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Abstract

We emphasize the need to model rigorously uncertain coarse data in systems such as decision-
support systems and intelligent machines. We exemplify the framework of continuous lattices by
formulating human perception-based information as coarsening schemes using fuzzy partitions.
Specifically, the formal concept of random fuzzy sets is treated as random elements with values in
the space of upper semicontinuous functions which is endowed with a continuous lattice structure.
As a result, random fuzzy (closed) sets on locally compact, Hausdorfff and second countable spaces
are special random elements taking values in separable metric spaces. c© 2007 World Academic
Press, UK. All rights reserved.
Keywords: Choquet theorem, coarse data , continuous lattices, random sets, random fuzzy sets

1 Introduction

In building systems from empirical data we often face coarse data in various forms. For example,
in biostatistics or medical statistics, data are censored, grouped or missing; in bioinformatics, data
are not directly observable (e.g. in the problem of identification of DNA sequences where hidden
Markov processes are usually used to model the observable data); in intelligent control, linguistic
control rules are imprecise due to the fuzziness in our natural language; in social systems, information
is uncertain due to randomness of occurences of events as well as to the fuzziness in the meaning
representation of terms. The most general form of coarse data (i.e. data with low quality) seems to
be random fuzzy sets.

In order to carry out inference procedures based upon random fuzzy sets it is necessary to define
rigorously this concept. The theory of random closed sets has been rigorously defined by Matheron
(1975) in which the counter-part of the Lebesgue-Stieltjes theorem is the Choquet theorem serving
as a way to specify distribution laws, and hence suggesting models for random set observations.
Extending ordinary (closed) sets to fuzzy sets via indicator functions of sets leads to fuzzy sets whose
membership functions are upper semicontinuous. Thus, we are led to topologize the space of upper
semicontinuous functions in order to define random elements with values in it. A familiar approach
to topologize a functional space in probability theory is to search for some plausible metric on it. For
example, the space C[0, 1] of sample paths of a Brownian motion is equiped with the supremun norm;
the space D[0, 1] of functions that are right continuous with left limits of jump processes is equiped
with the Skorohov’ s metric (see e.g. Billingsley, 1968). Attempts to follow this approach when
facing USC(X), the space of real-valued (or with values in [0, 1]), upper semicontinuous functions,
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defined on a locally compact, Hausdorff and second countable (LCHS) space X (like Rd), only led
to the restriction of USC(X) to some subsets of it (see e.g. Li et al, 2002). Inspired by research on
upper semicontinuous random functions (e.g. Norberg, 1989), we will make it explicitly here that
the whole space USC(X) is metrizable in the Lawson topology of the continuous lattice USC(X)
(for background on continuous lattices, see Gierz et al, 2003). While a version of Choquet theorem
can be obtained in the context of continuous lattices, we point out that the Choquet theorem is also
obtained as a direct derivation of that in the theory of random closed sets using hypographs.

2 Random Closed Sets

As random elements, random closed sets on LCHS spaces are generalizations of random vectors.
The theory of random closed sets was developed fully in Matheron (1975) as follows. Let X be a
LCHS space. We denote by F(X),O(X),K(X) or simply F ,O,K the spaces of closed, open and
compact subsets of X, respectively. The so-called hit-or-miss topology on F is generated by the
base consisting of

FK
G1,...,Gn

= FK ∩ FG1 ∩ FG2 ∩ ... ∩ FGn , for n ∈ N, K ∈ K, Gi ∈ O
where FA = {F ∈ F , F ∩A 6= ∅} , FA = {F ∈ F , F ∩A = ∅}.

With this topology, F is a compact, Hausdorff and second countable topological space and
hence metrizable. When X = Rd, a compatible metric on F is the stereographical metric (see
Rockaffelar and Wets, 1984) . For general LCHS spaces, concrete metrics are obtained similarly by
using Alexandroff compactification (see Wang and Wei, 2007).

By a random closed set we mean a random element S, defined on some probability space (Ω,A, P ),
with values in the measurable space (F , σ(F)), where σ(F) is the Borel σ-field generated by the
hit-or-miss topology. The probability law of S is the probability measure PS on σ(F) given by
PS = PS−1 as usual. As in the case of random vectors (i.e., random elements with values in
Rd), where the one-to-one correspondence between probability measures on σ(Rd) and distributions
functions (the Lebesgue-Stieltjes theorem) serves as a practical tool to propose models for random
vectors, there is an one-to-one correspondence between probability measures on σ(F) and capacity
functionals (the Choquet theorem).

3 Random Fuzzy Sets

Recall that a fuzzy subset of X is a mapping f from X to the unit interval [0, 1]. For such mappings
to generalize closed sets, they have to be upper semicontinuous (usc) so that their level-sets Aα(f) =
{x ∈ X : f(x) ≥ α}, α ∈ [0, 1], are closed. Thus, formally, by a random fuzzy set, we mean a fuzzy
subset whose membership function is usc. To be rigorous, we need to topologize the space USC(X)
(from now on we suppose functions takes values in [0, 1]).

If f : X → [0, 1], then f can be identified with the level-sets Aα(f) for α ∈ Q1 = Q ∩ [0, 1]
(rationals in [0, 1]). Thus, the mapping ψ : USC(X) → ∏Fα, the countable cartesian product of
identical copies Fα of F , sending f to (Aα(f) ,α ∈ Q1), is an embedding. Thus one hopes to induce
a topology on USC(X) from the product topology of

∏Fα which is a compact and second countable
space. Unfortunately, the induced topology does not make USC(X) a compact space. For a counter
example, see Nguyen et al (2006).

As mentioned in the introduction, the above embedding process is only satisfactory if one restricts
the space USC(X) to a subset consisting of usc functions with compact supports.
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4 The Space of Closed Sets as a Continuous Lattice

It is known that there is a canonical Hausdorff and compact topology (called the Lawson topology)
on every continuous lattice, and the space of closed sets of a Hausdorff and locally compact space
is a continuous lattice (see Gierz et al, 2003). We give here essential background details for LCHS
space X establishing that the space F is a compact, Hausdorff and second countable space whose
Lawson topology coincides with the hit-or-miss topology. As we will see in the next section, the
space USC(X) is also a continuous lattice, and hence its Lawson topology is a natural topology to
consider.

Recall that if (L, ≤) is a poset, then x is said to be way below y, denoted as x ¿ y, iff for all
directed sets D ⊆ L for which supD exists, the relation y ≤ supD always implies ∃d ∈ D such that
x ≤ d. Note that in a complete lattice, x ¿ y iff for any A ⊆ L, y ≤ supA implies the existence of
a finite subset B ⊆ A such that x ≤ supB.

A lattice (L, ≤) is called a continuous lattice if L is complete and satisfies the axiom of approx-
imation: x = sup ⇓ x where ⇓ x = {u ∈ L : u ¿ x} for all x ∈ L.

Note that (F(X),⊆) is a complete lattice but not continuous in general, where ∧{Fi : i ∈ I} =
∩{Fi : i ∈ I}, and ∨{Fi : i ∈ I} = the closure of ∪{Fi : i ∈ I}.

To see that, take X = R, we notice that if A ¿ R, then for any subset B of A i.e B ⊆ A, we
also have B ¿ R (just use the equivalent condition of the way-below relation). Then any singleton
closed set, e.g {0}, is not way-below R. Indeed,

∨
n∈N{(−∞,−1/n]∪ [1/n,∞)} = R, but we can not

find any finite subset A of {(−∞,−1/n] ∪ [1/n,∞)}n∈N such that {0} ⊆ ∨
A. Therefore, the only

closed set that is way-below R is the empty set. Then sup{A ∈ F(R) : A ¿ R} = sup{∅} = ∅ 6= R.
However, for locally compact X, (F(X),⊇) is a continuous lattice. Indeed, for any F ∈ F(X),

it is enough to show that F ≤ sup{A ∈ F(X) : A ¿ F}, i.e F ⊇ ∩{A ∈ F(X) : A ¿ F}
or F c ⊆ ∪{Ac ∈ F(X) : A ¿ F}. For any x ∈ F c : open; since X is locally compact, there
exists a compact set Qx ⊆ F c such that its interior Wx containing x. Let A = W c

x ∈ F(X), then
Ac = Wx ⊆ Qx ⊆ F c. It follows that A ¿ F ; and therefore, x ∈ ∪{Ac ∈ F(X) : A ¿ F} by the
following lemma.

Lemma 1 Let X be a topological space, and let L = F(X)op = (F(X),⊇).
(i) If A,B ∈ L, and if there is a compact set Q ⊆ X such that Ac ⊆ Q ⊆ Bc, then A ¿ B.
(ii) Suppose now that X is locally compact. Then A ¿ B implies the existence of a compact set

Q ⊆ X such that Ac ⊆ Q ⊆ Bc (i.e (i) holds conversely).

Proof. (i) For any {Fi}i∈I ⊆ F(X) such that B ≤ sup{Fi}i∈I , i.e., B ⊇ ∩i∈I{Fi} equivalently,
Bc ⊆ ∪i∈IF

c
i . Since Q ⊆ Bc, we get Q ⊆ ∪i∈IF

c
i . But Q is compact, so there exists a finite

subset of {F c
i }i∈I , say, {F c

i }n
i=1 such that Q ⊆

n⋃
i=1

F c
i . Hence, Ac ⊆

n⋃
i=1

F c
i , i.e A ⊇

n⋂
i=1

Fi or

A ≤ sup{Fi : i = 1, ..., n}. Therefore, A ¿ B.
(ii) Since X is locally compact, each point b ∈ Bc has a compact neighborhood Qb ⊆ Bc such

that its interior Wb contains b. Then

Bc = ∪{Wb : b ∈ Bc} or B = ∩{W c
b : b ∈ Bc} = sup{W c

b : b ∈ Bc}.
By assumption A ¿ B, we have A ≤ sup{W c

b1
, ..., W c

bn
} where bi ∈ Bc, i = 1, ..., n. This means

A ⊇
n⋂

i=1

W c
bi

, or equivalently Ac ⊆
n⋃

i=1

Wbi
⊆

n⋃

i=1

Qbi
⊆ Bc.

Then the set Q =
n⋃

i=1
Qbi

is the required compact set.
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Recall that the Lawson topology on a continuous lattice L, denoted by Λ(L), has a subbase of
the form ⇑ x = {y ∈ L : x ¿ y} or L\ ↑ x = {y ∈ L : x � y} where x ∈ L.

Note: the sets of the form ⇑ x = {y ∈ L : x ¿ y}, x ∈ L form a base for a topology that we call
the Scott topology. The space (L,Λ(L)) is written ΛL.

Lemma 2 Let X be a locally compact topological space. Then for any compact set K contained
in an open set A, i.e. K ⊆ A ⊆ X, there exists an open set B and a compact set K

′
such that

K ⊆ B ⊆ K
′ ⊆ A.

Proposition 3 Let L be the continuous lattice F(X)op. Then the Scott topology of F(X)op has as
a base the sets of the form

{F ∈ F(X) : F ∩K = ∅}, where K ∈ K.

Proof. First, we need to show that for any compact subset K ⊆ X, {F ∈ F(X) : F ∩K = ∅} is an
open subset of the Scott topology. We will show that

{F ∈ F(X) : F ∩K = ∅} =
⋃

Gi⊆KcGi∈F(X)

⇑ Gi =
⋃

Gi⊆Kc

Gi∈F(X)

{F ∈ F(X) : Gi ¿ F}.

For any Gi ⊆ Kc(i.e K ⊆ Gc
i ), it easy to show that ⇑ Gi ⊆ {F ∈ F(X) : F ∩K = ∅}. Indeed, for

any F ∈ F(X) such that Gi ¿ F. By Lemma 1 (ii), there is a compact set Ki with Gc
i ⊆ Ki ⊆ F c,

then we have K ⊆ F c, i.e., F ∩K = ∅.
Conversely, for any F ∈ F(X) such that F ∩K = ∅, i.e., K ⊆ F c: open. By the Lemma 2, there

exists an open set B and a compact set K ′ such that K ⊆ B ⊆ K
′ ⊆ F c.

Let G = Bc (or B = Gc), then we have K ⊆ Gc ⊆ K
′ ⊆ F c which implies G ¿ F and G ⊆ Kc.

Therefore,
F ∈

⋃

Gi⊆KcGi∈F(X)

{F ∈ F(X) : Gi ¿ F}.

Second, for any Scott open set U, U can be written as
⋃{⇑ A : A ∈ U}. Now for any F0 ∈ U ,

i.e F0 ∈⇑ A for some A ∈ U, we have A ¿ F0. This means that there is a compact set K such that
F0 ∩K = ∅ and A ∪K = X. Hence, F0 ∈ {F ∈ F(X) : F ∩K = ∅}. Now for any F ∈ {F ∈ F(X) :
F ∩K = ∅}, then we have F ∩K = ∅ and A ∪K = X which imply A ¿ F. Hence, F ∈⇑ A ⊆ U.

The following result shows that the hit-or-miss topology coincides with the Lawson topology on
(F(X),⊇).

Proposition 4 The Lawson topology of F(X)op, denoted by τF , has a subbase consisting of sets of
the form

{F ∈ F(X) : F ∩K = ∅} and {F ∈ F(X) : F ∩ U 6= ∅}, where K ∈ K and U ∈ G.

Proof. We only need to verify that for any A ∈ F(X), F(X)\ ↑ A = {F ∈ F(X) : F ∩Ac 6= ∅} and
then we just let U = Ac.

Indeed, since ↑ A = {F ∈ F(X) : A ≤ F} = {F ∈ F(X) : F ⊆ A}, we have

F(X)\ ↑ A = {F ∈ F(X) : F " A} = {F ∈ F(X) : F ∩Ac 6= ∅}.
In fact, {F ∈ F(X) : F ∩K = ∅}K∈K is closed under finite intersection, so the Lawson topology

of F(X)op has as a base the sets of the form {F ∈ F(X) : F ∩K = ∅ and F ∩ Ui 6= ∅, i = 1, ..., n},
where K ∈ K and Ui ∈ G.
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Proposition 5 For a LCHS space (X,G), the space F(X)op is compact, Hausdorff and second
countable (and hence metrizable).

Proof. By the standard result, namely, the Lawson topology of any continuous lattice is compact
and Hausdorff, we only need to show that F(X) is second countable.

Recall that if X is locally compact Hausdorff and second countable, then
(i) it admits a countable base of opens {Un} with compact closure (i.e. relative compact);
(ii) any compact set K ⊂ X admits a countable fundamental system of open neighborhoods

G1, G2, ..., and it is possible to suppose that the sequence {Gn} is decreasing in X. In other words,
for any open set G ⊃ K, the inclusion Gn ⊂ G holds for n large; In particular, K = ∩Gn;

(iii) for any closed set F and any compact set K such that F ∩K = ∅, there exist two disjoint
open sets G and G

′
with G ⊃ F and G

′ ⊃ K. Notice that X is normal, and that any compact subset
K of a Hausdorff space is closed;

(iv) for any open set G, there exists an increasing sequence of relative compact and open sets
{Bn} with B̄n ⊂ Bn+1and G = ∪Bn = ∪B̄n+1. In particular, any compact set K ⊂ G is contained
in Bn for n large;

(v) there exists a countable family B of relative compact and open sets in X such that each open
set G is the union of the sets B ∈ B satisfying B̄ ⊂ G.

Let B be a countable base of the topology G on X such that each B ∈ B is a relative compact
set, and each G ∈ G , G =

⋃
i∈I

Bi, Bi ∈ B and B̄i ⊆ G. Let τB be the class of subsets F D̄1∪...∪D̄k
B1,...,Bm

of F ,

m and k integers ≥ 0, B1, ..., Bm, D1, ..., Dk ∈ B.
The class τB is countable, and it suffices to show that τB is a base for τF .

Notice that each F D̄1∪...∪D̄k
B1,...,Bm

is an open set of (F , τF ).
Let F ∈ F be a closed set, and FK

U1,...,Un
(K ∈ K, U1, ..., Un ∈ G) an open neighborhood of F in

(F , τF ). We need to find V ∈τB such that F ∈ V ⊆ FK
U1,...,Un

Case 1: F = ∅. Then n = 0,and we may choose B ∈ B such that K ⊆ B̄. Let V = F B̄ ∈ τB,
then F ∈ F B̄ ⊆ FK .

Case 2: F 6= ∅.For each i = 1, ..., n, we choose a point xi ∈ F ∩ Ui and an open set Bi ∈ B such
that xi ∈ Bi ⊂ B̄i ⊂ Ui ∩Kc.

Since F ∪ (
n⋃

i=1
B̄i) and K are disjoint, we can find two disjoint open sets G1 =

⋃
Dj (where

Dj ∈ B) and G2 such that (F ∪ (
n⋃

i=1
B̄i)) ⊆ G2 and K ⊆ G1.

By the compactness of the set K, we have K ⊆
k⋃

j=1
Dj ⊆ G1 ⊆ Gc

2, D1, ..., Dk ∈ B; by definition

of the closure,
k⋃

j=1
Dj ≡

k⋃
j=1

D̄j ⊆ Gc
2 and so (

k⋃
j=1

D̄j ) ∩ G2 = ∅. Thus, F ∈ F D̄1∪...∪D̄k
B1,...,Bn

and

F D̄1∪...∪D̄k
B1,...,Bn

⊆ FK
U1,...,Un

.

5 Upper Semicontinuous Functions as a Continuous Lattice

In this section, X is LCHS and USC(X) is the space of all usc functions from X to [0, 1].

Proposition 6 USC(X) is a complete lattice but not continuous with the poinwise order ≤
f ≤ g, i.e., f(x) ≤ g(x) ∀x ∈ X,

where ∧
j∈J

fj = inf
j∈J

fj( fj ∈ USC(X), j ∈ J).
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Proof. Let f = inf
j∈J

fj , to show USC(X) is a complete lattice it is enough to show that f ∈ USC(X)

i.e for any r ∈ [0, 1], {x : f(x) < r} is open.
Indeed, {x : f(x) < r} = ∪

j∈J
{x : fj(x) < r} and since each {x : fj(x) < r} is open, {x : f(x) < r}

is also open. To see (USC(X),≤) is not a continuous lattice, consider the following example. Take
f(x) = 1,∀x ∈ X. We will see that the only usc function that is way-below f is the zero function.
Indeed, to show the statement above it is enough to show that any r1{single point}, for example 1

21{0},
is not way-below f.

Choose fn(x) = 1(−∞,−1/n)∪(1/n,∞), then ∨fn = 1, but for any ∨
finite

fn(0) = 0. Hence, 1
21{0} �

∨
finite

fn which implies 1
21{0} is not way-below f.

However, let X = R, and F ⊂ USC(X), where F = {1[1/n,∞) : n ∈ N}, while each 1[1/n,∞) is
usc, but ∨F : x → sup{1[1/n,∞)(x) : n ∈ N} = 1(0,∞)(x), with 1(0,∞) /∈ USC(X). Thus the pointwise
supremum is not closed in L.

Hence, to find the ∨F in USC(X), observe the following:
Fact 1: If {Mα : α ∈ I} be a family of non-empty closed sets in X such that Mα ⊇ Mβ for all

α < β, then f(x) = sup{α ∈ I : x ∈ Mα} is an upper semicontinuous function.
Fact 2: For any function f : X → I, we have f(x) = sup{α ∈ I : x ∈ Mα}where Mα = {x ∈ X :

f(x) ≥ α} is the α-level set of f.

Now for F = {fj}j∈J ⊆ USC(X), we define f(x) = sup{α ∈ I : x ∈ Mα}, where Mα =
U

j∈J
{y : fj(y) ≥ α}
We will verify that f = ∨F. Indeed, first, by Fact 1, f ∈ USC(X).
Second, ∀x ∈ X, we have x ∈ U

j∈J
{y : fj(y) ≥ fi(x)} ≡ Mfi(x) for any i ∈ J, so f(x) ≥ fi(x) =⇒

f ≥ fi, ∀i ∈ J. For any g ≥ fi, ∀i ∈ J, i.e., g(x) ≥ fi(x), ∀x ∈ X, we need to show that g(x) ≥ f(x).
By the Fact 2, g(x) = sup{α ∈ I : x ∈ Mg

α}, where Mg
α = {y ∈ X : g(y) ≥ α} is the α-level set of g,

we only need to verify that

sup{α ∈ I : x ∈ Mg
α} ≥ sup{α ∈ I : x ∈ Mα}.

For any α, it is easy to show that Mg
α ⊇ Mα. Indeed, since Mg

α is closed, it is enough to show that
Mg

α ⊇ U
j∈J
{y : fj(y) ≥ α}. For any y ∈ U

j∈J
{y : fj(y) ≥ α}, i.e fj(y) ≥ α for some j. Therefore,

g(y) ≥ α i.e y ∈ Mg
α.

Note: we can use this representation to see that

∨
n∈N

1(−∞,−1/n)∪(1/n,∞)(x) = 1 for any x ∈ R.

Lemma 7 For any f ∈ USC(X), f = inf
r,K (compact)

{gr,K : f(y) < r,∀y ∈ K}, where gr,K(x) = r if

x ∈
◦
K and = 1 otherwise.

Proof. For any x ∈ X,

* Case 1: f(x) = 1, then gr,K(x) = 1 for all such (r,K). (if x /∈
◦
K =⇒ gr,K(x) = 1, and if

x ∈
◦
K there is no such an ”r” such that f(y) < r,∀y ∈ K)
* Case 2: f(x) < 1.

+ If x ∈
◦
K, then f(x) < r = gr,K(x).

+ If x /∈
◦
K, then f(x) < 1 = gr,K(x) =⇒ f(x) is a lower bound of {gr,K(x)}.
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Now for any ε > 0, we need to show that f(x) + ε is no longer a lower bound of {gr,K(x) i.e., we
need to find r0,K0 such that

f(y) < r0, ∀y ∈ K0 and f(x) + ε > gr0,K0(x).

Indeed, if we take r0 = f(x) + ε/2, then x ∈ {y ∈ X : f(y) < r0 = f(x) + ε/2} : open.

By local compactness, there is a K0 (compact) ⊆ {y : f(y) < r0} such that x ∈
◦

K0. Thus,
gr0,K0(x) = r0 < f(x) + ε.

Proposition 8 L = (USC(X),≤op) is a continuous lattice, where f ≤op g iff f(x) ≥ g(x), ∀x ∈ X.

Proof. L is a complete lattice with ∨
j∈J

fj = inf fj and ∧
j∈J

fj = h where h(x) = sup{α ∈ I : x ∈ Mα},
with Mα = U

j∈J
{y : fj(y) ≥ α}.

To show the continuity of L, we need to show that for any f ∈ L, f ≤op ∨{g : g ¿ f}, i.e.,
inf{g : g ¿ f} ≤ f = inf

r,K
{gr,K : f(y) < r,∀y ∈ K}. So, we only need to show that gr,K ¿ f for

any r,K such that f(y) < r,∀y ∈ K. For any Fdirected ⊆ L, say F = {fj}j∈J , such that f ≤op ∨F,
i.e f ≥ inf F pointwise. We need to find h ∈ F such that gr,K ≤op h i.e gr,K ≥ h pointwise. With
such a (r,K) : r > f ≥ inf F pointwise on K, we will show that ∃h ∈ F such that r > h on K, i.e
r > h(x), ∀x ∈ K. For any h ∈ F , let Kh = {x ∈ K : r ≤ h(x)}. This set is closed because of upper
semicontinuity of h.

Claim: ∩
h∈F

Kh = ∅. Suppose there is an x ∈ ∩
h∈F

Kh, then r ≤ h(x), ∀h ∈ F, ∀x ∈ K. This

implies r ≤ inf F on K, which contradicts r > inf F on K. So, ∩
h∈F

Kh = ∅. Since Kh is closed and

Kh ⊆ K : compact, there is a finite intersection
n⋂

i=1
Khi

= ∅.
Note:

Kh1 ∩Kh2 = {x ∈ K : r ≤ h1(x) and r ≤ h2(x)}
= {x ∈ K : r ≤ inf(h1(x), h2(x))}
= Kinf(h1,h2).

Since F is directed,
n∨

i=1
hi = inf

i=1,...,n
hi ∈ F. Let h = inf

i=1,...,n
hi, then we have Kh = ∅, i.e ∀x ∈

K, r > h(x). Therefore, ∀x ∈ X, if x ∈ K, h(x) < r ≤ gr,K(x) and if x /∈ K, h(x) ≤ 1 = gr,K(x).
Hence, h(x) ≤ gr,K(x), ∀x ∈ X.

Remark. For any f, g ∈ L, then g ¿ f implies ∀x ∈ X, ∃r,K such that x ∈
◦
K and f(y) < r ≤

g(y), ∀y ∈ K.

Proposition 9 For any r ∈ (0, 1] and K (compact) ⊆ X, we have

{f ∈ L : f(y) < r, ∀y ∈ K} = ∪
◦
Ki⊇K

{f ∈ L : gr,Ki ¿ f}

where gr,Ki is defined as above.

Proof. (⊆): For any f ∈ L such that f(y) < r,∀y ∈ K. Let O = {x : f(x) < r}, then K ⊆ O : open.

There are U : open and K
′
: compact in X such that K ⊆ U ⊆ K

′ ⊆ O (which implies U ⊆
◦

K
′
).

Since K
′ ⊆ O, we get gr,K′ ¿ f.

(⊇) For any f ∈ L such that gr,Ki ¿ f, where
◦
Ki ⊇ K, then ∀y ∈ K, there are ry and Ky such

that y ∈
◦

Ky and f(z) < ry ≤ gr,Ki(z), ∀z ∈ Ky.
Particularly, take z = y, we get f(y) < ry ≤ gr,Ki(y) = r. Hence, f(y) < r, ∀y ∈ K.
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Proposition 10 The Scott topology τ(L) has as a subbase the sets {f : f(y) < r, ∀y ∈ K}, where
r ∈ (0, 1] and K (compact) ⊆ X. In other words, the Scott topology τ(L) has as a base the sets
n⋂

i=1
{f : f(y) < ri, ∀y ∈ Ki}, where ri ∈ (0, 1] , Ki (compact) ⊆ X, and n ∈ N.

Proof. Recall: τ(L) has as a base the sets of the form {f : g ¿ f},where g ∈ L, and for any
Scott open set O, we can write O = ∪

g∈O
{f : g ¿ f}. By the proposition above, any set of the

form {f : f(y) < r, ∀y ∈ K} is Scott open (notice: gr,Ki ∈ L). Now for any h ∈ O : Scott open

set, then we need to find {ri}n
i=1 and {Ki}n

i=1 such that h ∈
n⋂

i=1
{f : f(y) < ri, ∀y ∈ Ki} ⊆ O.

Since O can be written as ∪
g∈O

{f : g ¿ f} and h ∈ O, we have g ¿ h for some g ∈ O. Since

h = inf
r,K
{gr,K : h(y) < r,∀y ∈ K} = ∨{gr,K : h(y) < r,∀y ∈ K}, we get g ≤op ∨

i=1,..,n
{gri,Ki : h(y) <

ri,∀y ∈ Ki} = inf
i=1,..,n

{gri,Ki : h(y) < ri,∀y ∈ Ki}. Hence, h ∈
n⋂

i=1
{f : f(y) < ri, ∀y ∈ Ki}. Now for

any f ∈ L such that f(y) < ri,∀y ∈ Ki, and ∀i = 1, ..., n, then gri,Ki ¿ f, ∀i = 1, ..., n. This implies

∨
i=1,..,n

{gri,Ki : h(y) < ri,∀y ∈ Ki} ¿ f, so g ¿ f. Hence,
n⋂

i=1
{f : f(y) < ri, ∀y ∈ Ki} ⊆ O.

Corollary 11 The Lawson topology Λ(L) has as a subbase the sets {f : f(y) < r, ∀y ∈ K}, where
r ∈ (0, 1] and K (compact) ⊆ X together with the sets {f : ∃x ∈ X such that g(x) < f(x)}, where
g ∈ L.

Proof. By definition, the Lawson topology Λ(L) has as a subbase the sets {f : g ¿ f}, where g ∈ L
together with the sets {f : g �op f}, where g ∈ L.Notice that {f : g �op f} = {f : g � f on X}, i.e
{f : g(x) < f(x) for some x ∈ X}.

Now if we view F(X) as 1F(X) which is the set of all indicator functions of closed sets, then
since closed sets are closed under arbitrary intersection, (1F(X),≤op) ' (F(X),⊆op) is a complete
sublattice of (USC(X),≤op). In view of topological spaces, 1F(X) is a subspace of (USC(X),Λ(L)),
so we hope that the induced topology of Λ(L) coincides with the Lawson topology Λ(F(X)) on
F(X). It is indeed the case, as shown below.

An element in the base of Λ(L) has the form

(
n⋂

i=1
{f : f(y) < ri,∀y ∈ Ki}) ∩ (

m⋂
j=1
{f : gj(x) < f(x) for some x ∈ X}), where

ri ∈ (0, 1],Ki : compact, and gj ∈ USC(X)

or {f : f(y) < ri,∀y ∈ Ki,∀i = 1..., n and gj(x) < f(x) for some x ∈ X, ∀j = 1, ..., m}(∗)

If we restrict USC(X) on 1F(X), then all functions f, g and gj can be written as 1F , 1G, and 1Gj

respectively, where F, G, and Gj ∈ F(X).
Then (*) is rewritten as

{1F : 1F (y) < ri,∀y ∈ Ki,∀i = 1..n and 1Gj (x) < 1F (x) for some x ∈ X, ∀j = 1, .., m}, where
ri ∈ (0, 1],Ki : compact, and Gj ∈ F(X).

However, indicator functions just take values 0, 1, so the set above is the same as the set
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{1F : 1F (y) = 0,∀y ∈ Ki,∀i = 1..n and 1F (x) = 1 and 1Gj (x) = 0 for some x ∈ X, ∀j = 1, .., m},
where Ki : compact, and Gj ∈ F(X)., i.e.,

{1F : 1F (y) = 0,∀y ∈ K = U
i=1,...,n

Ki and 1F (x) = 1 and 1Gc
j
(x) = 1 for some x ∈ X, ∀j = 1, .., m},

where K = U
i=1,...,n

Ki : compact, and Gc
j ∈ O(X).

This exactly means that the set above is the set of all indicator functions of closed sets F such
that F ∩K = ∅ and F ∩Gc

j 6= ∅.
Hence, those elements form the hit-or-miss or the Lawson topology on F(X).
Remark. It is known that (L, σ(L)) is second countable iff (L,Λ(L)) is second countable (Gierz

et al, 2003).
Thus, to show that (L,Λ(L)) is second countable, it suffices to show that (L, σ(L)) has a countable

base.
Notation: F r,K ∆= {f : f(y) < r,∀y ∈ K}
Recall that: (1) (L, σ(L)) has as a base the sets of the form

n⋂

i=1

{f : f(y) < ri,∀y ∈ Ki},

where ri ∈ (0, 1], Ki (compact) ⊆ X, and n ∈ N, or
n⋂

i=1
F ri,Ki

(2) X : LCHS implies
a) there is a countable base B of (X,G(X)) such that ∀B ∈ B, B̄ is compact and ∀O : open,

O = ∪
j∈J

Bj with B̄j ⊆ O.

b) X is normal.
We claim that (L, σ(L)) has as a base the sets of the form

n⋂

i=1

F qi,∪mi
j=1B̄ij , where qi ∈ Q ∩ (0, 1] and Bij ∈ B.

Proof. For any f ∈
n⋂

i=1
F ri,Ki , then f(y) < ri, ∀y ∈ Ki, ∀i = 1, ..., n. Let Ai = {x ∈ X : f(x) ≥

ri} : closed, and Ki is also closed; and Ai ∩Ki = ∅. Hence, there is an open set Gi ⊆ X such that
Gi = ∪Bij , B̄ij ⊆ Gi, and Ki ⊆ Gi, Ai ∩Gi = ∅.

By the compactness of Ki, K ⊆
mj⋃
j=1

Bij ⊆
mj⋃
j=1

B̄ij ⊆ Gi. Therefore, Ai ∩ (
mj⋃
j=1

B̄ij ) = ∅. =⇒ ∀y ∈
mj⋃
j=1

B̄ij , y /∈ Ai, i.e f(y) < ri. Hence, f(y) < ri, ∀y ∈
mj⋃
j=1

B̄ij .

Since f is upper semicontinuous, f attains a maximum on
mj⋃
j=1

B̄ij , so we can find a qi ∈ Q∩ (0, 1]

such that f(y) < qi < ri, ∀y ∈
mj⋃
j=1

B̄ij . This means f ∈
n⋂

i=1
F qi,∪mi

j=1B̄ij . It is easy to check that

n⋂
i=1

F qi,∪mi
j=1B̄ij ⊆

n⋂
i=1

F ri,Ki .

Remark. In view of the above results, by a random fuzzy (closed) set on a LCSHS space X, we
mean a random element with values in the measurable space (USC(X), σ(Λ)), where σ(Λ) is the
Borel σ-field associated with the Lawson topology of the continuous lattice USC(X) (with reverse
order ≥). With the Lawson topology, USC(X) is a compact, Hausdorff and second countable (hence
metrizable). This falls neatly in the framework of separable metric spaces in probability theory.
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6 A metric compatible with the Lawson topology of USC(X)

We already know that by using the embedding of F(X) into the hyperspace 2wX , where wX is the
one-point compactification of X and 2wX is the set of all non-empty closed sets of wX, we can have
a metric compatible with the Lawson topology or the Matheron topology of F(X) (see Wang and
Wei, 2007). Moreover, we also know that there is a bijection i : USC(X) −→ HY P (X), where
i(f) = Hyp(f) = {(x, α) ∈ X × [0, 1] : f(x) ≥ α}, and HY P (X) is the set of all hypographs of u.s.c
functions on X. This set is just a closed subspace of F(X × [0, 1]) which again has a metric d which
is compatible with the Lawson or hit-or-miss topology of F(X × [0, 1]) (see Nguyen et al, 2007).
Thus the induced metric on the subspace HY P (X) is also compatible with the induced hit-or-miss
topology on HY P (X).It remains to show that (HY P (X), d) is homeomorphic to (USC(X),Λ(L)),
where L = (USC(X),≤op).

Proposition 12 The map i : (USC(X),Λ(L)) −→ (HY P (X), d), where i(f) = F ≡ Hyp(f) =
{(x, α) ∈ X × [0, 1] : f(x) ≥ α}, is a homeomorphism.

Proof. Since (USC(X),Λ(L)) is compact and (HY P (X), d) is Hausdorff, to prove the theorem we
only need to show that the map i is continuous, i.e., ∀fn, f ∈ L such that fn → f , then we have to
show that Fn → F , where Fn = Hyp(fn), F = Hyp(f), and

a) fn → f means
i) whenever f ∈ {g ∈ USC(X) : g(y) < r,∀y ∈ KX} for some r ∈ (0, 1] and KX : compact in X,

then fn ∈ {g ∈ USC(X) : g(y) < r,∀y ∈ KX} for n large;
ii) whenever f ∈ {h ∈ USC(X) : g(x) < h(x) for some x ∈ X} where g ∈ USC(X), then

fn ∈ {h ∈ USC(X) : g(x) < h(x) for some x ∈ X} for n large. And
b) Fn → F means
i) for any G open in X × [0, 1], if F ∩G 6= ∅, then Fn ∩G 6= ∅ for n large;
ii) for any K compact in X × [0, 1], if F ∩K = ∅, then Fn ∩K = ∅ for n large.
Suppose F ∩G 6= ∅, then ∃(x0, α) such that f(x0) ≥ α and (x0, α) ∈ G.

Case 1: α = 0, we have(x0, α) ∈ G, and fn(x0) ≥ 0 = α. This implies Fn ∩G 6= ∅.
Case 2: α > 0. Since (x0, α) ∈ G which is open in X × [0, 1], (x0, α) ∈ O × U , where O is

open in X and U is open in [0, 1]. Since 0 < α ∈ U, we can find β ∈ U such that β < α. Define
function g as by g(x) = β if x ∈ O and g(x) = 1 otherwise. Then g ∈ USC(X), and f(x0) ≥ α > β,
so f ∈ {h ∈ USC(X) : g(x) < h(x) for some x ∈ X}. Since fn → f , there is a M such that
fn ∈ {h ∈ USC(X) : g(x) < h(x) for some x ∈ X}, ∀n > M. By definition of g(x), we can conclude
that ∃xn ∈ O such that fn(xn) > β. i.e., (xn, β) ∈ G and (xn, β) ∈ Fn. Hence, G∩ Fn 6= ∅, ∀n > M.

Second, suppose F ∩KX × [a, b] = ∅, where KX is compact in X and [a, b] ⊆ [0, 1]. This implies
∀(x, α) ∈ F =⇒ (x, α) /∈ KX × [a, b]. We have (x, f(x)) ∈ F , so (x, f(x)) /∈ KX × [a, b],∀x ∈ X.
Hence, particularly ∀x ∈ KX , f(x) /∈ [a, b], which implying either f(x) < a or f(x) > b. The later
inequality, however, never holds. Indeed, suppose f(x) > b, then (x, b) ∈ F ∩ KX × [a, b] which
contradicts the assumption F ∩KX × [a, b] = ∅. Therefore, we must have f(x) < a,∀x ∈ KX . Since
fn → f in L, and f(x) < a, ∀x ∈ KX , there is a N such that ∀n > N , fn(x) < a, ∀x ∈ KX

Claim: Fn ∩KX × [a, b] = ∅,∀n > N.

Indeed, suppose ∃(x, α) ∈ Fn ∩ KX × [a, b], i.e. fn(x) ≥ α ≥ a and x ∈ K. These conditions
contradict fn(x) < a, ∀x ∈ KX . Hence, Fn ∩KX × [a, b] = ∅,∀n > N.

Therefore, we can define a metric on (USC(X),Λ(L)) by

δ : USC(X)× USC(X) → R+, δ(f, g) = d(F, G),

where F = Hyp(f), and G = Hyp(g). This metric δ is compatible with the Lawson topology Λ(L).
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Remark. A Choquet theorem for USC(X) can be obtained by embedding USC(X) into the
space of closed sets of the LCHS space X × [0, 1] via hypographs and then use Choquet theorem for
random closed sets (Matheron, 1975) of the LCHS space X× [0, 1]. This embedding makes USC(X)
a closed subset of F(X × [0, 1]) with respect to its hit-or-miss topology. For details, see Nguyen,
Wang and Wei (2007).

A version of Choquet theorem in the context of continuous lattices (Norberg, 1989) is the
following.

If L is a continuous lattice, and ΣL is the Borel algebra of the Lawson topology on L, then for
any probability space (L,ΣL, P ) the function S : L → [0, 1] defined by S(a) = P (a ↑) satisfies

i) an ↑ a implies S(an) ↓ S(a),
ii) S(0) = 1,
iii) S is “nti-alternating of infinite order”, i.e

S1(x;x1) = S(x ∨ x1)− S(x) ≤ 0,
S2(x;x1, x2) = −S(x ∨ x1 ∨ x2) + S(x ∨ x1) + S(x ∨ x2)− S(x) ≤ 0...
Sn(x;x1, ..., xn) = Sn−1(x;x1, ..., xn−1)− S(x ∨ xn;x1, ..., xn−1) ≤ 0.

Conversely, each such S : L → [0, 1] comes from a (unique) probability measure on ΣL.
This theorem generalizes Lebesgue-Stieltjes theorem for random vectors as illustrated by the

following simple situations.
Example 1 : X = {a} with discrete topology then (USC(X),ΛL) ∼= ([0, 1],≥). Then S(x) =

P (x ↑) = P (y ≤ x), and [0, 1] ∼= R ∪ {±∞}.
Recalling that USC(X) = {f : X → [0, 1] such that f is u.s.c}. If X is LCHS, then L ≡

(USC(X),≥) is a continuous lattice with the Lawson topology Λ(L). The identification map Id :
(USC(X),ΛL) → ([0, 1],≥) defined by Id(f) = f(a) is an isomorphism.

Example 2: X = {a, b} with discrete topology, then USC(X) ∼= [0, 1] × [0, 1], and S(x0, y0) =
P ((x0, y0) ↑) = P (x ≤ x0, y ≤ y0).

Again applying Norberg’s theorem, we get the Lebesgue -Stieltjes’ theorem for R2.
In general, if X = {x1, ..., xn}, then USC(X) ∼= [0, 1]n.
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