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Abstract

Traditional search engines rely on keyword-based matching, recovering the documents which
present some occurrences of the input keywords, but ignore at all the data meaning of the re-
trieved documents. Thus, long lists of pages links are returned but actually only a handful of
pages contain reference to relevant web resources and meet the needs of users. The exigency
of major awareness in the interpretation of web data yields new approaches and methodologies
for improving the web search and retrieval, by taking into account the context of information,
related to the user query. This work presents an approach for supporting the user in the Web
search activity: it achieves the interpretation of the input query and, on the basis of the the local
knowledge, replies by providing (links of) web pages which are more relevant to the content mean-
ing of the input query. The approach combines intrinsic potential of the agent-based paradigm
with the modeling of knowledge through techniques of soft computing. The agents encode the
semantics of data, by exploiting ontologies, in order to grasp the actual query meaning. The
information elicited by the query interpretation represents an add-on, aimed at augmenting the
system knowledge, exploited in the discovery of web pages which match the user request. c© 2007
World Academic Press, UK. All rights reserved.
Keywords: Web search, clustering, ontologies, multi-agent system

1 Introduction

In recent years, the Web has been rapidly increased, by providing a large amount of information, often
unstructured (or semi-structured) spread over different hosts in a distributed environment. Also,
the growth of the Internet usage and contents makes difficult the information access, making the
task of Web search highly critical. Current Web search engines are built to provide an answer to all
the requests, independent of the special needs of any individual user. The same query, submitted to
a typical search engine returns identical results, regardless of the expectations and needs of different
submitting users. Thus, only a handful of the Web sources are related to user query, because no
relationship between the requested information and the found one exists.

The search engine quality is mainly measured as retrieval capabilities; some search techniques
are based on the classification of the discovered documents and then referenced in a search database
by human experts or by artificial agents (softbots) (i.e. Yahoo!, Google) [24]. Interesting research
initiatives of famous search engines, try to improve the query results, through the interpretation of
the user request and the removal of noisy data as well as to cluster information according to the most
likely meaning, through some rife ranking methods. Some approaches converge to the definition and
building of domain specific Web search engines which collect and index the relevant Web pages, by
exploiting crawlers which gather only domain-specific pages [4],(even though the crawler-based search
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engines are not efficient in terms of time and bandwidth). On the other hand, reusing the existing
large indexes of general purpose search engines is a solution to retrieve [26], after a filtering activity,
documents from a specific domain (though the the response time to the user query are slow too).
Similarly, other approaches achieve clustering of results for automatic organization (into categories)
of documents (i.e. WiseNut [35] and Vivissimo [34]). Metasearch environments, instead implement
strategies that apply user queries to several search engines simultaneously. However many of these
approaches do not consider the semantic relationships existing among terms: the query ambiguity
and the vocabulary gap represent extant impediments that confirm the search engine technology is
far from the ideal response to a certain query.

Analysis on the search engine performances emphasizes that up to half of search sessions fails to
deliver good results [29]; in addition, the log files analysis shows a poor correspondence between the
query and the results content [6]. The last decade saw a number of research endeavors to deal with
these web search problems, producing numerous approach and methodologies for customizing web
search activities. Personalization provides an operative method for achieving efficient information
retrieval [28]. Many approaches have been proposed for personalized web search systems; firstly the
PageRank algorithm [15] ranks the search results on the basis of global importance scores, by using
the linkage structure of the Web.

Some approaches exploit the agent technology to help users in the web searching activity [21, 8];
studies on the information gathering emphasize the role of agents to drive the personalization of infor-
mation, in order to satisfy the user “oneshot” request [36] and find a compromise among cost/quality
tradeoffs, information overloading, mining linkage structure and users browsing behaviors in order
to improve the web search.

On the other hand, the demand for efficient and effective approaches to retrieve the required
information finds in the focused crawlers a flexible tool for personalized web search [16]. In fact,
during the traversing of the Web, the links to follow are selected on a basis of a measure of how
likely a document is linked to a target page.

In addition, remarkable issues are reached in web usage mining through Soft Computing frame-
works [2].

The last trend sees the diffusion of tagging services for allowing users to add terms of their own
interest and relevance to Web pages [7, 27]. For instance, in [14] a particular schema for semantic
annotation with respect to real world entities is defined.

Nevertheless, the structure of information is still based on HTML-format for data representation
and thus makes the conversion of the syntactic Web content into the semantic one, an expensive
activity in terms of human resources and time.

In fact, as known, the Semantic Web “support” depends on the availability of a critical mass
of metadata for the web content, associated with the respective formal knowledge about the world.
Thus, the practical semantic annotations need of flexible knowledge modeling techniques. The
diffusion of the Semantic Web supplies new models for providing a major contextual support: some
methods use the available ontologies to disambiguate the concepts used to query [1].

The role of ontologies is prominent to discover the semantics of terms and identify the reference
context of the query; studies presented in [19, 13] emphasize effectiveness of algorithms for automatic
semantic reconciliation and the similarity among ontology-based schema; in [9] a machine learning
technique is adopted to measure probabilistically the similarity between concepts of two different
reference ontologies through the relaxation labeling technique [25]. In [33] a mapping of ontologies in
common domains is accomplished, through the analysis of similarity among concepts which are pre-
existing or created collecting information during web searching activity. Similarly, the work in [11]
describes a consensus support system, which on the basis of a multi-granular linguistic methodology,
provides an expertise degree by combining knowledge defined by different linguistic term sets.
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The solution presented in this work aims at assisting the user during the query formulation:
the system provides a support for interpreting the semantic of the query terms and, at the same
time, aims at producing a more accurate list of relevant results through fuzzy techniques. The key
idea consists of finding alternative formulations of the input query that better details the input
query (through synonyms, related terms, etc. of query words), besides to reflect the inchoate user
intention. This “augmentation” of the initial query becomes the knowledge the system acquires
during the user sessions, useful to tailor the user search context. The agents play a crucial role
in the discovering of both semantic similarity or specialization/generalization relationships among
terms, in order to understand the meaning of query. On the other hand, the agents contribute to
the retrieval of relevant web resources, providing an spidering activity, nearby the more traditional
web search.

Numerous approaches in the literature emphasize the role the agents play in this domain [22, 5],
for supporting activities of discovery, parsing of web resources; previous our works [17, 18] take
advantages of using these techniques in the research domain.

The paper is organized as follows. Section 2 introduces the system description by sketching the
whole working flow, and the role played by the agents in each activity; then implementation details
in Section 3 deepen the main activities by presenting the relative formal model. Section 4 describes
the system performance through the experimental results and finally, the conclusions close the paper.

Figure 1: Activities diagram of the system a) and the main action flow b)-c)

2 Framework overview

The whole framework is designed to provide a straightforward interaction between the functional
and agent-based components of the system. Figure 1 shows the data flow of the system architecture,
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described by the activities diagram. In details, Figure 1-a shows the system architecture: the
overall activity diagram is described by tracing the data flow; at the same time, the agents role
is emphasized in the activities where they intervene. In this section, the activities and the main
agent-based interactions are briefly described; further investigations are given in the next section.

• Query Acquisition & Analysis: the input of the query triggers this activity which starts up
the system flow. The query is acquired through an aid-user interface, then it is analyzed
syntactically by collecting only the relevant words and discarding all the non-informative words.
Thanks to the user interface, based on an RDF-based tagging, the main concepts of the query
can be discriminated and isolated. The result of this activity is a sequence of “atomic” stemmed
words that represents the user query.

• Semantical Augmentation: once the query is reduced to the basic form, this activity aims
at enriching the interpretation of the query, through the discovering of feasible ontological
relationships, in order to get a possible augmentation of the input query. In this activity, the
query terms are enriched with by consulting ontologies and dictionaries in order to elicit terms
that are related (through specialization/generalization) to the input query. The intervention of
agent is indeed, to support the identification of terms semantically related to the input words
in order to get a sequence of terms composed of initial query terms and (eventual) discovered
additional terms.

• Query Profiling : each query is translated into a corresponding vector-based representation;
then these vectors are locally stored. Really, this activity manages two flows of information
(see Figure 1-a), as described in the following.

1. All the collected vectors constitute the knowledge of the system, which will be exploited
in the execution of the Clustering activity. In fact, this flow of activity guarantees the
arrangement of the gathered vectors in a matrix form, suitable to be the input of the
clustering algorithm.

2. This flow branch occurs when the system is at regime. In this phase the agents intervene
and exploit the clustering (once it has been executed) in order to compare the vector-based
representation of the current user query with the clustered ones. The closest clustered
vectors represent the queries more similar (as terms and topics) to the input one and will
be exploited in the Query Submission to improve the expressiveness to the input query.

• Clustering : the queries are clustered. Each cluster is interpreted as a category of topics,
according to the collected queries. Let us note the clustering is periodically re-executed,
triggered by the Query Profiling activity.

• Query Submission: the “atomic” input query (coming from Query Acquisition & Analysis) as
well as some queries (in the clustered collection) that are similar to the input topic (coming
from Query Profiling) are individually submitted to a search engine. A spidering activity is
then triggered.

• Filtering : The lists of pages links, returned by the search engine, for each one of submitted
queries are then filtered and merged to get a unique ranked list of page links. The agents
contribute to produce a final list represents a suitable balancing between the input query
(often ambiguous and not enough explicative to be processed by a search engine) and the
stored stereotype of queries (which can reflect the input query partially).
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These activities are executed according to the traced flow, outlined in Figure 1, supported by the
agents. Substantially, the system consists of two main action flows (see sub-parts b and c of Figure
1):

• start-up : at the beginning, the system contemplates a training phase to collect the input
queries, stores them and then applies the clustering to getting grouping of discovered semantic
similarity. Figure 1 (part b) shows all the activities involved (the dotted line shows the relative
data flow). In the activity diagram, a fork point is evidenced, which produces a split of execu-
tion path. Thus, on one hand, the system replies to the input query of the user, by providing
the list of page links as in the typical web search approach (Query Submission → Filtering), on
the other hand, collects the information (query terms, semantic relationships, etc.) to achieve
a local arrangement of the acquired knowledge, through the clustering procedure (Semantical
Augmentation → Query Profiling → Clustering).

• regime: in this phase (see Figure 1 part c), the system exploits the acquired knowledge (i.e.
the queries previously arranged in clusters) for the Query Submission activity. In particular,
the agents contribute to produce the resulting list of links to web pages, to return to the user.
More specifically, by exploiting the local knowledge, they evaluate which clustered queries are
similar to the input one: the selected queries together to the input one are given to the Query
Submission activity. The returned lists (one for each query) of links are parsed and filtered by
the agents (Filtering activity); then, these lists are merged into a unique, final one, suitable to
be presented to the user (Semantical Augmentation → Query Profiling → Query Submission
→ Filtering).

3 Implementation details

This section presents a more complete description of the introduced activities. The theoretical as-
pects and the implementation choices will be analyzed, in order to give a more clear characterization
of the system and the inherent interactions.

3.1 Query Acquisition & Processing

This activity captures the meaningful terms which compound the input query. Initially, these terms
are analyzed to reduce their number to the minimum, by applying typical approaches to text parsing
and analysis: after the stop-word removal, (a small stop list of words for, that, the, these, to, which,
a, any, and, etc, an, another, in, of, or is considered), a stemming algorithm [23] reduces the variant
forms of a word to a common root.

Furthermore, the “interpretation” of the query meaning is supported by a user interface, as
shown in Figure 2. The snapshot shows a panel, split in two main parts: on the top, a typical text
field for a query formulation; the other text fields enable the insertion of additional information (or
semantic annotations) which details the concepts expressed in the query.

Just to give an example, let us suppose a user looks for all the publication of a laboratory called
“Lasa Lab” on the “Semantic Web” domain. In traditional searching tools, the relative sequence
of words should be Publications of the “Lasa Lab” on “Semantic Web”. The search engine returns
links to web pages which contain the same sequence of words specified in the query, even though
the context and the meaning is completely different. Thus, to better address polysemic problems, a
habit of most search engine is to provide specific names between apexes, in order to clearly identify
the portion of query to evaluate as a whole. Our system accepts the same query sequence (see Figure
2) and then elaborates it to discriminate the main concepts. Thus, after the query input (Query
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Figure 2: Screenshot of the Query Acquisition interface

Insertion, Figure 2), the system produces a basic sequence of main concepts in a default RDF-based
format, listed as follows:

<rdf:Class> Publication </rdf:Class>
<rdf:Class> Lasa Lab </rdf:Class>
<rdf:Class> Semantic Web </rdf:Class>

The user can modify the system setting, by loading the ontologies (previously download and
locally saved) which she/he believes more appropriate to describe the elicited concepts (Ontology
Loading, Figure 2). For instance, looking at the panel in Figure 2, the user has substituted the
tag <rdf:Class>, for the term “Lasa Lab” with the tag </foaf:group> of the foaf ontology [12]
which better explains the meaning of the term (i.e. a name of a working group), whereas the user
is changing the tag for “Semantic Web” with a tag <dc:subject> of the ontology Dublin Core [10].
The prefixes foaf and dc refer to the ontology where these meta-terms are defined. Let us note the
user could choose to not specify (because he does not have experience in the semantic web domain);
thus only the basic RDF tags rdf:Class can be associated to the stemmed words. In this case the
system works too, although no further interpretative support is given to the system, in addition to
its local acquired knowledge.

However the user can arbitrary select appropriate meta-terms, choosing the ad-hoc ontology. In
fact, once loaded the suitable ontology, the tagged ontology terms appear in the sliding window of
the combo-box, corresponding to the focused query terms (Tag Choosing, Figure 2). Thus, the input
query is ready to be further processed (Query Processing, Figure 2).

3.2 Semantical Augmentation

The user interface, shown in Figure 2 allows the specification of the input query, by adding further
details, about the meaning of query. The RDF-based tagging of the terms in the interface aims
at detecting and/or disambiguating the actual meaning of the words. In particular, the system
maintains a prefixed set of ontologies (ad-hoc defined or already existing [30, 31]), which represents
the local natural knowledge. In this phase, a specialized agent supervises the discovery of relationships
between the “atomic” terms of the initial query and the concepts in the ontologies, loaded in the
system. A sketched algorithm lists the main tasks the agent achieves as shown in the following.
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Let us suppose Q an input query composed of the sequence of terms t1, t2, . . . , th and the set O =
{O1, O2 . . . On} of reference ontologies.

INPUT: list of terms of input query Q associated to the reference ontologies:
Oi : ti, . . . , Oj : tj ;

OUTPUT: augmented Q’
Oi : t1, . . . , Oj : th;Ok : vl, . . . , Oy : vz;
where v1, . . . , vr are additional terms of reference ontologies, related semantically to the query
terms with i, j, k and y ∈ [1, n] and l, z ∈ [1, r].

for each term ti in the query Q :
if Oj is the default RDF-tag

Oy ← Agent:locate(ti, O)
else if Oj is ∈ O

vl ← Agent:findRelation(ti, Oj)

The functions labeled by the word “Agent” represents the two tasks locate(ti, O) and findRela-
tion(ti, Oj) achieved by the agents. The idea presented in the algorithm emphasizes how the agents
affect the execution: if a term is not annotated by the user (the default RDF-tagging is automatically
given by the system), the agent tries to find a match of the keywords with a concepts described in
one of the ontologies of the reference set O (task locate of the agent). In the example presented in
the previous section, for instance, the agent looks for the term “publication” and probably discovers
it in the FOAF ontology where the homonym concept appears. This match adds further meaning
to the terms which before was “unknown” to the system. Each term without annotation, is looked
up in the ontologies in order to individuate the reference domain: if a term appears in more than
one ontology, a further analysis on the remaining query terms is applied. The reference domain is
determinated by the ontology which describes more query terms. If a term is not defined in any
ontology, it will be not considered in the query evaluation and then, it will be put in a list of unknown
terms.

Otherwise, when the term is provided by annotation (by selecting the concept of a loaded on-
tology), the agent works to find some existing relationships with other concepts in the specified
ontology, in order to improve the meaning of the initial query (task findRelation of the agent). For
instance, in previous example, the term “Lasa lab”, annotated with the FOAF tag group, can be
further described by the related term member of the same ontology.

This way, the system produces additional local knowledge that represents the acquired knowledge,
obtained by the semantic augmentation of the query.

3.3 Query Profiling

The system translates the input queries into vector-based representations, before of storing them
locally. These vectors compose a data matrix and will be the input of the Clustering activity, in the
start-up phase. Specifically, each query is a sequence of terms, composed of its own terms as well
as those elicited by the enrichment in the Semantical Augmentation activity. In order to build the
data matrix, a set of common terms (among the terms of all the queries) should be defined; this set
is called reference set. The criterion is to select the most recurring terms among all the obtained
queries terms. Thus, once defined the reference set, the vectors, associated to the input queries are
built: each element is a weight value, in corrispondence to a query term. More formally:

Definition 1: The query can be defined as Qi = {(t1, wi,1), (t2, wi,2), . . . , (tn, wi,h)}, where ti
is a query term (original or added term) and wi,j is the weight associated to the term ti in Qi.
Wi = {wi;1, wi;2, . . . , wi;h} represents the feature vector of the query Qi.
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These weights are computed by measuring the relationships existing between the terms of the
current query and the terms belonging to the reference set. The following algorithm of selection
computes the weights of both the terms typed by the user (come from the initial query) and the
“derivative” terms, obtained by ontological relationships.

Definition 2: More specifically, let us suppose t is a term of the input query and t′ is a term
in the reference set T;

• the term t’ comes from the original query ⇒ weight(t′) = wi,t′ = 1

• the term t’ is derivative and f(t, t’) 6= 0 ⇒ weight(t′) = wi,t′ = f(t, t′)

where the function f(t, t’) ∈ [0, 1] describes a taxonomic comparison between the terms t and t′ and
can assume the following values:

f(t, t′) =





1 t = t′
1
2 + 1

2∗s+1 if ∃ a relationship between t and t’
0 t 6= t′

where s represents the distance in terms of number of edges included between the terms t and t′ in
the relationships of the reference ontology O.

Hence, given a collection of queries Q ={Q1, Q2, . . . , Qn}, each query Qi is represented by
an h-dimensional vector of weight Wi = {wi,1, . . . , wi,j , . . . , wi,h}, where each element wi,j is the
weight associated to a term tj ∈ T with j = 1, . . . , h. These vectors form a data matrix n × h
which is the input of the clustering algorithm, as described in the following. Let us observe the data
matrix is built in the start-up phase, when an initial arrangement of submitted queries (clustering) is
required. At the regime phase, each incoming input query is translated in vector too, for guarantying
homogeneous comparisons with the previous clustered queries. This task is entrusted to a task-
oriented agent which carries out this comparison: it inspects the clustered queries, choose those
queries (one or more) which are more similar to the current one (as described in the following) and
then exploits them in the web search activity (Query Submission and Filtering).

3.4 Clustering

The clustering algorithm achieves a partitioning of given data into clusters, so to group queries which
present similarity. In general a partition holds two properties: homogeneity within the clusters (data
in a cluster must be similar) and homogeneity between clusters (data of different clusters have to be
as different as possible).

Our clustering approach is based on the well-known Fuzzy C-Means algorithm (shortly, FCM)
[3]. The FCM algorithm takes as input a collection of patterns of a universe U (in our case, the
collection of queries Q) in form of matrix and produces fuzzy partitions. The output is a partition
of the given patterns (queries) into (prefixed) c clusters. The FCM algorithm recognizes spherical
clouds of points (clusters) in a multi-dimensional data space and each cluster is represented by
its center point (prototype). This process is completely unsupervised, aimed at identifying some
inherent structures in a set of data.

More formally, the FCM algorithm aims at minimizing the objective function constituted by the
weighted sum of the distances disti,j between data points xi = (xi,1, xi,2, . . . , xi,h) and the prototypes
vj = (vj,1, vj,2, . . . , vj,h), according to this formula:

J(U, c) =
c∑

i=1

n∑

j=1

um
i,j(disti,j)2 (1)
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where c ≥ 2 is the number of clusters, ui,j ∈ [0,1] is the membership degree of xj (j=1, . . . ,n) in the
i-th cluster Ai (i=1, . . . , c), and m > 1 is the fuzzifier, which controls the quantity of fuzziness in
the classification process (common choice of fuzzifier is m = 2) and finally disti,j

disti,j = dist(xi, vj) =
√

(||xi,−vj ||2) (2)

just represents the euclidean distance between the data xi and the center vj of the j-th cluster.
In details, U = (ui,j) is a c × n matrix of cluster memberships satisfying some constraints. In

particular, let us denote Mfc a family of fuzzy partition matrices:

Mfc =



U | ui,j ∈ [0, 1];

c∑

i=1

ui,j = 1; 0 <
n∑

j=1

ui,j < n, ∀ i, j



 , (3)

and V = (v1, . . . , vc) is the ordered collections of cluster centers.
The data matrix is composed of n queries, each one with h values wi,k (i = 1, . . . , n and k =

1, . . . h), associated to the corresponding term. In our approach the generic vector x is a query p ∈ P
as defined above, whereas the center v of the cluster represents the sample topics of that cluster.
The FCM algorithm produces clusters which represent the main topics or subjects, elicited by the
collected queries. As said, the output of clustering is a fuzzy partitions, where each cluster describes
topics or subjects (relative to the queries terms). Consequently, a straightforward mapping can be
defined, which associates these clusters to classes (or categories) of topics. Furthermore, each query
of the input set assumes a membership value for each cluster. When the memberships of a query
is equally distributed among more clusters, it means that query does not reflect the topics of no
specific class; thus it is discarded and stored it in a “dump” category.

In our system, the clustering is an activity which is periodically re-evaluate and eventually re-
executed, when, for instance, the number of queries not well represented by no defined categories
increases. Let us observe the distance disti,k, defined in (2) is exploited by the agents to measure
the distance between the current query and those clustered ones. In fact, the queries closer to the
input one (in terms of minimal distance) are more similar to it and are candidate to be exploited in
the submission.

3.5 Query Submission and Filtering

The data flow coming from Query Profiling and Query Acquisition & Analysis converges in the
Query Submission activity: substantially the original query as well as the closest clustered queries
(one or more) are separately “submitted” to a search engine. The results of the traditional search
are further processed by the agents: they achieve a spidering activity, for each submitted query:
inspect each returned Web page, and cross inner links, (given a fixed depth level of navigation)
and select the pages that match completely/partially the input topic. Before of presenting to the
user, the Filtering activity combines the relevant links associated to the page crossed by the spiders,
according to this algorithm:

INPUT: input query Q
list of page links L1, L2, . . . Ln

OUTPUT: ranked list of L1, L2, . . . Lk, with k ≤ n

for each link in the
⋃

(L1, L2, . . . Ln)
for each term ti in the query Q

occi,j(ti) ← Agent:explores(Lj , depth)
(computes the occurrences of ti, occi,j(ti) in Lj

and in all the joint pages, crossing up at fixed depth level of navigation)
compute wi,j(ti) according to Definition 2 in Section 3.3
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reli,j(ti) = occi,j(ti) ∗ wi,j(ti)
W (Lj) =

∑
i reli,j(ti)

sort decreasingly W (Lj)
return the first Lj , j = 1, . . . ,k, according to the computed rank.

Thus, the agents compute the occurrences of relevant terms, for each the visited pages, during
their spidering activity. The algorithm computes the overall relevance value reli,j(ti) associated to
each term, then the final value is assigned to the link Lj of the joint web page. The first k pages links
(ranked according to their weight W ) are presented to the user, arranged in a web page arranged in
a web page typically returned by a search engine.

In this version the approach does not apply a further analysis on the possible user feedback.

4 Performance evaluation

The system performance is evaluated, by considering the start-up and regime phases of activities. In
the start-up phase, the performance evaluation is based on the clustering execution of the collected
queries. Final goal, indeed is to evaluate the effectiveness of the system, once the training phase is
completed rightly. The clustering has been executed on different samples of input queries, by trying
to extract the main categories of topics. Afterward, in the regime phase, the computed categories
have been used for detecting the proximity of the current input query with the clustered queries.
The testing set simulates the search activity of web communities of users. In fact, our opinion is the
described system can be efficiently employed for community-based personalization of Web search
results. In this environment, the argumentations often are based on a limited number of topics,
bound to the common context of the groupings of people which share expertise and interests on
specific subjects. This restriction meets the limited though manifold set of terms used in the initial
training (which is naturally limited to represent only a set of concepts); on the other hand, the
context of web communities is suitable to assess the performance of our system.

Let us emphasize the system is still in progress. Therefore the testing activity is rather con-
strained. However, the start-up phase, which carries out a classification of input queries, is evaluated
through the two well-known measures: the precision and the recall. In our approach, we evaluate
the recall as the ratio of the number of relevant, well-classified queries to the total collection of
collected queries. A “well-classified” query is a query that, after the clustering, will appear in the
expected class. Thus we have a set of predefined categories of topics. Let us note the produced
clustering is strongly related to the human interpretation of the given sample of queries: the clusters
represent arguments and topics subjectively evaluated, bearing in mind what the cluster, and hence
the corresponding class, represents for the humans. Thus, according to the set of input queries,
the clustering algorithm produces some clusters that are in correspondence with categories/classes
interpreted by humans.

More formally, given a set of the prior expected categories {A1, A2, . . . , An} of topics (based
on a wide though limited set of query subjects); let us suppose that after the clustering execution,
the associated discovered clusters are{C1, C2, . . . , Cn}. Let us express the individual recall ri as
follows:

ri =
|Ai ∩ Ci|
|Ai| =

well classified queries in Ci

all the queries in Ai
. (4)

Thus, the overall recall can be expressed the weighted average of individual recalls (substituting the
(4)) [20]:
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R =
∑n

i=1 ri ∗ |Ai|∑n
i=1 |Ai| =

∑n
i=1 |Ai ∩ Ci|∑n

i=1 |Ai|

=
∑n

i=1 well classified queries in Ci

all the queries
=

well classified queries

all the queries
.

(5)

The same way, the precision pi represents the percentage of all the well-classified queries, with
respect to the expected clusters:

pi =
|Ai ∩ Ci|
|Ci| =

well classified queries inf Ci

all the queries in Ci
. (6)

The overall precision P is the weighted average of individual precision

P =
∑n

i=1 pi ∗ |Ai|∑n
i=1 |Ai| . (7)

Let us note the recall and precision are two measures exploited for the evaluation of crisp clus-
terings.

Herein we assume that a query belongs to that cluster whose membership is the highest. The
queries, whose membership is equally distributed among all the clusters, are not considered. These
measures evaluate the clustering performance (in start-up phase); in the regime phase instead, the
performance of the system is based on the query response, given a set of submitted queries. Herein,
we exploit the more classical definition of recall and precision in the Information Retrieval domain.

Indeed, according to [32], we consider the micro-average of the individual precision-recall curves,
exploiting a number λ of steps up to reach the highest recall value. Thus, let Q be the set of queries
and D the set of all the relevant pages (or better, all the links to the web pages that match the
queries). The micro-averaging of recall and precision at step λ (with λ ∈ N) is defined as follows:

Recλ =
∑

R∈Q

|DR ∩Bλ,R|
|D| , P recλ =

∑

R∈Q

|DR ∩Bλ,R|
|Bλ| (8)

where DR is the answer set of pages for given query request R ∈ Q, Bλ is the set of retrieved pages
at the step λ and BλR is the set of all relevant pages, retrieved at the step λ.

4.1 The experimental results

In the light of the study described in the previous section, firstly the quality of clustering in the
start-up phase is estimated. Table 1 shows the performance of some clustering executions, expressed
in term of recall/precision. For each row, some parameters have been set: the number of submitted
queries, the retrieved pages, the reference terms (belonging to the reference set), the number of clus-
ters; then the evaluation of recall and precision, expressed in percentage. In general, the clustering
performance presents interesting results: the computed values in terms of recall and precision are
rather accurate for the most of experiments.

Table 2 shows the main categories elicited by this experimentation: according to the topics of
terms in the reference set, a pertinent category is associated. Furthermore, for each category, the
more relevant sample of documents associated to the first three page links of returned list is shown.
Each test execution can exploit a different selection of terms in the reference set.
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Exp. No. #query # pages # reference terms #clusters Recall Precision
1 40 550 13 3 94.8% 96%
2 50 100 18 3 95.1% 97.2%
3 70 100 20 5 93.7% 94.7%
4 100 200 30 5 96.9% 97.1%
5 120 300 32 6 97.7% 92.2%
6 150 370 38 6 97.9% 92.1%

Table 1: Evaluation measures of clustering performance

CatNo. common feature words* sample documents Category Name
1 PDA, palm, bid, battery, 1. Web Portal of the auction communities Auction/

UBS, connectivity, 2. uBid.com shopping
operative, system 3. onSale.com

2 craft, soup, candle, 1. The crafts fair online Craft
handmade, gift, soy 2. Artsefest.com
fragrance, tart, scent 3. The Woodland Candles

3 Galaxy, Solar, Stars, 1. Introduction to Astronomy Astronomy
Chart, Sun, 2. NASA Watch: Space news
System, Planet 3. Astronomy Magazine

4 Web, interchange, 1. W3C Semantic Web Activity Semantic Web
Community, RDF, 2. Semantic Web roadmap

Ontology, URI, 3. Portal of the Semantic Web Community
technology

5 music, information, 1. Welcome to MusicBrainz! Music
lyric, artist, list, 2.commUNITY music
player, musician 3. Internetional Journal of Community Music

instrument, chorus
6 golf, player, club, winner 1. Welcome to the tee1up golf society web site Sport:Golf

competition, schedule, 2. GOLF- Welcome to Scottish Putting
tournament, tip, draw 3. Foxtail Men’s Golf Club

* composed of terms of original query and the additional ontological terms

Table 2: The computed clusters and the associated categories

The regime phase evaluates a further hundred of queries submitted to the system: we measure
the improvement of the system, by considering the “acquired knowledge”, gathered by the start-up
phase. Thus, the original query submitted by the user is enriched by some terms belonging to the
closest queries, among all the clustered ones. Figure 3 shows the graph of micro-averaging of recall
and precision; we have fixed λ= 13 and we have evaluated these measures at each steps λ. Let
us note at each step λ, we compute recall and precision by considering a subset of retrieved pages
which is incremented at each step λ, until to get (at the step λ=13) the complete set of retrieved
web pages (more precisely, the set of the links associated to the retrieved web pages). In this case
indeed, the recall assumes value 1 (i.e. all the relevant pages are retrieved).

According to the characterization of these two measures, there is a reverse connection between
these two measures: an higher precision usually implies a lower recall and vice versa. In fact, on the
average, the recall assumes low values (less than 0.6) when the precision assumes an high and rather
constant value (in the range [0.7, 0.8]). Successively, the recall increases, even though the precision
never assumes values lower than 0.4.
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Figure 3: Micro-averaging of recall/precision (with λ = 13)

5 Conclusions

The gap existing between the desired information and the gathered one reveals limits of semantical
rather than syntactic interpretation. Research studies and challenging endeavors are yet in progress
to improve the query results of web search engines, through the interpretation of the user request,
although the performance in terms of page relevance and retrieval capabilities is yet far from to
being acceptable.

The work presents an approach for improving the effectiveness of the web search. The system
exploits techniques of crawling often used by the common web search engines. The add-on of this
system is to interpret the query submitted by the user and to enrich it with related terms. In
addition the system suggests some other queries (among those ones stored locally) that could be
similar to the given one. Indeed, the basic idea is “if the user query is X, probably further similar
queries like X and Y or Z, where Y and Z are semantically related to the information X could
be relevant for him”. Our approach constitutes a support for the web search activities of the user:
it improves the accuracy of reply during the web search activity, by exploiting the “knowledge”
acquired by the system in the start-up phase. Anyway, it is important to build a good sample of
queries to guarantee the system provides satisfactory results in terms of the performances and the
response to the input query. In this first analysis the system has been evaluated in the context of web
communities, even though the system maintain, through the Query Profiling activity, some grouping
of users, better called “virtual” communities of users which present similar inclinations, interests
and topics, according to the interpretation of submitted queries. As future extensions, we would
like to evaluate the feedback of the users (for instance, the page links clicked in the list returned by
the search engine), in order to benefit of the the exploitation of such information for improving the
query characterization.
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