnatching degree).

For example, in Fig. 3a) and(b), the solid and dotted lines denote the distributions of thming and
test data respectively. Because of incomplete informationoise, these two distributions are not close. In
(c) and(d), if we assume that parameters of the distribution vary witim interval, one of the embedded
distributions, denoted by the thick solid line, is probatayapproximate the distribution of the test data. The
“footprint” of the uncertainty reflects the degree of unaety in decision functions.
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Figure 3: In (a) and (b), the distribution of the training aland test data are the solid line and dotted
line. Because of incomplete information and noise, the tigtridutions are not close. In (c) and (d), by
incorporating uncertainty in the class model, i.e., lgttine model move in a certain way, one of the models
(the thick solid line) is probably to approximate the tegeddistribution. The shaded region is the “footprint”
of the hypothesis uncertainty.

3 Motivation

In Section 2 we argue that some uncertainty is difficult tocdbs using randomness alone. Fuzziness is
another important uncertainty that we have to handle irepattecognition. It is necessary to deal with both
randomness and fuzziness within the same framework. Heerzey randomnesi4, 25], fuzzy probabil-

ity [26], andfuzzy statistic$27] come into being. In contrast to these hybrid concep&F$s focus on the
ensemble of all possibilities of original T1 FSs simultamgly, which result in an additional measurement of
the fuzzy primary membership grade called the secondadegiBhe input of T2 MFs is the same with that of
T1 MFs, but the output of T2 MFs is a fuzzy variable instead pfecise membership grade. We will explain
later that such an ensemble representation makes it p@ssibleasure subtle distinctions between patterns.
Therefore, within the T2 FSs framework, if we use the primagmbership to describe the randomness in
the feature space, and use the secondary MF to describezitindss of the primary membership, tHesth
kinds of uncertainties should be accounted [fti, 15, 22]. Furthermore, T2 FSs operations can propagate
both randomness and fuzziness in the pattern recognitstersyuntil the final decision-making.

For analytical purpose, we often use tbg-likelihood [21, pp. 86] in pattern recognition. In the case
of Gaussian distributions, th@maximum log-likelihoodestimation is equivalent to thieast squaresalgo-
rithm [28]. In Fig. 4(a) and (b), the effect of fuzzy parameters of the Gaussian primary Mthas the
likelihood becomes a fuzzy variable from a precise real nennbhis fuzzy variable contains more informa-
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Figure 4: The Gaussian with uncertain meamn and std(b). The meana) and std(b) are fuzzy variables

with uniform possibilities. The shaded region is the FOUeThick solid and dashed lines denote the lower
and upper boundaries of the FOU.

tion of the input patterrx to the class model, which can be propagated by operation &8£§. In the case
of Gaussian primary MF with uncertain mean (See Fi: ¥ [9], the upper boundary of the FOU is

and the lower boundary is

where

N(z;p,0), < p;
h(z) =41, p <z < Y
N(z;@,o), x>,
N(z;mo), = <5%,
(‘T): . Pt (2)
N(xaﬂv )7 2
1/ —p\?
N(x; = — = 1. 3
et (5 o

In the case of the Gaussian with uncertain standard dewiégid) [9] (See Fig. 4b)), the upper MF is

and the lower MF is

h(x) = N (x; 1,7), (4)

h(z) = N(z; p, o). (5)



Journal of Uncertain Systems, Vol.1, No.3, pp.163-1777200 169

Ly
Lo
h(z)
7}
L | h(x)
e v T e L e ———
T Z2 x3 T4 Ts Te

Figure 5: The lengttl = | In h(z) — In h(z)| describes the uncertainty of the class model to the imphe
longer L the more uncertainty, which is marked by the darker gray.ekamplez; deviates farther from the
mean, so it has not only a lower membership grade but a lobgas well. Three intervald,, L., and L,
measure the uncertainty of the class model.

_ ) 2Kz —pl/o, x < p—ko, x> p+ko; ®)

| |w = pl?/20% 4+ K|z — pl)o + k2/2, p—ko <z < p+ ko,
Ly = klz — pl/o + k?/2, ©9)
ke —pl/o+k/2, x<p—ko, x> p+ ko; (10)

O e = pl?/202, p—ko <z <p+ko.
The factork [12, 15] controls the FOU,
p=p—ko, f=p+ko, kel03] (6)
1

o = ko, E:EO', k€ 10.3,1]. 7)

Because a one-dimensional gaussiand9e®8’ of its probability mass in the range pf — 30, 1 + 30], we
constraink € [0, 3] in (6) andk € [0.3,1] in (7).

We take the Gaussian primary MF with uncertain mean as an @eatm explain why T2 FSs can han-
dle uncertainties for outliers [19]. In Fig. 5 the T2 MF ewaties each input by a bounded interval set,
[h(z), h(z)], rather than a precise numbiefz) in the T1 MF or PDF. Similar to the entropy of a uniform
random variable, the uncertainty of the interval set is etpudne logarithm of the length of that interval [29].
Because we use theg-likelihoodin pattern recognition, we are interested in the lengthduafd intervals,
L=|lnh—1Inh|,L;=|Inh—Inh|andL, = |Inh — In h| as shown in Fig. 5. Given the factbr we have
three lengths (8)-(10), which are all increasing functionterms of the deviatior — x| and the factoik.
For example, given a fixekl, the farther the deviation af from p, the longer the interval in (8), which in
the meantime increases the entropy (uncertainty). Thégioglship accords with our prior knowledge. If the
inputx deviates farther from the class model, so catlatier [21,30,31], it not only has a lower membership
gradeh(x), but also a longer interval reflecting its uncertainty to the class model. Indeed, weoéten
uncertain whetheoutliersbelong to this class or not. From (8)-(10), we see thplays an important role in
controlling uncertainty of decision functions. #f= 0, thenL = L; = L,, = 0, which implies that there is
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Figure 6:(a) the singleton andb) the T2 nonsingleton fuzzification.

no uncertainty so that the membership grade) is enough to make a classification decisionk lhcreases
for a fixed deviationz — p, the length of the interval increases representing morerteiaty of the class
model to the inputc. However, ifk is larger, L; and L,, are longer so that the two bounfis /] will lose
some information of the origindl(x).

In T2 fuzzy logic systems (FLSs) [9, 32], the nonsingletorzitication (NF) [33] is especially useful in
cases where the available training data are corrupted l®en@onceptually, the NF implies that the given
input value is the most likely value to be the correct one fadhthe values in its immediate neighborhood,;
however, because the input is corrupted by noise, neighdpqrdints are also likely to be the correct values.
Fig. 6 compares the singleton fuzzification (SF) with theegponding T2 NF. Besides handling uncertainty
in data, T2 FSs have been integrated with conventional iixssto handle uncertainty in the hypothesis
space [34]. For example, Liang and Mendel have combined B2WtB T1 FLS-based classifiers for MPEG
VBR video traffic classification [13]. Zeng and Liu have inteigd hidden Markov model and Markov
random fields with T2 FSs for speech and handwritten Chinkageacter recognition [12, 15,18, 19, 22, 35].
Wu and Mendel have designed T2 FLS-based classifiers bas&d aounterparts for battlefield ground
vehicles classification [20]. From these case studies, wairoh systematic design method in (11) and (12)
to handle uncertain feature and hypothesis spaces in pageognition.

4 Type-2 Fuzzy Data and Classifiers
This section reviews the state-of-the-art T2 fuzzy pattegognition systems. We denote the class model

with fuzzy parameters by the T2 FS,,1 < w < C, whereC is the number of classes. As discussed in
Section 3, the SF assumes no uncertainty in the feature.spheel2 (T1) NF models the observation as a
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uncertain feature space: datal2 FSs= T2 fuzzy data (1D
(noise or non-stationarity)
uncertain hypothesis space: classifiel2 FSs= T2 fuzzy classifier (12)

(unknown varieties of parameters)

Table 1: Classification error rate comparisét) (14]

\ Dataset | T2 FSs| Benchmark|
| Welded Structureg 5 | 6.8 \

T2 (T1) FS denoted bX.

Mitchell [14] has viewed pattern recognition as the siniifameasure between two T2 FSs, in which
one set accounts for the uncertain feature space in (11)thendther for the uncertain hypothesis space
in (12). The task of pattern recognition is equivalent toifigdhe class model which has the largest similarity
between these two T2 FSs:

w* = arg m%i( S(X, ). (13)
In [7] Mitchell has defined the similarity measure by the Wyl average of ordinary similarity measure of
embedded T1 FSs,

M N
S(A,B)=> > wmS(AT, BY), (14)

m=1n=1

wherew,,,, is the weight (secondary grade) wittth andnth embedded T1 sets, and there are totaflyand
N embedded T1 sets iA and B, respectively. Automatic evaluation of welded structursiig radiographic
testing was modeled by T2 FSs. The classification error rae1v8% lower than the benchmark (See
Table 1).

Johnet al.[36] have represented consultant’s interpretation oftipet images by T2 FSs, and classified
images of sports injuries by neuro-fuzzy clustering. Thegppocessed the expertise of clinicians using T2
FSs to describe the imprecise data in (11). They demondtth&t T2 fuzzy preprocessing and MINMAX
clustering produced least confusion in relation to coasi#t judgements.

Liang and Mendel [13] have classified video traffic by T2 FL&5é&d classifiers extended from T1 FLS-
based classifiers as in (12), and showed better performhaoghe Bayesian classifiers when features have
statistical attributes that are non-stationary. Firdthey design the T1 FLS-based classifiers as follows.
Consider the observatios, = [z1, 22, ...,24)’, and two class models; and\,. For T1 fuzzy classifiers
with a rule base oft/ rules, each having antecedents, thigh rule, R, 1 <1< M,is

R': IFz is Fl and ...andzg is F}, THEN
x is classified to\; (+1) [or is classified to\ (—1)]. (15)

Suppose that the antecedeﬁi}s 1 <4 < d, are described by a T1 Gaussian MF,

IWETETA
hFj(xZ) :exp[—§( ) } (16)

i
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They use the unnormalized output in the T1 FLS (the firingngfiie of each rule is denoted k), namely,

M

y=> (i, — f); (17)

=1

and make a decision based on the sign of the output (0, x — A;). Secondly, they extend T1 FLS-based
classifiers to T2 FLS-based classifiers with a rule basel afiles, thelth rule, B!, 1 <1 < M, is

R': IF# is Fl and...and#, is F, THEN
% is classified to\; (+1) [or is classified to\; (—1)]. (18)

Suppose that the antecedeﬁ}% 1 <i < d are described by a T2 Gaussian primary MF with uncertain mean
or std. Similar to (17), the output of the T2 FLS,

J=U2 (f1, = Fro)s (19)

which is an interval rather than a precise number in (17). deonparison, they also design the Bayesian
classifier as follows. If equal prior class probability isased, the Bayesian classifiers are

p(xIA) =Y p(x|A)), (20)
=1
p(x|A2) = p(x[Ay), (21)

=1

where the number of prototypes of classand A, is m andn, respectively. The conditional probability of
each prototype is described by the Gaussian distribution,

1

—l(x—p,)’Efl(x—p,)

C P P —— , 22
N =TS (22)
where the covariance matrix is diagonE], = diag(O'%, U%, L. ,U?l). ACCOfding to BayeSian decision the-

ory [21, Chapter 2], the optimal decision rule is

IF p(x|A1) — p(x|A2) > 0, THEN x is classified to\, (23)
IF p(x|A1) — p(x|A2) < 0, THEN x is classified to\,. (24)

Observe (17), (23), and (24) that the class model in the Baryedassifier has a correspondence with each
rule in the T1 fuzzy classifier. We find that the T1 FLS-basedgifier is mathematically the same with the
Bayesian classifier except the normalization fadtpt/(27)¢|X| in (22), which generally does not affect
the classification results so that there is no essentighdigin between T1 fuzzy classifiers and Bayesian
classifiers. However, T2 FLS-based classifiers may maketa different decision from the output interval
in (19).

In MPEG VBR video traffic classification (out-of-product tieg) without parameter adjustment, Liang
and Mendel [13] reported the lowest average false alarmlratid % for T1 NF data with T2 FLS-based
classifiers (TANFT2), which was slightly lower than the agg15.07% for SF data with T1 fuzzy classifiers
(SFT1) as well as the averagé.29% for Bayesain classifiers (BC) as shown in Table 2. Furtheemihey
adjusted parameters of fuzzy classifiers by the steepssedealgorithm, and obtained the lowest average
false alarm rat8.03% for T2 NF data with T2 FLS-based classifiers (T2NFT2) , whiaswlso slightly lower
than the average 17% for T1 NF with T1 FLS-based classifiers (TLNFT1). So they ¢oded that T2 fuzzy
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Table 2: False alarm rate compariséf) (13]

| Classifiers| Without parameter adjustmehtParameter adjustment

BC 14.29 -
SFT1 15.07 9.41
TINFT1 14.35 9.17
SFT2 14.24 13.65
TINFT2 14.11 8.43
T2NFT2 14.35 8.03

Table 3: Classification error rate compariséf) (20]

\ Datasets | T2 fuzzy classifiery T1 fuzzy classifiers
| Battlefield ground vehiclg 9.13 \ 12.8 \

classifiers were substantially better than their T1 coyates in terms of the robustness and classification
error rate.

Similarly, Wu and Mendel [20] have designed T2 FLS-basesddifieers to classify multi-category battle-
field ground vehicles, and demonstrated that T2 FSs can nno#tebwn varieties of features. They reduced
the average classification error rates of T1 FLS-basedifitassby T2 FLS-based classifiers frord.8% to
9.13% over more thar800 experiments (See Table 3). Besides, they showed that alildals8d classifiers
performed much better than the Bayesian classifiers.

In [12,15-19, 22, 35] we view pattern recognition as the liageproblem, which is also a compound
Bayesian decision problem [21]. The solution is a set ofdiatic labels,1 < j < J, assigned to a set of
sites,1 < ¢ < I, to explain the observatio®X = {x;,x2,...,x;}, at all sites. The labeJ at sitei is a
random variable, so that the labeling configuration at &issi = { f1, f2,..., fr}, is a stochastic process.
Given the model\, the maximum a posterior{MAP) estimation [21] guarantees the single best labeling
configuration,

F* = arg max P(FIX,\), (25)
P(FIX, ) x p(X|F,\)P(F|N), (26)

wherep(X|F, A) is the likelihood function fotF givenX, and P(F|\) is the prior probability ofF. How-
ever, because of the fuzzy data and fuzzy class model, wepoaie T2 FSs into MAP (25)-(26) as follows,

F* = argmyz_@xh;\(f’X), (27)
h3 (FIX) oc hy (X|F) T hy (F), (28)

where) is the class model with fuzzy parameters. We use the NF tolédmzizy observations due to noise.
Set operations in (28) convey more information than (26;abee we unite all possibilities of the class model
due to fuzzy parameters into T2 FSs. Especially whésicertain, equation (28) will be reduced to (26). The
T2 FSsh; (X|F) andh; (F) describefuzzinesof the likelihood and prior respectively within the Bayesia
framework.

In [35] we have integrated T2 FSs with Gaussian mixture noo@@MMs) referred to as the T2 FGMMs,
which describes fuzzy likelihoods by lower and upper bouiedaof the FOU. In the proposed classification
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Table 4: Classification raté&4) comparison [35]
| Datasets | T2FGMMs | GMMs |

IONOSPHERE 7.7 75.3
PENDIGITS 91.9 88.3
WDBC 94.9 93.6
WINE 89.2 85.8

Table 5: Classification raté&4) comparison [35]
| Classifiers | clean| 20db | 10db | 50db | 0db | -5db | -10db |

T2FHMMs | 58.1 | 475 | 324 | 242 | 169|114 | 7.0
HMMs 549 | 451 | 30.7 | 226 | 154| 10.0| 5.9

system, we use the generalized linear model (GLM) to makditia classification decision from fuzzy
likelihoods. Extensive experiments on datasets from U@bsdory [37] demonstrate that T2 FGMMs have
an averag®.7% (the best results) higher classification rate than that oMaN[See Table 4). Based on (27)-
(28), we extend the T2 FGMMs-based hidden Markov model (HM&fgrred to as the T2 FHMM. Forty-six-
category phonemes were classified using T2 FHMMs. To tesbtiestness, we also classified the phonemes
corrupted by the multi-talker non-stationary babble neigta different signal-to-noise ratios (SNRs). Table 5
shows the best results of T2 FHMMs compared to HMMs. We sdeothaverage T2 FHMMSs outperform
HMMs 1.85% in classification rate under babble noise with different SNR

In [12, 15-17] we have used T2 NF to describe fuzzy obsemstiand modeled the fuzzy transition
probability by fuzzy numbers in T2 FHMMs. In this classificat system, we propose a heuristic ranking of
output fuzzy likelihoods. A broad-five-category phonenasslification shows that a significant improvement
(7.03% on average) in classification rate when adding the white Sansoise to the test data with different
SNRs (See Table 6). Furthermore, a complete continuouseph@mecognition experiment demonstrate that
T2 FHMMs outperform the competing HMMs55% in dialect recognition accuracy (See Table 7).

Similarly, in [12, 18, 19] we have integrated T2 FSs with Markandom fields (MRFs) referred to as the
T2 FMRFs for handwritten Chinese character modeling. Frapeements on similar characters [19], we
demonstrate that T2 FSs improve the performance of the M&Hahdwritten Chinese character recognition
by 1.26% in classification rate on average (See Table 8). Furthern@ogeneralization ability comparison
(See Table 9) shows that T2 FMRFs have a better performang&/{ on average) in classifying unknown
Chinese character patterns from different datasets.

In conclusion, the strategies (11) and (12) are effectiven@st pattern recognition problems. The T2
fuzzy data (11) and T2 fuzzy classifier (12) compose a T2 fymiern recognition system, which generally
has a better performance than the competing T1 fuzzy andsigayelassifiers. Though in some cases the
T2 fuzzy system degrades a little than conventional metho@sstill a reliable approach to improve classi-
fication ability of the conventional methods in terms of thbustness, generalization ability, and recognition

Table 6: Classification rat&() comparison [15

\ Classifiers \ 5dB \ 10dB\ 15dB\ 20dB\ 25dB 30dB\
T2NF FHMMs | 50.6 | 59.9 | 654 | 71.3 | 75.1 | 79.3
HMMs 38.7| 480 | 58.2 | 66.0 | 72.3 | 76.2
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Table 7: Recognition accuracy compariséf) (15]

| Datasets [ T2NF FHMMs | HMMs |

TIMIT phoneme 62.94 62.59
TIMIT dialect 56.94 51.39

Table 8: Classification error rate compariséf) (19]

\ Datasets | T2 FMRFs| MRFs |

ETL-9B/ETL-9B 3.11 4.25
Hanjal / Hanjal 3.29 4.67

accuracy. However, note that, at presémere is no theory that guarantees that a T2 fuzzy systenahwitlys
do this[1].

5 Discussions

T2 FSs can be viewed as an ensemble of T1 FSs or PDFs. Similarfyzzy classifiers contain an ensem-
ble of decision functions, which is definitely robust thae gingle best decision function in T1 fuzzy and
Bayesian classifiers. More importantly, the ensemble T2yfuctassifiers keep all possibilities of decision
functions until the final decision-making. In real-worldpdipations, if we always make the correct classi-
fication decision from the FOU, the recognition accuraaynot be worse¢han the original T1 fuzzy and
Bayesian classifiers. Therefore, how to make the decis@n the FOU poses the first problem of designing
T2 fuzzy classification systems.

Occam’s razor [21, Chapter 9.2.5] has come to be interpiiet@attern recognition as counseling that
one should not use classifiers that are more complicatedafeamecessary, where “necessary” is determined
by the quality of fit to the training data. Indeed, T2 fuzzyssidiers have more parameters with a higher com-
putational complexity than their counterparts such as Ekyiand Bayesian classifiers [13-15, 20, 34, 36].
In most cases, at least twice computations (interval tyfiez2y sets) have to be done in T2 fuzzy classifiers
than conventional methods. Therefore, when we design T2/fagstems to solve the real-world problems,
we have to consider carefully if the problem at hand is needgthy more complexity. Based on compre-
hensive experiments, we say that T2 fuzzy classifiers hapdtentialto outperform their counterparts, but
in the meantime they add more complexity to the system |ggtithe performance-complexity trade-offs.

No Free Lunch Theorerfl, Chapter 9.2.1] tells us that there are no context-iaddpnt or usage-
independent reasons to favor one learning or classificatiethod over another. Looking back at strate-
gies (11) and (12), T2 fuzzy systems are natural extensibiie @riginal pattern recognition systems, which

Table 9: Classification error rate comparisét) (19]

|  Datasets | T2FMRFs| MRFs |

ETL-9B / Hanjal 4.44 6.78
Hanjal /ETL-9B 4.16 7.08
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means the performance has been already ensured, and T2sE8sgtove it. We should also note that T2
fuzzy systems do not always outperform their counterpartdlipattern recognition problems, and T2 fuzzy

systems are not always effective for modeling uncertarf@€]. The major reason may be that the designed
FOU covers too much or too little uncertainty that the systirs not have. Another reason may be that we

use ineffective methods for the final classification dedisitaking.

The great success of statistical pattern recognition dsas@ayesian decision theory has been attributed

to the recognition ofandomnessn both the feature and hypothesis spaces. Now we realizat tisanec-
essary to incorporatieizzinessnto the same framework to solve real-world problems. Inti8ac3 we have

explained the mechanism of T2 FSs to handle both randomnessizziness and demonstrated that T2 FSs
have more expressive power to tackle more difficult problefimsough many case studies, we obtain the de-

sign methods in (11) and (12) for the pattern recognitiotesysand further extend them within the Bayesian
framework in (27) and (28). Based on encouraging experiatieasults, we are optimistic about the future
of T2 FSs for pattern recognition applications.
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