AC ADEMIC Journal of Uncertain Systems
n E Vol.1, No.2, pp.124-136, 2007
A™ \orid Academic Union

Online at: www.jus.org.uk

Fuzzy Mathematical Programming: Theory, Applications and
Extension

M.K. Luhandjula*
Department of Decision Sciences, University of South Africa
PO Bozx 392, Unisa, Pretoria 0003, South Africa

Received 5 December 2006; Accepted 20 January 2007

Abstract

Mathematical programming has been successfully used for years in a variety of problems
related to hard systems in which the structure, relations and behaviour are well-defined and
quantifiable. Unfortunately, attempts to apply similar means to soft systems have not been
generally successful. One of the reasons for this mismatching is the key role played by human
judgement and preferences which are subjective, imprecise and not easily quantifiable. Although
probabilistic theories claim to model decision making under imprecision, there is qualitatively
different kind of indeterminacy which are not covered by these tools, that is: inexactness, ill-
definedness, vagueness. The aim of this paper is twofold. First, it takes a general look at core
ideas aimed at softening mathematical programming models by making it possible to incorporate
non-stochastic imprecision into these models. Second, it extends these ideas to situations where
both fuzziness and randomness are under one roof in a mathematical programming setting. The
paper ends with some concluding remarks along with lines for further developments in the field
of fuzzy mathematical programming. (¢©) 2007 World Academic Press, UK. All rights reserved.
Keywords: Mathematical programming, fuzzy relationship, fuzzy parameter, fuzzy random
variable.

1 Introduction

Many systems to be controlled or simply analyzed include some level of imprecision about the values
to assign to some parameters or about the actual design of some of the components of the system.

In this connection, the noted philosopher Nietzche was quoted as saying: “No one is gifted with
immaculate perception”. This has also been well noticed by the physics Nobel Laureate Feynman
who once wrote: “When dealing with a mathematical model, special attention should be paid to
imprecision in data”.

Zadeh’s incompatibility principle: “When the complexity of a system increases, our aptitude to
formulate precise and meaningful statements decreases up to a threshold beyond which precision
and significance becomes mutually exclusive characteristics” is also telling in this regard. It is
of little relevance to inquire about the wrongfulness of a deterministic model. The real question is
whether replacing stubbornly imprecise data by fixed ones in a model, does not impige on predictions
concerning the phenomenon under investigation. A large amount of evidence [1], [2], [3] exists telling
us not to bow to the Hammer principle (When you only have a hammer, you want everything at
your hand to be a nail).

Indeed, replacing arbitrarily imprecise data by fixed values in a model would according to the
well-known “Garbage in, garbage out” rule, leave no other chance to the model but to churn out
meaningless outcomes.
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False certainty is bad science and it can be dangerous if it stunts articulation of critical choices.

Although probability theory claims to model decision making under imprecision [4], there are
qualitatively different facets of undeterminacy which are not covered by probabilistic tools.

Situations where doubt arises about the exactness of concepts, correctness of statements and
judgements have little to do with occurrence of events, the back-bone of probability Theory. This
insight has lead researchers to embark upon the investigation of how to incorporate non-stochastic
imprecision into mathematical models. Fuzzy sets theory [4,5], belief theory and, evidence theory
[6,7,8] are along this line. The aim of this paper is twofold. First, it takes a general look at core
ideas aimed at softening mathematical programming models by making it possible to incorporate
fuzzy relationships and fuzzy parameters into these models.

Second, it extends these ideas to situations where both fuzziness and randomness are under one
roof in a mathematical programming setting. The remaining of this paper is organized as follows.
For the self-containedness of the paper, we present basic notions of fuzzy sets theory along with
properties of fuzzy random variables in the following section. Section 3 is devoted to mathematical
programming with fuzzy relationships (flexible programming). Mathematical programming with
fuzzy parameters are taken up in section 4. Extensions to situations where fuzziness and randomness
are combined in the scope of a mathematical program are discussed in section 5. Our approach to
this problem is in tune with the general scheme for solving fuzzy stochastic optimization problems
[9]. It conmsists of first handling fuzziness through a-level decomposition and then dealing with
randomness via a hybrid method based on Monte-Carlo simulation and semi-infinite mathematical
programming techniques.

The paper ends with some concluding remarks along with lines for further developments in the
field of fuzzy mathematical programming.

2 Basic notions on Fuzzy sets theory and Fuzzy random variables

2.1 Fuzzy set

The main idea behind a fuzzy set is that of gradual membership to a set without sharp boundary.
This idea is in tune with human representation of reality that is more nuanced than clear-cut. Some
philosophical-related issues ranging from ontological level to application level via epistemological
level may be found elsewhere [10].

In a fuzzy set, the membership degree of an element is expressed by any real number from 0 to
1 rather than the limiting extremes.

More formally, a fuzzy set of a set A # ¢ is characterized by a membership function p: A — [0, 1].
In what follows a fuzzy set will be identified with its membership function. Moreover, for our
purposes, we restrict ourselves to fuzzy sets of the real line R.

2.2 Main notions and operations for fuzzy sets of R

e The support of a fuzzy set p is the crisp set supp(p) = {z € Rju(xz) > 0}.
e The kernel of a fuzzy set p is the crisp set Ker(u) = {x € R|u(z) = 1}.

o A fuzzy set u is said to be normal if Ker(u) # ¢.

The a-cut or a-level set of a fuzzy set u is the crisp set u® = {x € R|u(z) > a}.

A fuzzy set u is said to be convex if u(x) is a quasi-concave function.
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e A fuzzy number is a normal and convex fuzzy set of R. A fuzzy number is well suited for

representing vague data [11].

For instance the vague datum: “close to five” can be represented by the fuzzy number p as in
Fig 1.

n{x)
4

i

Figure 1: Membership function of the vague data: “close to 5”

e Let 1 be a normal fuzzy set of R. A family of subsets of R{J%|la € (0,1)} is called a set

representation of u, if and only if:
() 0<a<pB<l=9 Co”
(i) Vt e R, p(t) = sup {alya|a € (0,1)}
where Ip stands for the characteristic function of P, i.e.

1 ifzeP
Ip(x) =
P(o) {O otherwise.

The following results, the proofs of which may be found elsewhere [12], bridge a gap between
a fuzzy number and its set representation.

Theorem 1. Let p be a fuzzy number. Then {u®|a € [0, 1]} is a set representation of p.

Theorem 2. Let p be a fuzzy number and {9%|« € (0,1)} be its set representation. Then,
we have for all
a € (0,1), lim inf19( L ) = inf u®

T—00 TN
and
lim sup ¢ ) = sup u°.
r—00 (a+ (2r)<1—a))

e Consider two fuzzy sets of R, py and ps.

- The complement of u; is defined as fi; where f3(x) = 1 — py(x).
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- The union of p; and g is defined as p1 V pg where puy V po(x) = max(ui (), pe(x)).
- The intersection of p1 and g is defined as 1 A pg where pg A po(x) = min(pq(z), pe(x)).

2.3 Possibility, Necessity and Credibility Measures

Let © be a nonempty set representing the sample space. A possibility measure is a function
Pos : 29 — [0, 1]
satisfying the following axioms:
(i) Pos{©} =1,
(ii) Pos{¢} =0,

i)

(iii) Pos{l; Ai} = sup; Pos {A;},

(iv) Let {O}, be a family of sets and Posy, : 2% — [0, 1] verify (i) — (iii) and © = ©; xO3...x O,,.
Then for A C ©,Pos {A} = sup(g,, . 6,)ca Mili<k<n Pos; {O}.

In that case we write:
Pos = Pos; A Poss A ... A Pos,.
Necessity and Credibility measure are obtained from Possibility measure as follows:
Nec {A} =1 — Pos(A%)
and
Cr{A} — Pos {A} —12—Nec {A}

where A€ is the complement of A. Details on Possibility, Necessity and Credibility measures may be
found elsewhere [13].

2.4 Fuzzy random variable

A fuzzy random variable (frv) on a probability space (€2, S, P) is a fuzzy-valued function
X: Q—-3[R)
w— X(w)

such that for every Borel set B of R and every a € [0,1] : (X%)~}(B) € 3(R) where 3(R) is the set
of fuzzy numbers and X stands for the set-valued function:

X0 — ok
where
X¥w) =X ={z e Rl Xy(x) > a}.
Saying the above informally, a frv is an appropriate model for rules converting experimental out-
comes into fuzzy numbers. Taken literally, this definition accounts adequately for both randomness

and fuzziness.
The following result, the proof of which may be found in [14] will be used in the sequel.

Theorem 3 X is a fuzzy random variable if and only if Va € [0, 1], X¢ is a random interval i.e.,
Yw e Q, X = {Y ! Y is a random variable and X% <Y < XO‘+}

where X~ and X" are random variables. An interested reader is referred to [14] for properties of
frvs.
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3 Flexible mathematical programming

A flexible mathematical program is a problem of the form:
min f(x)
(1) gi(:c)é bi; i=1,...,m
xe X ={zxeR"z >0}

14 9

where “ ~ 7 means that some leeway may be accepted in the objective and the constraints satisfac-
tion. Such a flexible version of a standard mathematical program may be required when specifying
strict satisfaction of constraints leads to inconsistencies which result in the vacuousness of the feasi-
ble set. A flexible mathematical program may also be of great help in situations of the more-or-less
type.

An interpretation which can go with (Py) is as follows: Find 2 € X such that f(x) be as well as
possible below a reasonable level by and such that the constraints g;(x) < b;, i = 1,...,m are met
as well as possible. Or merely, find z € X such that:

gi@) X by i=0,1,...,m
where go(z) = f(z).
A convenient way to represent these soft constraints is through appropriate fuzzy sets of R the
membership functions of which are p;; ¢ =0,1,...,m defined as follows:

pi(z) = 0 if gi(z) > bi + d;
pi(z) € (0,1)if b; < gi(x) < b+ d;
pi(z) = 1 if gi(z) < bs

where d;(i = 1,...,m) are subjectively chosen constants for admissible violation. In other terms,
wi(x) is equal to 1 if there is no violation in the constraint g;(xz) < b;. p;(z) € (0,1) if the violation in
the constraint g;(xz) < b; can be tolerated because its magnitude is less than a reasonable threshold
d;. And p;(z) = 0, if the violation in the constraint g;(x) < b; cannot be accepted. The following
simple kind of piecewise function may be used for p;(x).

1; if gz(.%') S bi
pilw) = $ 1 — L0 i by < gi(a) < b+ dy

Decision in a fuzzy environment is given as an option that simultaneously fulfills the goal and the
constraints of the problem (see Bellman-Zadeh’s confluence principle [15]). Therefore the optimal
decision to our problem should be z* € X that has the highest membership degree in the fuzzy
set intersection of fuzzy sets representing the objective function and the constraints, i.e. x* should
maximize pp(x) = min; p;(x).

The resulting problem is then:

max min p; (x
(Pl)l — 751( )
z € [ViZo Supp pi-

This problem is equivalent to the following mathematical program:

max \
(P) =¢ A<1-—@lbio 501 . m
x> 0.
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The last program can be solved by existing mathematical programming software like LINDO,
LINGO, CPLEX, XPRESS. It is worthmentioning that using min to translate the semantic meaning
of the connective “and” may be a too pessimistic approach. In decision problems where such a ultra
pessimistic attitude cannot be accepted, a compensatory operator can be used. For instance up can
be defined as follows:

pp(z) =~y min pi(z) + (1 — ) min (1, Zui(a?))

[16]. Where § € (0,1) is a coefficient of compensation. Moreover other membership functions more
tuned to the situation at hand may be used instead of the piecewise functions defined here. See for
instance the paper by Leberling [17] where hyperbolic membership functions are considered.

3.1 Mathematical programming with fuzzy parameters
3.1.1 Problem formulation

A common paradigm in application of mathematical programming models is that all involved pa-
rameters are fixed known data. In many practical situations such an assumption turns out to be
unreliable. Consider for example, the case where second members of a mathematical program are
demands which are given in the form of fuzzy numbers.

In this section we describe models for addressing the presence of fuzzy data in mathematical
programming problems. Assume that a mathematical program is given in the following form

(P2): gZ (1’, B’L) Sal) Z:l’ 7m
x € Ry,
where a is a fuzzy vector and l;,(z = 1,m), (i = 1,...,m) are fuzzy numbers. Owing to the

presence of fuzzy quantities, (P,) is an ill-defined problem and the notion of “optimum optimorum”
does not apply.

Putting (P,) in deterministic terms, in a way not to badly caricature the original problem, may
proceed along the following lines.

3.1.2 Solving (P») by deffuzification

Here a deterministic version of (P») is obtained by replacing involved fuzzy quantities by appropriate
real values in their respective supports. The most frequently used values [18] are either a-level sets or
kernels of fuzzy quantities under consideration. The resulting problem is a standard mathematical
program and existing mathematical programming software listed in §3.1 apply. In the above de-
scribed approach, the possibility distributions of fuzzy quantities under consideration are not taken
into account. Therefore such an approach is not in tune with the minimum uncertainty principle
that tells us not to ignore available knowledge in solving a mathematical problem under uncertainty.
The above deffuzification approach can be of use only when supports of involved fuzzy quantities
are not too large.
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3.1.3 Uncertainty-constrained approach for (P»)

Here the deterministic counterpart of (P) is obtained through uncertainty measures. An approach
which is reminiscent to the stochastic chance-constrained programming approach is as follows. Con-
sider as a deterministic version of (P;) the following mathematical program:

max, max \

where «, § are fixed thresholds and Fj; is some uncertainty measure, like possibility, necessity or
credibility. A hybrid intelligent algorithm [19] for the case where F); is the credibility measure is as
follows:

Step 1. Generate training data for uncertain function approximation by fuzzy random simulations.

Step 2. Train a neural network to approximate the uncertain functions according to the generated
training data.

Step 3. Initialize pop-size chromosomes in which the trained neural network may be used to check
the feasibility.

Step 4. Update the chromosomes by crossover and mutation operations in which the feasibility of
offspring may be checked by the trained neural network.

Step 5. Calculate the objective values of all chromosomes by the trained neural network.
Step 6. Compute the fitness of each chromosome according to the objective values.
Step 7. Select the chromosomes by spinning the roulette wheel.

Step 8. Repeat the fourth to seventh steps for a given number of cycles.

Step 9. Report the best chromosomes as the satisfactory solution.

4 Extension to situations where fuzziness and randomness co-occur
in a mathematical programming setting

4.1 Problem formulation

In this section, we restrict ourselves to the linear programming case. Extension to nonlinear case
is straightforward inasmuch functions defining the feasible set are monotonous. Consider the opti-
mization problem:
min cx
(Ps) >y o <bi
z;>0; j=1,n

where ¢;, a;j, b; are fuzzy random variables on (Q, S, P) (see §2.4).

Problems of this type arise naturally in concrete situations [21], when a decision maker needs to
couple subjective perceptions with hard statistical data.
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Using the more possible value (V},) as a summarizing functional of the objective function, (Ps)
takes the form:
min V,(¢)x

(P3) 2?21 aij Tj < b;
z; >0;j=1,...,n
where V,,(¢) = (Vp(¢1) ..., Vp(En)) and V,(¢j) = arg max €, ().

4.2 Solving (Pj)
To solve (P3) we interpret inequality between two fuzzy random variables of R as follows:
m < @ iff MY < A Ya € (0, 1]. (1)
In this case m® and n® are intervals denoted by [m®, m®] and [n®, n?], respectively. By Moore’s
results on interval arithmetic, (1) can read:
m < n< m® <n® Vae (0,1]. (2)
By virtue of (1), (P3) takes the form:

min V,(¢)x
(P5)q S5y as @ < b, Va € (0,1]
z; >0; j=1,...,n.

Moreover by Theorem 3, we have that af; = [af}, af;] and b = [b%, b¢] where o, a

1) Ligo
random variables.
By (2), (P4) can be written as follows:

a o pa
& OF's bf" are

min V,(¢)x
(P)q Yjoaaf @ <bfsi=1,...,m Va e (0,1]
.Ij Z 0.

(P3") is a semi-infinite mathematical program with stochastic coefficients. We now describe a pro-
cedure based on Monte-Carlo simulation for solving this mathematical program.

4.3 A procedure for solving (P}")
4.3.1 Reformulation of (Py")
For the sake of clarity (P5”) can be written:
min F(z, ()
(Py) Go(z,n) <0, a € (0,1]
z; >0
where
Fz,¢) = Vp(@),
Gjo(z,m) = > afaz; — b

In what follows A = ((, ) is a random vector on (€2, ¥, P) and we use the following notations:

F(:L’,A) - F(m,(),
Gm(.%',/\) = Gm(x,n).
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4.3.2 Sample average approximate problem associated to (P;)

Suppose that we can generate a sample of N replications of the random vector A = ({,7n) and let

A A2, ... AV be a particular realization of the pertaining random sample.
A sample average approximate (SAA) problem associated to (Py) is:
min fN x
o { ()
r e Xy
where

F(z,A)

=
O

I
2=
[]=

<.
Il
-

Gm (a:, AJ)

5}>

Q

&

z

I
2=
[]=

7j=1

and T = [0, 1].
It can be shown [22] that under mild assumptions the optimal value of (P;)y tends to the optimal
value of (Py) with probability 1.

4.3.3 Cutting-plane algorithm for solving (Py)y
Before describing the procedure (CPALGO) for solving (Py)n, we need the following notations.

e (T7); is a family of finite subsets of T' such that:s < r = T% C T".
o X)j\, ={z € R"|Gian(z) <0; i =1,m; a €T, > 0}.

. (PZ )~ stands for the following mathematical program:

xEXJjV.

{miﬂ fn(x)

e M is a large natural number.

o [J =max;cp; Gin(a9).

The CPALGO procedure is as follows:
Step 1: Fix M, put j = 1.
Step 2: Choose T7 C T.
Step 3: Solve (PA{)N and denote its solution by 7.
Step 4: Find L7.
Step 5: If L7 <0, put 2/ = 2*. Otherwise go to step 6.
Step 6: Put j =5+ 1.

Step 7: If j > M, go to step 9. Otherwise go to step 8.
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Step 8: Take r > j and put j = r. Go to Step 2.

M
j=17

let z¢ be this limit point. Put z* = .

Step 9: Find a limit point of {z;}
Step 10: Print z* is optimal solution of (P4) .
Step 11: Stop.

A justification of the stopping criterion of this procedure is given by the following result [23].
Theorem 3. Assume Xy # ¢, lev is compact and fy is continuous then the following state-
ments hold true:

(i) If L7 <0, then 27 is a solution of (Py)y-.

(ii) Any limit point of (z7); generated by CPALGO is an optimal solution of (Py) .

4.3.4 General procedure for (P;)

We now describe a general procedure for solving (P4). This procedure is a hybrid of sample average
approximation technique and cutting-plane method. The detail of this procedure is given in Fig. 2.

4.3.5 Numerical example
Consider the linear program:

. 6 ~
min i &z

subject to:
S5y gy > by
lz;| <10; i=1,...,6

(Ps)

where a1; and by are fuzzy random variables where:

o . a 2. a __ 2 3
al; = a;  ajy = Qo  ajy = (o

afy = C2a4a ajs = (1—-¢s), ajs = (1— )
- . ~ 1
T=2e% V(@) =1 Vy(é)= Z,

1 1 1 1
Vi(ea) = —: Vi(éd) = —: Vi(ée) = —:  Vo(ée) = —
»(C3) 50 p(Ca) 3G »(C5) G »(C6) 5
and (2,3, ..., (s are random variables whose distributions are as follows:

G~ [J(3,4); ¢~ N(5,1), G4~ Exp(6),
G5 ~ N(4,1); (6 ~ Exp(5).

Using the general procedure described in §4.3.4 with € = 0.5 we obtain the following results

N Optimal solution Optimal value of
¥ N the objective function v*
1000 | (-9.89,-1.42,6.47,0.24,-5.30,9.75) -41.38
5000 | (-9.74,-7.54,-2.93,0.71,8.87,-9.17) -36.67
9000 | (-9.95,-8.28,-1.31,0.38,1.66,-9,18) -22
13000 | (-9.99,-8.28,-1.56,0.58,0.07,-9.84) -22.47

As 0.47 < 0.5,(—9.99, —8.28, —1.56,0.58,0.07, —9.84) is considered as the optimal solution of
(P5)-
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Start

Read data of (7)

i=0; N,=1000;

w=% &£=05

Form (‘R})M

Solve (B,),, using
CPALGO; Let x,,, the solution
and v, the optimal value of the

objective function

Printx,, ,0

M,

l No v

Stop

Ni=Ni+4000

Figure 2: General procedure for solving (Pj)
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5 Concluding remarks

The methods and models which have been often used in Operations have been primarily hard or
crisp, i.e. the solutions were considered to be either feasible or unfeasible, either above a certain
aspiration level or below. This dichotomous structure of methods very often force the modeller to
approximate real problem situations of the more-or-less type by yes-or-no type models, the solutions
of which might turn out not to be the solutions to the real problems.

In this paper we have discussed how Fuzzy sets theory may be of great help while handling situa-
tions where an optimization problem includes vaguely defined relationships or imprecise parameters
due to subjective human evaluation or to inconsistent or incomplete evidence. The framework has
then be extended to hybrid situations where fuzziness and randomness co-occur in an optimization
setting. Fuzzy mathematical programming has found numerous applications in, e.g. media selection
in advertising [24], air pollution regulation [25], water resource management [26], portfolio selection
[27]. Among lines for further developments we may mention the following.

e A deep understanding of the following questions in a way to deal efficiently and effectively
with Fuzzy Stochastic Optimization problems.

- How should we compare fuzzy random or random fuzzy variables?
- How should we define preference ordering between fuzzy random variables?

- How should we interpret and deal with inequality relations involving fuzzy random vari-
ables or random fuzzy variables?

e Full implementation of the procedure described in §4.3.

Let us hope that successful developments in the above mentioned directions will proceed in the near
future, thus bridging the gap between the language used for fuzzy stochastic optimization techniques
and the language used by potential users of these techniques.
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