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Abstract 
 

    We provide an overview of Granular Computing - a rapidly growing area of information 
processing aimed at the construction of intelligent systems. We highlight the main features of 
Granular Computing, elaborate on the underlying formalisms of information granulation and discuss 
ways of their development. We also discuss the concept of granular modeling and present the issues 
of communication between formal frameworks of Granular Computing. © 2007 World Academic 
Press, UK. All rights reserved. 
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1. Introduction 
 
Fuzzy sets, interval analysis, rough sets are all constructs falling under the same umbrella of Granular 
Computing which has recently emerged as a coherent conceptual and algorithmic platform aimed at the 
representation and processing of information granules. The objective of this study is to provide a certain 
insight into the essence of Granular Computing being regarded as a coherent environment of manipulation 
of information granules, discuss the underlying formal ways of representing information granules, show 
pertinent design schemes and look at some application aspects of the area.  
 
The paper is arranged into eight sections. In Section 2, we cover a concept of information granules and 
elaborate on their omnipresence in various endeavors of system modeling, control, decision–making, and 
classification. Next, identified and discussed are the key formalisms used to represent and process 
information granules such as sets, fuzzy sets, rough sets, and shadowed sets. Then we discuss ways of 
designing information granules; here to retain focus we concentrate on fuzzy sets and therefore concentrate 
on the determination of their membership functions. This selection is justified by the fact that there are 
numerous ways of membership function elicitation and such techniques could offer some general 
perspective at the formation of fuzzy sets. We address the issues of communication between various formal 
frameworks of Granular Computing. In particular, we note two essential dimensions that need to be taken 
into consideration, namely the level of granularity of the constructs and the underlying formalism within 
which such information granules are developed. A question of building granular models is also addressed. 
Concluding comments are offered in Section 8. 
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2. From information granules to Granular Computing 
 
It becomes evident that information granules permeate human endeavors (Zadeh, 1996, 1997, 2005; 
Pedrycz, 2001; Bargiela and Pedrycz, 2003; Pedrycz and Gomide, 2007). No matter what problem is taken 
into account, we usually cast it into a certain conceptual framework of basic operational entities, which we 
regard to be of relevance to the problem formulation and problem solving. We formulate generic concepts 
adhering to some level of abstraction, carry out processing, and communicate the results to the external 
environment. Consider, for instance, image processing. In spite of the continuous progress in the area, a 
human being assumes a dominant and very much uncontested position when it comes to image 
understanding and image interpreting. Surely, we do not focus attention on individual pixels and process 
them as such but group them together into semantically meaningful constructs – familiar objects we deal 
with in everyday life. Such objects involve regions that consist of pixels or categories of pixels drawn 
together because of their proximity in the image, similar texture, color, etc.  This remarkable and 
unchallenged ability of humans dwells on our effortless ability to construct information granules, 
manipulate them and arrive at sound conclusions. As another example, consider a collection of time series, 
say stock recordings. From our perspective we can describe them in a semi-qualitative manner by pointing 
at specific regions of such signals. Specialists can effortlessly interpret ECG signals. They distinguish 
some segments of such signals and interpret their combinations.  Experts can interpret temporal readings of 
sensors and assess the status of the monitored system. Again, in all these situations, the individual samples 
of the signals are not the focal point of the analysis and the ensuing signal interpretation.  We always 
granulate all phenomena (no matter if they are originally discrete or analog in their nature). Time is another 
important variable that is subjected to granulation. We use seconds, minutes, days, months, and years. 
Depending which specific problem we have in mind and who the user is, the size of information granules 
(time intervals) could vary quite dramatically. To the high level management time intervals of quarters of 
year or a few years could be meaningful temporal information granules on basis of which one develops any 
predictive model. For those in charge of everyday operation of a dispatching plant, minutes and hours 
could form a viable scale of time granulation. For the designer of high-speed integrated circuits and digital 
systems, the temporal information granules concern nanoseconds, microseconds, and perhaps 
microseconds.  Even such commonly encountered and simple examples are convincing enough to lead us 
to ascertain that (a) information granules are the key components of knowledge representation and 
processing, (b) the level of granularity of information granules (their size, to be more descriptive) becomes 
crucial to the problem description and an overall strategy of problem solving, (c) there is no universal level 
of granularity of information; the size of granules is problem-oriented and user dependent. 
 
What has been said so far touched a qualitative aspect of the problem. The challenge is to develop a 
computing framework within which all these representation and processing endeavors could be formally 
realized. The common platform emerging within this context comes under the name of Granular 
Computing. In essence, it is an emerging paradigm of information processing. While we have already 
noticed a number of important conceptual and computational constructs built in the domain of system 
modeling, machine learning, image processing, pattern recognition, and data compression in which various 
abstractions (and ensuing information granules) came into existence, Granular Computing becomes 
innovative and intellectually proactive in several different ways: 
• It identifies the essential commonalities between the surprisingly diversified problems and 

technologies used there which could be cast into a unified framework we usually refer to as a granular 
world. This is a fully operational processing entity that interacts with the external world (that could be 
another granular or numeric world) by collecting necessary granular information and returning the 
outcomes of the granular computing 

• With the emergence of the unified framework of granular processing, we get a better grasp as to the 
role of interaction between various formalisms and visualize a way in which they communicate. 
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• It brings together the existing formalisms of set theory (interval analysis), fuzzy sets, rough sets, etc. 
under the same roof by clearly visualizing that in spite of their visibly distinct underpinnings (and 
ensuing processing), they exhibit some fundamental commonalities. In this sense, Granular Computing 
establishes a stimulating environment of synergy between the individual approaches.    

• By building upon the commonalities of the existing formal approaches, Granular Computing helps 
form heterogeneous and multifaceted models of processing of information granules by clearly 
recognizing the orthogonal nature of some of the existing and well established frameworks (say, 
probability theory coming with its probability density functions and fuzzy sets with their membership 
functions) 

• Granular Computing fully acknowledges a notion of variable granularity whose range could cover 
detailed numeric entities and very abstract and general information granules. It looks at the aspects of 
compatibility of such information granules and ensuing communication mechanisms of the granular 
worlds. 

• Interestingly, the inception of information granules is highly motivated. We do not form information 
granules without reason. Information granules are an evident realization of the fundamental paradigm 
of abstraction. 

    
Granular Computing constitutes a unified conceptual and computing platform. Yet, it directly benefits from 
the already existing and well-established concepts of information granules formed in the setting of set 
theory, fuzzy sets, rough sets and others.  
 
It is instructive to take a quick look at the fundamental technologies of information granulation and 
contrast their key features. 

 
3. Fundamental formalisms of Granular Computing 
 
There are several key formal frameworks contributing to Granular Computing and forming its algorithmic 
backbone. In what follows, we present their essential features. 

 
3.1. Set theory and interval analysis 
 
Sets are fundamental concepts of mathematics and science. Referring to the classic notes, set is described 
as “any multiplicity which can be thought of as one .. any totality of definite elements which can be bound 
up into a whole by means of a law" or being more descriptive “..any collection into a whole M of definite 
and separate objects m of our intuition or our thought” (Cantor, 1883, 1895). Likewise interval analysis 
ultimately dwells upon a concept of sets which in this case are collections of elements in the line of reals, 
say [a,b],  [c,d],…etc. Multidimensional constructs are built upon Cartesian products of numeric intervals 
and give rise to computing with hyperboxes. Going back to the history, computing with intervals is 
intimately linked with the world of digital technology. One of the first papers in this area was published in 
1956 by Warmus. Some other early research was done by Sunaga and Moore. This was followed by a 
wave of research in so-called interval mathematics or interval calculus. Conceptually, sets (intervals) are 
rooted in a two-valued logic with their fundamental predicate of membership (∈). Here holds an important 
isomorphism between the structure of two-valued logic endowed with its truth values (false-true) and set 
theory with sets being fully described by their characteristic functions. The interval analysis is a 
cornerstone of reliable computing which in turn is ultimately associated with digital computing in which 
any variable is associated with a finite accuracy (implied by the fixed number of bits used to represent 
numbers). This limited accuracy gives rise to a certain pattern of propagation of error of computing. For 
instance, addition of two intervals [a, b] and [c, d] leads to a broader interval in the form [a+c, b+d] 
(Hansen, 1975; Jaulin et al., 2001; Moore, 1966). Here the accumulation of uncertainty (or equivalently the 
decreased granularity of the result) depends upon the specific algebraic operation completed for given 
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intervals. Table 2 summarizes four algebraic operations realized on numeric intervals A = [a, b] and B = [c, 
d].  

 
algebraic operation result 

addition [a+c, b+d] 
subtraction [a-d, b-c] 

multiplication [min(ac,ad, bc, bd), max(ac, ad, bc, bd)] 
division 

)]
d
b ,

c
b ,

d
a ,

c
amax(),

d
b ,

c
b ,

d
a ,

c
a[min(  

assumption: the interval [c, d] does not 
contain 0 

 
Table 1. Arithmetic operations on numeric intervals A and B 

 
Interestingly, intervals distributed uniformly in a certain space are at the center of any mechanism of 
analog-to-digital conversion; the higher the number of bits, the finer the intervals and the higher their 
number. The well known fundamental relationship states that with “n” bits we can build a collection of 2n 
intervals of width (b-a)/2n for the original range of numeric values in [a, b]. Intervals offer a 
straightforward mechanism of abstraction: all elements lying within a certain interval become 
indistinguishable and therefore are treated as identical. In addition to algebraic manipulation, the area of 
interval mathematics embraces a wealth of far more advanced and practically relevant processing including 
differentiation, integral calculus as well as interval-valued optimization.   

 
3.2. The role of fuzzy sets: a perspective of information granules 

 
Fuzzy sets offer an important and unique feature of describing information granules whose contributing 
elements may belong with varying degrees of membership (belongingness). This helps us describe the 
concepts that are commonly encountered in real word. The notions such as low income, high inflation, 
small approximation error and many others are examples of concepts to which the yes-no quantification 
does not apply or becomes quite artificial and restrictive. We are cognizant that there is no way of 
quantifying the Boolean boundaries as there are a lot of elements whose membership to the concept is only 
partial and quite different from 0 and 1.    

 
The binary view of the world supported by set theory and two-valued logic has been vigorously challenged 
by philosophy and logic. The revolutionary step in logic was made by Lukasiewicz with his introduction of 
three and afterwards multivalued logic. It took however more decades to dwell on the ideas of the non-
Aristotelian view of the world before fuzzy sets were introduced. This happened in 1965 with the 
publication of the seminal paper on fuzzy sets by Zadeh (1965). Refer also to other influential papers by 
Zadeh (1996, 1997, 1999, 2005). The concept of fuzzy set is surprisingly simple and elegant. Fuzzy set A 
captures its elements by assigning them to it with some varying degrees of membership. A so called 
membership function is a vehicle that quantifies different degrees of membership. The higher the degree of 
membership A(x), the stronger is the level of belongingness of this element to A (Gottwald, 2005; 
Zimmermann, 1996; Pedrycz and Gomide, 1998; Pedrycz and Gomide, 2007).  

 
The obvious yet striking difference between sets (intervals) and fuzzy sets lies in the  notion of partial 
membership supported by fuzzy sets. In fuzzy sets, we discriminate between elements that are “typical” to 
the concept and those of borderline character. Information granules such as high speed, warm weather, fast 
car are examples of information granules falling under this category can be conveniently represented by 
fuzzy sets. As we cannot specify a single, well-defined element that forms a solid border between full 
belongingness and full exclusion, fuzzy sets offer an appealing alternative and a practical solution to this 
problem. Fuzzy sets with their smooth transition boundaries form an ideal vehicle to capture the notion of 
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partial membership. In this sense information granules formalized in the language of fuzzy sets support a 
vast array of human-centric pursuits. They are predisposed to play a vital role when interfacing human to 
intelligent systems. 

 
In problem formulation and problem solving, fuzzy sets emerge in two fundamentally different ways, 

 
explicit. Here, they typically pertain to some generic and fairly basic concepts we use in our 
communication and description of reality. There is a vast amount of examples as such concepts being 
commonly used every day,  say short waiting time, large dataset, low inflation, high speed, long delay, etc. 
All of them are quite simple as we can easily capture their meaning. We can easily identify a universe of 
discourse over which such variable are defined. For instance, this could be time, number of records, 
velocity, and alike. 

 
implicit Here we are concerned with more complex and inherently multifaceted concepts and notions 
where fuzzy sets could be incorporated into the formal description and quantification of such problems yet 
not in so instantaneous manner. Some examples could include concepts such as “preferred car”, “stability 
of the control system”, “high performance computing architecture”, “good convergence of the learning 
scheme”, strong economy, etc. All of these notions incorporate some components that could be quantified 
with the use of fuzzy sets yet this translation is not that completely straightforward and immediate as it 
happens for the category of the explicit usage of fuzzy sets. For instance, the concept of “preferred car” is 
evidently multifaceted and may involve a number of essential descriptors that when put together are really 
reflective of the notion we have in mind. For instance, we may involve a number of qualities such as speed, 
economy, reliability, depreciation, maintainability, and alike. Interestingly, each of these features could be 
easily rephrased in simpler terms and through this process at some level of this refinement phase we may 
arrive at fuzzy sets that start to manifest themselves in an explicit manner.  

 
As we stressed, the omnipresence of fuzzy sets is surprising. Even going over any textbook or research 
monograph, not mentioning newspapers and magazines, we encounter a great deal of fuzzy sets coming in 
their implicit or explicit format. Table 2 offers a handful of selected examples 

 
p. 65:  small random errors in the measurement vector… 
p. 70: The success of the method depends on whether the first initial guess is already close 

enough to the      global minimum… 
p. 72: Hence, the convergence region of a numerical optimizer will be large 
 
F. van der Heijden et al., Classification, Parameter Estimation and State Estimation, J. 

Wiley, 2004, Chichester. 
 
p. 50: validation costs are high for critical systems 
p. 660: …A high value for fan-in means that X is highly coupled to the rest of the design 

and changes to X will have extensive knock-on effect. A high value for fan-out suggests that 
the overall complexity of X may be high because of the complexity of control logic needed to 
coordinate the called components.  

 … Generally, the larger the size of the code of a component, the more complex and error-
prone the component is likely to be… 

… The higher the value of the Fog index, the more difficult the document is to understand 
 
I. Sommerville, Software Engineering, 8th edition, Addison-Wesley, 2007, Harlow. 
 

Table 2. Examples of concepts whose description and processing invokes the use of the technology of 
fuzzy sets and Granular Computing 
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From the optimization standpoint, the properties of continuity and commonly encountered differentiability 
of the membership functions becomes a genuine asset. We may easily envision situations where those 
information granules incorporated as a part of the neurofuzzy system are subject to optimization – hence 
the differentiability of their membership functions becomes of critical relevance. What becomes equally 
important is the fact that fuzzy sets bridge numeric and symbolic concepts. On one hand, fuzzy set can be 
treated as some symbol. We can regard it as a single conceptual entity by assigning to it some symbol, say 
L (for low). In the sequel, it could be processed as a purely symbolic entity. On the other hand, a fuzzy set 
comes with a numeric membership function and these membership grades could be processed in a numeric 
fashion.  

 
Fuzzy sets can be viewed from several fundamentally different standpoints. Here we emphasize the three 
of them that play a fundamental role in processing and knowledge representation.  

 
as a enabling processing technology  of some universal character and of profound human-centric 

character 
 

Fuzzy sets build upon the existing information technologies by forming a user-centric interface using 
which one could communicate essential design knowledge thus guiding problem solving and making it 
more efficient. For instance, in signal processing and image processing we might incorporate a collection 
of rules capturing specific design knowledge about filter development in a certain area.  Say, “if the level 
of noise is high, consider using a large window of averaging” In control engineering, we may incorporate 
some domain knowledge about the specific control objectives.  For instance, “if the constraint of fuel 
consumption is very important, consider settings of a PID controller producing low overshoot” Some other 
examples of highly representative human-centric systems concern those involving (a) construction and 
usage of relevance feedback in retrieval, organization and summarization of video and images, (b) queries 
formulated in natural languages, (c) summarization of results coming as an outcome some query.  

 
Secondly, there are unique areas of applications in which fuzzy sets form a methodological backbone and 
deliver the required algorithmic setting. This concerns fuzzy modeling in which we start with collections of 
information granules (typically realized as fuzzy sets) and construct a model as a web of links (associations) 
between them. This approach is radically different from the numeric, function-based models encountered 
in “standard” system modeling. Fuzzy modeling emphasizes an augmented agenda in comparison with the 
one stressed in numeric models. While we are still concerned with the accuracy of the resulting model, its 
interpretability and transparency becomes of equal and sometimes even higher relevance.  
 

as an efficient computing framework of global character  
 
Rather than processing individual elements, say a single numeric datum, an encapsulation of a 

significant number of the individual elements that is realized in the form of some fuzzy sets, offers 
immediate benefits of joint and orchestrated processing. Instead of looking at the individual number, we 
embrace a more general point of view and process a entire collection of elements represented now in the 
form of a single fuzzy set. This effect of a collective handling of individual elements is seen very 
profoundly in so-called fuzzy arithmetic. The basic constructs here are fuzzy numbers. In contrast to single 
numeric quantities (real numbers) fuzzy numbers represent collections of numbers where each of them 
belongs to the concept (fuzzy number) to some degree. These constructs are then subject to processing, say 
addition, subtraction, multiplication, division, etc. Noticeable is the fact that by processing fuzzy numbers 
we are in fact handling a significant number of individual elements at the same time.   Fuzzy numbers and 
fuzzy arithmetic provide an interesting advantage over interval arithmetic (viz. arithmetic in which we are 
concerned with intervals – sets of numeric values). Intervals come with abrupt boundaries as elements can 
belong or are excluded from the given set. This means, for example, that any gradient-based techniques of 
optimization invoked when computing solutions become very limited: the derivative is equal to zero with 
an exception at the point where the abrupt boundary is located. 
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fuzzy sets as a vehicle of raising and quantifying awareness about granularity of outcomes 
 

Fuzzy sets form the results of granular computing. As such they convey a global view at the elements of 
the universe of discourse over which they are constructed. When visualized, the values of the membership 
function describe a suitability of the individual points as compatible (preferred) with the solution. In this 
sense, fuzzy sets serve as a useful visualization vehicle: when displayed, the user could gain an overall 
view at the character of solution (regarded as a fuzzy set) and make a final choice. Note that this is very 
much in line with the idea of the human-centricity: we present the user with all possible results however do 
not put any pressure as to the commitment of selecting a certain numeric solution. 

 
fuzzy sets as a mechanism realizing a principle of the least commitment 
 

As the computing realized in the setting of granular computing returns a fuzzy set as its result, it could be 
effectively used to realize a principle of the least commitment. The crux of this principle is to use fuzzy set 
as a mechanism of making us cognizant of the quality of obtained result. Consider a fuzzy set being a 
result of computing in some problem of multiphase decision-making. The fuzzy set is defined over various 
alternatives and associates with them the corresponding degrees of preference, see Figure 1. If there are 
several alternatives with very similar degrees of membership, this serves as a clear indicator of uncertainty 
or hesitation as to the making a decision. In other words, in light of the form of the generated fuzzy set, we 
do not intend to commit ourselves to making any decision (selection of one of the alternatives) at this time. 
Our intent would be to postpone decision and collect more evidence. For instance, this could involve 
further collecting of data, soliciting expert opinion, and alike. Based on this evidence, we could continue 
with computing and evaluate the form of the resulting fuzzy set. It could well be that the collected evidence 
has resulted in more specific fuzzy set of decisions on basis of which we could either still postpone 
decision and keep collecting more evidence or proceed with decision-making. Thus the principle of the 
least commitment offers us an interesting and useful guideline as to the mechanism of decision-making 
versus evidence collection. 

 
 

time 

accumulation of evidence 

decision 
released 

decision postponed 

 
Figure 1. An essence of the principle of the least commitment; the decision is postponed until the phase 

where there is enough evidence accumulated and the granularity of the result becomes specific enough. 
Shown are also examples of fuzzy sets formed at successive phases of processing that become more 

specific along with the increased level of evidence. 
 

3.3. Rough sets 
 
The description of information granules completed with the aid of some vocabulary is usually imprecise. 
Intuitively, such description may lead to some approximations, called lower and upper bounds. This is the 
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essence of rough sets introduced by Pawlak (1982; 1991); refer also to Polkowski and Skowron (1998) and 
Skowron (1989). Interesting generalizations, conceptual insights, and algorithmic investigations are offered 
in a series of fundamental papers by Pawlak and Skowron (2007). 

 
To explain the concept of rough sets and show what they are to offer in terms of representing information 
granules, we us use an illustrative example. Consider a description of environmental conditions expressed 
in terms of temperature and pressure. For each of these factors, we fix several ranges of possible values 
where each of such ranges comes with some interpretation such as “values below”, “values in-between”, 
“values above”, etc. By admitting such selected ranges in both variables, we construct a grid of concepts 
formed in the Cartesian product of the spaces of temperature and pressure, refer to Figure 2.  In more 
descriptive terms, this grid forms a vocabulary of generic terms using which we would like to describe all 
new information granules.     

 
 

temperature 

pr
es

su
re

 

X 

 
(a) 

 

temperature 

pr
es

su
re

 

X 

 

temperature 

pr
es

su
re

 

 
(b) 

Figure 2. A collection of vocabulary and their use in the problem description. Environmental conditions 
X result in some interval of possible values (a). In the sequel, this gives rise to the concept of a rough set 
with the roughness of the description being captured by the lower and upper bounds (approximations) as 

illustrated in (b).  
 

Now let us consider that the environmental conditions monitored over some time have resulted in some 
values of temperature and pressure ranging in-between some lower and upper bound as illustrated in Figure 
2. Denote this result by X. When describing it in the terms of the elements of the vocabulary, we end up 
with a collection of elements that are fully included in X. They form a lower bound of description of X 
when being completed in presence of the given vocabulary. Likewise, we may identify elements of the 
vocabulary that have a nonempty overlap with X and in this sense constitute an upper bound of the 
description of the given environmental conditions. Along with the vocabulary, the description forms a 
certain rough set.    

 
It is interesting to note that the vocabulary used in the above construct could comprise information 
granules being expressed in terms of any other formalism, say fuzzy sets. Quite often we can encounter 
constructs like rough fuzzy sets and fuzzy rough sets in which both fuzzy sets and rough sets are put 
together (Dubois and Prade, 1990). 
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3.5. Shadowed sets 
 

Fuzzy sets are associated with the collections of numeric membership grades. Shadowed sets (Pedrycz, 
1998; 2005) are based upon fuzzy sets by forming a more general and highly synthetic view at the numeric 
concept of membership.  Using shadowed sets, we quantify numeric membership values into three 
categories: complete belongingness, complete exclusion and unknown (which could be also conveniently 
referred to as don’t know condition or a shadow). A graphic illustration of a shadowed set along with the 
principles of sets and fuzzy sets is schematically shown in Figure 3. This helps us contrast these three 
fundamental constructs of information granules. 

 

(a)                                (b)                                                       (c) 

belongingness belongingness 

shadow 

exclusion exclusion 

degree of membership 

 
 

Figure 3. A schematic view at sets (a), (b) shadowed sets, and fuzzy sets (c). 
 Shadowed sets reveal interesting linkages between fuzzy sets and sets. 

 
In a nutshell, shadowed sets can be regarded as a general and far more concise representation of a fuzzy 

set that could be of particular interest when dealing with further computing (in which case we could come 
up with substantial reduction of the overall processing effort). 
 
Fuzzy sets help describe and quantify concepts of continuous boundaries. By introducing an α-cut, we can 
convert a fuzzy set into a set. By choosing a threshold level (α) that is high enough, we admit elements 
whose membership grades are meaningful (as viewed from the standpoint of the used threshold). The fact 
that an α -cut transforms a fuzzy set into a set, could create the impression that any fuzzy set can be made 
equivalent to some set. This point of view is highly deceptive. In essence, by building any α -cut, we 
elevate some membership grades to 1 (full membership) and eliminate other with lower membership 
grades (total exclusion). Surprisingly, this process does not take into account the distribution of elements 
with partial membership so this effect cannot be quantified in the resulting construct. The idea of shadowed 
sets aims at alleviating this problem by constructing regions of complete ignorance about membership 
grades. In essence, a shadowed set A~ induced by a given fuzzy set A defined in X is an interval-valued set 
in X which maps elements of X into 0, 1, and the entire unit interval, that is [0,1].  Formally, A~ is a 
mapping: 

A~ : X  { 0, 1, [0,1]}                                                                   (1) 
 

Given A~(x), the two numeric values (0 and 1) take on a standard interpretation: 0 denotes complete 
exclusion from A~, while 1 stands for complete inclusion in A. A~(x) equal to [0,1] represents a complete 
ignorance – nothing is known about the membership of x in A~: we neither confirm its belongingness to A~ 
nor commit to its exclusion. In this sense, such as “x” is the most “questionable” point and should be 
treated as such (e.g., this outcome could trigger some action to analyze this element in more detail, exclude 
it from further analysis, etc.). The name shadowed set is a descriptive reflection of a set that comes with 
“shadows” positioned around the edges of the characteristic function, as illustrated in Figure 4. 
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A~ 

[0,1] [0,1] 

 

Figure 4. A shadowed set A~. Note “shadows” produced at the edges of the characteristic function. 
 

Shadowed sets are isomorphic with a three-valued logic. Operations on shadowed sets are the same as 
in this logic. The underlying principle is to retain the vagueness of the arguments (shadows of the 
shadowed sets being used in the aggregation). The following tables capture the description of the operators 
on shadowed sets: 

 
Union 

]1,0[1   0       
[0,1]1[0,1]

111
[0,1]10

]1,0[
1
0

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

 

Intersection 

[0,1]    1   0    
[0,1][0,1]0
[0,1]10

000

]1,0[
1
0

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

 

Complement 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

]1,0[
0
1

]1,0[
1
0

 

From the design point of view, shadowed sets are induced by fuzzy sets, and in this setting their role is to 
help interpret results given in the form of fuzzy sets and to reduce computational overhead. Since 
shadowed sets do not focus on detailed membership grades and process only 0, 1, and ½ (considering that 
the numeric value of ½ is used to code the shadow), all processing is very simple and computationally 
appealing.  
 
Given the underlying motivation, the development of shadowed sets starts from a given fuzzy set. The 
underlying criterion governing this transformation is straightforward: maintain a balance of uncertainty in 
the sense that, while reducing low membership grades to zero and bringing high membership grades to 1, 
maintain the overall balance of change in membership grades. The changes of membership grades to 0 and 
1 are compensated for by the construction of the shadow that “absorbs” the previous elimination of partial 
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membership at low and high ranges of membership.  This design principle for a unimodal fuzzy set is 
illustrated in Figure 5. The transformation is guided by the value of threshold β; more specifically, we are 
concerned with two individual thresholds, namely, β and 1- β. 

 

1 

β 

1-β 

a b

Ω1

Ω2

Ω3A(x)

x

a1 a2 

 

Figure 5. Induced shadowed set. The elimination of regions of partial membership is counterbalanced 
by the formation of shadows “absorbing” the reduction realized in the region of partial membership grades. 

 
The retention of balance translates into the following dependency:  

 
Ω1 + Ω2 = Ω3                                                                                                                              (2) 

 
where the corresponding regions are illustrated in Figure 5. Note that we are dealing with the increasing 
and decreasing portions of the membership functions separately. The integral form of the above 
relationship is given as 

∫∫ ∫ =−+
2

1

1

2

a

a

a

a

b

a

dxA(x))dx(1A(x)dx                                                             (3) 

For its detailed interpretation, refer again to Figure 5. A certain threshold value of β, β∈ [0,1/2) that 
satisfies this expression is treated as a solution to the problem. Based on this result, we form a shadow of 
the shadowed set. In the case of commonly encountered membership functions, the optimal value of β can 
be determined in an analytical manner. For the triangular membership function, we consider each segment 
(the increasing and decreasing portion of the membership function) separately and focus on the linearly 
increasing portion of the membership function governed by an expression of the form a)a)/(b(x −− . 
Simple calculations reveal that the cutoff points a1 and a2 are equal to a+ β (b-a) and a +(1- β)(b-a).  

Subsequently, the resulting optimal value of β is equal to =
−

2
22 2/3

0.4142.  Similarly, when dealing with 

a nonlinear membership function such that  A(x) = 
ab
ax

−
−

in x ∈[a,b] and zero outside this interval we 

get a1= a+ β 2(b-a) and a2 = a +(1- β)2(b-a). The only root that satisfies the requirements imposed on the 
threshold values is equal to 0.405.  
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4. The design of information granules 
 

In this chapter, we focus on the development of fuzzy sets by presenting various ways of forming fuzzy 
sets and determining their membership functions. The subject of elicitation and interpretation of fuzzy sets 
(membership functions) is of paramount relevance from the conceptual, algorithmic, and application-
oriented standpoints. There is a significant diversity of the methods that support the construction of 
membership functions. In general, one can clearly distinguish between user-driven and data driven 
approaches with a number of techniques that share some features specific to both data- and user-driven 
techniques and hence are located somewhere in-between. The determination of membership functions has 
been a debatable issue for a long time almost since the very inception of fuzzy sets. In contrast to interval 
analysis and set theory where the estimation of bounds of the interval constructs has not attracted a great 
deal of attention and seemed to be taken for granted, an estimation of membership degrees became  
essential and over time has led us to sound, suite well justified and algorithmically appealing estimation 
techniques. 

 
 

4.1. Semantics of information granules: some general insights 
 

Fuzzy sets are constructs that come with a well defined meaning. They capture the semantics of the 
framework they intend to operate within.  Fuzzy sets are the building conceptual blocks (generic constructs) 
that are used in problem description, modeling, control, and pattern classification tasks. Before discussing 
specific techniques of membership function estimation, it is worth casting the overall presentation in a 
certain context by emphasizing the aspect of the use of a finite number of fuzzy sets leading to some 
essential vocabulary reflective of the underlying domain knowledge. In particular, we are concerned with 
the related semantics, calibration capabilities of membership functions and the locality of fuzzy sets.  

 
The limited capacity of a short term memory, as identified by Miller suggests that we could easily and 
comfortably handle and process 7 ±  2 items. This implies that the number of fuzzy sets to be considered 
as meaningful conceptual entities should be kept at the same level. The observation sounds reasonable —
quite commonly in practice we witness situations in which this holds. For instance, when describing 
linguistically quantified variables, say error or change of error, we may use seven generic concepts 
(descriptors) labeling them as positive large, positive medium, positive small, around zero, negative small, 
negative medium, negative large. When characterizing speed, we may talk about its quite intuitive 
descriptors such as low, medium and high speed. In the description of an approximation error, we may 
typically use the concept of a small error around a point of linearization (in all these examples, the terms 
are indicated in italics to emphasize the granular character of the constructs and the role being played there 
by fuzzy sets). While embracing very different tasks, all these descriptors exhibit a striking similarity. All 
of them are information granules, not numbers (whose descriptive power is very much limited). In modular 
software development when dealing with a collection of modules (procedures, functions and alike), the list 
of their parameters is always limited to a few items which is again a reflection of the limited capacity of the 
short term memory. The excessively long parameter list is strongly discouraged due to the possible 
programming errors and rapidly increasing difficulties of an effective comprehension of the software 
structure and ensuing flow of control.   

 
In general, the use of an excessive number of terms does not offer any advantage. To the contrary: it 
remarkably clutters our description of the phenomenon and hampers further effective usage of such 
concepts we intend to establish to capture the essence of the domain knowledge. With the increase in the 
number of fuzzy sets, their semantics becomes also negatively impacted. Fuzzy sets may be built into a 
hierarchy of terms (descriptors) but at each level of this hierarchy (when moving down towards higher 
specificity that is an increasing level of detail), the number of fuzzy sets is kept at a certain limited level. 
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While fuzzy sets capture the semantics of the concepts, they may require some calibration depending upon 
the specification of the problem at hand. This flexibility of fuzzy sets should not be treated as any 
shortcoming but rather viewed as a certain and fully exploited advantage. For instance, a term low 
temperature comes with a clear meaning yet it requires a certain calibration depending upon the 
environment and the context it was put into.  The concept of low temperature is used in different climate 
zones and is of relevance in any communication between people yet for each of the community the 
meaning of the term is different thereby requiring some calibration. This could be realized e.g., by shifting 
the membership function along the universe of discourse of temperature, affecting the universe of 
discourse by some translation, dilation and alike.   As a communication means, linguistic terms are fully 
legitimate and as such they appear in different settings. They require some refinement so that their meaning 
is fully understood and shared by the community of the users.  

 
When discussing the methods aimed at the determination of membership functions or membership grades, 
it is worthwhile to underline the existence of the two main categories of approaches being reflective of the 
origin of the numeric values of membership. The first one is reflective of the domain knowledge and 
opinions of experts. In the second one, we consider experimental data whose global characteristics become 
reflected in the form and parameters of the membership functions. In the first group we can refer to the 
pairwise comparison (known also as a Saaty’s approach) as one of the representative examples while fuzzy 
clustering is usually presented as a typical example of the data-driven method of membership function 
estimation. In what follows, we elaborate on several representative methods which will help us appreciate 
the level and flexibility of fuzzy sets. 
 
5. The development of fuzzy sets  
 
Fuzzy sets come with a number of algorithmic ways of forming their membership functions. In this section, 
we elaborate on a number of representative methods of their estimation. 
 
5.1. Fuzzy set as a descriptor of feasible solutions 

 
The aim of the method is to relate membership function to the level of feasibility of individual elements of 
a family of solutions associated with the problem at hand. Let us consider a certain function f(x) defined in 
Ω, that is f: Ω → R. where Ω ⊂   R. Our intent is to determine its maximum, namely xopt = arg maxx f(x). 
On a basis of the values of f(x), we can form a fuzzy set A describing a collection of feasible solutions that 
could be labeled as optimal. Being more specific, we use the fuzzy set to represent an extent (degree) to 
which some specific values of “x” could be sought as potential (optimal) solutions to the problem. Taking 
this into consideration, we relate the membership function of A with the corresponding value of f(x) cast in 
the context of the boundary values assumed by “f”. For instance, the membership function of A could be 
expressed in the following form  

 

minmax

min
ff

ff(x)A(x)
−

−
=                                                                     (4) 

The boundary conditions are straightforward: fmin= minx f(x) and fmax = maxx f(x) where the minimum and 
the maximum are computed over Ω . For other values of “x” where f attains is maximal value, A(x) is 
equal 1 and around this point, the membership values are reduced when “x” is likely to be a solution to the 
problem f(x) < fmax. The form of the membership function depends upon the character of the function under 
consideration. The following examples illustrate the essence of the construction of membership functions. 

 
5.2. Fuzzy set as a descriptor of the notion of typicality  

 
Fuzzy sets address an issue of gradual typicality of elements to a given concept. They stress the fact that 
there are elements that fully satisfy the concept (are typical for it) and there are various elements that are 
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allowed only with partial membership degrees. The form of the membership function is reflective of the 
semantics of the concept. Its details could be captured by adjusting the parameters of the membership 
function or choosing its form depending upon experimental data. For instance, consider a fuzzy set of 
squares. Formally, a rectangle includes a square shape as its special example when the sides are equal, a = 
b, Figure 6. What if a = b +ε where ε is a very small positive number? Could this figure be sought as a 
square? It is very likely that we could agree with this notion. Perhaps the membership value of the 
corresponding membership function could be equal to 0.99. Our perception, which comes with some level 
of tolerance to imprecision, does not allow us to tell apart this figure from the ideal square, Figure 6. 

 

a 

b 

|a-b| 

membership 
1 

 
Figure 6. Perception of geometry of squares and its quantification in the form of membership function 

of the concept of fuzzy square. 
 
Higher differences between “a” and “b” could result in lower values of the membership function. The 

definition of the fuzzy set square could be formed in a number of ways. Prior to the definition or even 
visualization of the membership function, it is important to formulate a space over which it will be defined. 
There are several intuitive alternatives worth considering: 

 
(a) for each pair of values of the sides (a and b), collect an experimental assessment of membership 

of the rectangle to the category of squares. Here the membership function is defined over a 
Cartesian space of the spaces of lengths of sides of the rectangle. While selecting a form of the 
membership we require that it assumes values at a = b and is gradually reduced when the 
arguments start getting more different. 

 
(b) we can define an absolute distance between “a” and “b” , |a-b| and form a fuzzy set over this 

space X; X = {x| x = |a-b|} X ⊂ R+. The semantic constraints translate into the condition of 
A(0) = 1. For higher values of “x” we may consider monotonically decreasing values of A. 

  
(c) we can envision ratios of a and b x = a/b and construct a fuzzy set over the space of R+ such 

that X = {x| x = a/b}. Obviously, we require here that A(1) =1. We also anticipate lower 
values of membership grades when moving to the left and to the right from x=1. Note that the 
membership function could be asymmetric so we allow for different membership values for 
the same length of the sides, say a =6, b= 5 and a =6 and b =5 (the effect could be quite 
apparent due to the visual effects when perceiving geometric phenomena). The previous 
model of X as outlined in (a) cannot capture this effect.  

 
Once the form of the membership function has been defined, it could be further adjusted by modifying 

the values of its parameters on a basis of some experimental findings. They come in the form of ordered 
triples or pairs, say (a, b, μ), (a/b, μ) or (|a-b|, μ) depending on the previously accepted definition of the 
universe of discourse. The membership values μ are those available from the expert offering an assessment 
of the likeness of the corresponding geometric figure.   

 
5.3. Vertical and horizontal schemes of membership estimation 
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The vertical and horizontal modes of membership estimation are two standard approaches used in the 
determination of fuzzy sets. They reflect distinct ways of looking at fuzzy sets whose membership 
functions at some finite number of points are quantified by experts. In the horizontal approach we identify 
a collection of elements in the universe of discourse X and request that an expert answers the question  

 
-does x belong to concept A? 

 
The answers are expected to come in a binary (yes-no) format. The concept A defined in X could be any 
linguistic notion, say high speed, low temperature, etc. Given “n” experts whose answers for a given point 
of X form a mix of yes-no replies, we count the number of  “yes” answers and compute the ratio of the 
positive answers (p) versus the total number of replies(n), that is p/n. This ratio (likelihood) is treated as a 
membership degree of the concept at the given point of the universe of discourse. When all experts accept 
that the element belongs to the concept, then its membership degree is equal to 1. Higher disagreement 
between the experts (quite divided opinions) results in lower membership degrees. The concept A defined 
in X requires collecting results for some other elements of X and determining the corresponding ratios as 
outlined in Figure 7. 

 

p/n 

X 
 

Figure 7. A horizontal method of the estimation of the membership function; observe a series of 
estimates determined for selected elements of X. Note also that the elements of X need not to be evenly 

distributed.  
 

If replies follow some, e.g., binomial distribution, then we could y determine a confidence interval of the 
individual membership grade. The standard deviation of the estimate of the positive answers associated 
with the point x, denoted here by σ is given in the form 

n
p)p(1σ −

=                                                                         (5) 

 
The associated confidence interval which describes a range of membership values is then determined as 
 

[p- σ, p+ σ]                                                                             (6) 
 
In essence, when the confidence intervals are taken into consideration, the membership estimates become 
intervals of possible membership values and this leads to the concept of so-called interval-valued fuzzy 
sets. By assessing the width of the estimates, we could control the execution of the experiment: when the 
ranges are too long, one could re-design the experiment and monitor closely the consistency of the 
responses collected in the experiment.  

 
The vertical mode of membership estimation is concerned with the estimation of the membership function 
by focusing on the determination of the successive α -cuts. The experiment focuses on the unit interval of 
membership grades. The experts involved in the experiment are asked the questions of the form 

 
-what are the elements of X which belong to fuzzy set A at degree not lower than α? 
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where α is a certain level (threshold) of membership grades in [0,1]. The essence of the method is 
illustrated in Figure 8. Note that the satisfaction of the inclusion constraint is obvious: we envision that for 
higher values of α, the expert is going to provide more limited subsets of X; the vertical approach leads to 
the fuzzy set by combining the estimates of the corresponding α -cuts. Given the nature of this method, we 
are referring to the collection of random sets as these estimates appear in the successive stages of the 
estimation process.  

 
 

α1 

αp 

X  
Figure 8. A vertical approach of membership estimation through the reconstruction of a fuzzy set 

through its estimated α -cuts. 
 

The elements are identified by the expert as they form the corresponding α -cuts of A. By repeating the 
process for several selected values of α we end up with the α -cuts and using them we reconstruct the 
fuzzy set. The simplicity of the method is its genuine advantage. Like in the horizontal method of 
membership estimation, a possible lack of continuity is a certain disadvantage one has to be aware of. Here 
the selection of suitable levels of α needs to be carefully investigated. Similarly, an order at which different 
levels of α are used in the experiment could impact the estimate of the membership function.   

 
5.4. Saaty’s priority method of pairwise membership function estimation 

 
The starting point of the estimation process are entries of the reciprocal matrix which are obtained through 
collecting results of pairwise evaluations offered by an expert, designer or user (depending on the character 
of the task at hand). Prior to making any assessment, the expert is provided with a finite scale with values 
spread in-between 1 to 7. Some other alternatives of the scales such as those involving 5 or 9 levels could 
be sought as well. If xi is strongly preferred over xj when being considered in the context of the fuzzy set 
whose membership function we would like to estimate, then this judgment is expressed by assigning high 
values of the available scale, say 6 or 7. If we still sense that xi is preferred over xj yet the strength of this 
preference is lower in comparison with the previous case, then this is quantified using some intermediate 
values of the scale, say 3 or 4. If no difference is sensed, the values close to 1 are the preferred choice, say 
2 or 1. The value of 1 indicates that xi and xj are equally preferred. On the other hand, if xj is preferred over 
xi, the corresponding entry assumes values below one. Given the reciprocal character of the assessment, 
once the preference of xi over xj has been quantified, the inverse of this number is plugged into the entry of 
the matrix that is located at the (j,i)-th coordinate. As indicated earlier, the elements on the main diagonal 
are equal to 1. Next the maximal eigenvalue is computed along with its corresponding eigenvector. The 
normalized version of the eigenvector is then the membership function of the fuzzy set we considered 
when doing all pairwise assessments of the elements of its universe of discourse. The pairwise evaluations 
are far more convenient and manageable in comparison to any effort we make when assigning membership 
grades to all elements of the universe in a single step. Practically, the pairwise comparison helps the expert 
focus only on two elements once at a time thus reducing uncertainty and hesitation while leading to the 
higher level of consistency. The assessments are not free of bias and could exhibit some inconsistent 
evaluations. In particular, we cannot expect that the transitivity requirement could be fully satisfied. 
Fortunately, the lack of consistency could be quantified and monitored. The largest eigenvalue computed 
for R is always greater than the dimensionality of the reciprocal matrix (recall that in reciprocal matrices 
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the elements positioned symmetrically along the main diagonal are inverse of each other),  λmax > n where 
the equality λmax = n occurs only if the results are fully consistent. The ratio  

 
φ = (λmax –n)/(n-1)                                                                     (7) 

 
can be treated as an index of inconsistency of the data; the higher its value, the less consistent are the 
collected experimental results. This expression can be sought as the indicator of the quality of the pairwise 
assessments provided by the expert. If the value of φ  is too high exceeding a certain superimposed 
threshold, the experiment may need to be repeated. Typically if the value of φ is less than 0.1 the 
assessment is sought to be consistent while higher values of φ  call for the re-examination of the 
experimental data and a re-run of the experiment.  

  
5.5. Fuzzy sets as granular representatives of numeric data 

 
In general, a fuzzy set is reflective of numeric data that are put together in some context. Using its 
membership function we attempt to embrace them in a concise manner. The development of the fuzzy set 
is supported by the following experiment-driven and intuitively appealing rationale:  

(a) first, we expect that A reflects (or matches) the available experimental data to the highest extent, and  
(b) second, the fuzzy set is kept specific enough so that it comes with a well-defined semantics.  

These two requirements points at the multiobjective nature of the construct: we want to maximize the 
coverage of experimental data (as articulated by (a)) and minimize the spread of the fuzzy set (as captured 
by (b)). These two requirements give rise to a certain optimization problem. Furthermore, which is quite 
legitimate, we assume that the fuzzy set to be constructed has a unimodal membership function or its 
maximal membership grades occupy a contiguous region in the universe of discourse in which this fuzzy 
set has been defined. This helps us build a membership function separately for its rising and declining 
sections. The core of the fuzzy set is determined first. Next, assuming the simplest scenario when using the 
linear type of membership functions, the essence of the optimization problem boils down to the rotation of  
the linear section of the membership function around the upper point of the core of A; for the illustration 
refer to Figure 9. The point of rotation of the linear segment of this membership function is marked by an 
empty circle.  By rotating this segment, we intend to maximize (a) and minimize (b). 

x 

max Σ A(xk) 

min Supp(A) 

data

a 

 
Figure 9. Optimization of the linear increasing section of the membership function of A; highlighted are 

the positions of the membership function originating from the realization of the two conflicting criteria.  
 

Before moving on with the determination of the membership function, we concentrate on the location of its 
numeric representative. Typically, one could view an average of the experimental data x1, x2, …, xn to be 
its sound representative. While its usage is quite common in practice, a better representative of the numeric 
data is a median value. There is a reason behind this choice. The median is a robust statistic meaning that it 
allows for a high level of tolerance to potential noise existing in the data.  Its important ability is to ignore 
outliers. Given that the fuzzy set is sought to be a granular and “stable” representation of the numeric data, 
our interest is in the robust development not being affected by noise. Undoubtedly, the use of the median is 
a good starting point. Let us recall that the median is an order statistic and is formed on a basis of an 
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ordered set of numeric values. In the case of the odd number of data in the data set, the point located in the 
middle of this ordered sequence is the median. When we encounter an even number of data in the 
granulation window, instead of picking up an average of the two points located in the middle, we consider 
these two points to form a core of the fuzzy set. Thus depending upon the number of data points, we either 
end up with triangular or trapezoidal membership function.  

 
Having fixed the modal value of A (that could be a single numeric value, “m” or a certain interval [m, n]), 
the optimization of the spreads of the linear portions of the membership functions are carried out separately 
for their increasing and decreasing portions. We consider the increasing part of the membership function 
(the decreasing part is handled in an analogous manner). Referring to Figure 9, the two requirements 
guiding the design of the fuzzy set are and transformed into the corresponding multiobjective optimization 
problem as outlined as follows 

 
(a) maximize the experimental evidence of the fuzzy set; this implies that we tend to “cover” as 

many numeric data as possible, viz. the coverage has to be made as high as possible. 
Graphically, in the optimization of this requirement, we rotate the linear segment up (clockwise) 

as illustrated in Figure 9. Formally, the sum of the membership grades A(xk), ∑
k

k )A(x where 

A is the linear membership function to be optimized and xk is located to the left to the modal 
value) has to be maximized  

  
(b) Simultaneously, we would like to make the fuzzy set as specific as possible so that is comes 

with some well defined semantics. This requirement is met by making the support of A as small 
as possible, that is mina|m –a|  

 
To accommodate the two conflicting requirements, we combine (a) and (b) in the form of the ratio that is 
maximized with respect to the unknown parameter of the linear section of the membership function 

 

maxa  |am|

)A(x
k

k

−

∑
                                                                  (8) 

 
The linearly decreasing portion of the membership function is optimized in the same manner. The overall 
optimization returns the parameters of the fuzzy number in the form of the lower and upper bound (a and b, 
respectively) and its support (m or  [m,n]). We can write down such fuzzy numbers as A(a, m, n, b). We 
exclude a trivial solution of a =m in which case the fuzzy set collapses to a single numeric entity. 

 
As an illustration, let us consider a scenario where experimental numeric data are governed by some 
uniform probability density function defined over the range [0, b],  b >0 that is p(x) =1/b over the [0, b] 
and 0 otherwise. The linear membership function of A is the one of the form A(x) = max (0, 1-x/a). The 
modal value of A is equal to zero. The optimization criterion (12) now reads as  
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=−∫ =−=

∫
=                            (9) 

 
The plot of V regarded as a function of the optimized slope of A is shown in Figure 10; here the values of 
“b” were varied to visualize an effect of this parameter on the behavior of V.    
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Figure 10. Plots of V versus “a” for selected values of “b”. 

 
The optimal value of “a” results from the relationship dV/da =0 and this leads to the equality a = b. The 
form of the relationship V= V(a) is highly asymmetric; while the values of “a” higher than the optimal 
value (aopt) leads to a very slow degradation of the performance (V changes slowly), the rapid changes in V 
are noted for the values of “a”  which are lower than the optimal value. 

 
5.6. From numeric data to fuzzy sets: the essence of fuzzy clustering 

 
Fuzzy sets can be formed on a basis of numeric data through their clustering (groupings). The groups of 
data give rise to membership functions that convey a global more abstract view at the available data. With 
this regard Fuzzy C-Means (FCM, for brief) is one of the commonly used mechanisms of fuzzy clustering 
(Bezdek, 1981; Pedrycz, 2005).  

 
Let us review its formulation, develop the algorithm and highlight the main properties of the fuzzy clusters. 
Given a collection of n-dimensional data set {xk}, k=1,2,…,N, the task of determining its structure – a 
collection of “c” clusters, is expressed as a minimization of the following objective function (performance 
index) Q being regarded as a sum of the squared distances  

 

2
ik

N

1k

m
ik

c

1i
||||uQ vx −∑∑=

==
                                                                    (10) 

 
where vi s are n-dimensional prototypes of the clusters, i=1, 2,..,c and U = [uik] stands for a partition matrix 
expressing a way of allocation of the data to the corresponding clusters; uik is the membership degree of 
data xk in the i-th cluster. The distance between the data zk and prototype vi is denoted by ||.||. The 
fuzzification coefficient m (>1.0) expresses the impact of the membership grades on the individual clusters. 

  
A partition matrix satisfies two important properties 
 

                                  (a) c 1,2,...,i    ,Nu0
N

1k
ik =∑ <<

=
 

(b) N 1,2,...,k    ,1u
c

1i
ik ==∑

=
                                                                     (11) 

 
Let us denote by U a family of matrices satisfying the conditions (a)-(b). The first requirement means that 
each cluster has to be nonempty and different from the entire set. The second requirement states that the 
sum of the membership grades should be confined to 1. 
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The minimization of Q completed with respect to U∈U and the prototypes vi of V={v1 , v2 ,...vc} of the 
clusters. More explicitly, we write it down as follows 

  
min Q    with respect to U ∈   U , v1, v2, …, vc ∈ Rn  

 
The fuzzification coefficient exhibits a direct impact on the geometry of fuzzy sets generated by the 
algorithm. Typically, the value of “m” is assumed to be equal to 2.0. Lower values of m (that are closer to 
1) yield membership functions that start resembling characteristic functions of sets; most of the 
membership values become localized around 1 or 0. The increase of the fuzzification coefficient (m = 3, 4, 
etc.) produces “spiky” membership functions with the membership grades equal to 1 at the prototypes and 
a fast decline of the values when moving away from the prototypes. In addition to the varying shape of the 
membership functions, observe that the requirement put on the sum of membership grades imposed on the 
fuzzy sets yields some rippling effect: the membership functions are not unimodal but may exhibit some 
ripples whose intensity depends upon the distribution of the prototypes and the values of the fuzzification 
coefficient.  
 
While the number of clusters is typically limited to a few information granules, we can easily proceed with 
successive refinements of fuzzy sets. This can be done by splitting fuzzy clusters of the highest 
heterogeneity (Pedrycz and Reformat, 2006).  Let us assume that we have already constructed “c” fuzzy 
clusters. Each of them can be characterized by the performance index  
 

2
ik

N

1k

m
iki ||||uV vx −∑=

=
                                                      (12) 

 
i = 1,2, …, c. The higher the value of Vi, the more heterogeneous the i-th cluster. The one with the highest 
value of Vi, that is the one for which we have i0= arg maxiVi is refined by being split into two clusters. 
Denote the set of data associated with the i0-th cluster by X(i0),  

 
X(i0) = { xk  ∈X| ikiki umaxu

o
= }                                                (13) 

 
We cluster the elements in X(i0) by forming two clusters which leads to two more specific (detailed) fuzzy 
sets. This gives rise to a hierarchical structure of the family of fuzzy sets as illustrated in Figure 11. The 
relevance of this construct in the setting of fuzzy sets is that it emphasizes the essence of forming a 
hierarchy of fuzzy sets rather than working with a single level structure of a large number of components 
whose semantics could not be retained. 

 

1 

2 

3 

 
Figure 11. Successive refinements of fuzzy sets through fuzzy clustering applied to the clusters of the 

highest heterogeneity. The numbers indicate the order of the splits.  
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The process of further refinements is realized in the same by picking up the cluster of the highest 
heterogeneity and its split into two consecutive clusters. It is worth emphasizing that the FCM algorithm is 
a highly representative method of membership estimation that profoundly dwells on the use of 
experimental data. In contrast to some other techniques presented so far that are also data-driven, FCM can 
easily cope with multivariable experimental data. 

6. Communication mechanisms in Granular Computing 

Granular Computing can be realized in various formal frameworks. Different phenomenon can be captured 
by various models developed in terms of the given formalism of information granules. For instance, we 
may refer here to fuzzy models, rough models, and interval models. If we intend to develop an interaction 
between such models, they have to communicate their findings in a way the results are “understood” by the 
other models. There are two fundamental dimensions of the communication processes as illustrated in 
Figure 12. The first one is concerned with the level of granularity of information granules. The second one 
deals with the formalisms of Granular Computing. 
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Figure 12. A two-dimensional communication plane of Granular Computing. Note that that at the highest 
level of granularity (which concerns numeric entities) all formalisms of information granules coincide 

The role of communication mechanisms is to facilitate an interaction between the various constructs shown 
in the two-dimensional plane. Small circles shown in this figure denote the pertinent communication 
modules. For instance, consider that the construct of fuzzy sets is going to be communicated to the 
framework of interval analysis. This requires that the information granules (viz. fuzzy sets) are converted 
into a certain set. In this case the transformation (communication) mechanism is well-known: any fuzzy set 
can be approximated by a certain α-cut (set). The choice of the threshold level (α) itself can be optimized. 

7. Rule-based systems as granular models  

Granular models, as the name stipulates, are modeling constructs that are built at the level of information 
granules. Mappings between the granules express the relationships captured by such models. The 
granularity of information that is explicitly inbuilt into the construct offers interesting and useful features 
of the model including its evident transparency and flexibility. The same phenomenon can be viewed from 
different perspectives which could be highly diversified as far as the level of detail captured by the model 
is concerned. Similarly, we can envision a need for some interaction between the models formed at the 
distinct levels of granularity.  

Fuzzy rule-based systems (models) are typical and commonly encountered examples of granular models. 
These systems are highly modular and easily expandable fuzzy models composed of a family of 
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conditional “if – then” statements (rules) where fuzzy sets occur in their conditions and conclusions. In 
general, we may talk about rules embracing information granules expressed in any other formalism. The 
standard format of the rule with many inputs (conditions) arises in the form 

 
-if condition1 is A and condition2 is B and … and   conditionn is W then conclusion is Z              (14) 

 
where A, B, C,…W, Z are fuzzy sets defined in the corresponding input and output spaces. The models 
support a principle of locality and a distributed nature of modeling as each rule can be interpreted as an 
individual local descriptor of the data (problem) which is invoked by the fuzzy sets defined in the space of 
conditions (inputs). The local nature of the rule is directly expressed through the support of the 
corresponding fuzzy sets standing in its condition part. The level of generality of the rule depends upon 
many aspects that could be easily adjusted making use of the available design components associated with 
the rules. In particular, we could consider fuzzy sets of condition and conclusion whose granularity could 
be adjusted so that we could easily capture the specificity of the problem. By making the fuzzy sets in the 
condition part very specific (that is being of high granularity) we come up with the rule that is very limited 
and confined to some small region in the input space. When the granularity of fuzzy sets in the condition 
part is decreased, the generality of the rule increases. In this way the rule could be applied to more 
situations. To emphasize a broad spectrum of possibilities emerging in this way, refer to Figure 13 which 
underlines the very nature of the cases discussed above. 
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Figure 13. Examples of rules and their characterization with respect to the level of granularity of 

condition and conclusion parts 
 

 
Quite often, we can envision a case when granular models are used in a numeric mode meaning that we are 
concerned with the issue of numeric outcomes produced by the models. This implies a numeric way of the 
optimization of the models; in these cases we encounter a minimization problem in which a numeric 
manifestation of the granular model is compared with the numeric target value. In other words, in the 
development of the granular mode we follow the scheme shown in Figure 14.  More formally, we 
minimize the following performance index  

2
k

N

1k
k ||))D(Yt||Q −= ∑

=

                                                               (15) 
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where Yk = G(xk) is the output of the granular model (G) while D denotes a decoding process 
(transforming the granular output into a single numeric output). xk and tk are the input-output pairs of data, 
k=1,2, …, N being used in the development of the model. ||.|| stands for some distance function.  

 

xk Yk tk 
D 

Optimization 

 
Figure 14. The optimization of granular models; note a role of the decoding module which decodes output 

information granule into a single numeric entity 
 
This optimization does not allow taking into consideration the granularity of the model. An alternative 
approach would be to augment the performance index so that the granularity of the granular output of the 
model is taken into consideration. An example of such performance index could be composed as follows 
 

)(Y))(tY(1Q k

N

1k
kk Φ−= ∑

=

                                                          (16) 

 
The first term expresses a degree of compatibility of tk and the granular output of the model (denoted by 
Yk). The second one, denoted here by F(Yk) deals with the granularity of Yk. In particular, one could 
consider here any energy measure of the information of the information granule (say, support of set, fuzzy 
set or alike). Our objective is to miminize (16) by choosing suitable values of the parameters of the 
granular model.   
 
8. Conclusions 
 
In this study, we reviewed the fundamentals of Granular Computing by stressing the role of this paradigm 
in the development of intelligent systems. The inherent human centricity of such systems makes the 
processing carried out at the level of information granules to become their integral feature. We showed a 
significant diversity of the underlying formalisms of information granules (including fuzzy sets, rough sets, 
shadowed sets, and interval analysis) and demonstrated how Granular Computing forms a unified and a 
highly coherent view at these mechanisms. Several ways of forming information granule were also 
presented. We stressed a need for effective communication mechanisms in Granular Computing where 
these mechanisms have to deal with various levels of granularity of information as well as various formal 
schemes of representation of the granules. We also underlined an issue of dealing with granular 
information in system modeling where the models themselves are granular constructs.   
 
The paper serves as a brief introduction to the emerging discipline and does not pretend to cover a wealth 
of its conceptual developments, algorithmic pursuits and applications. It rather brings several ideas that 
have been around for some time, stresses the coherency of the area and emphasizes several key challenges 
(including communication schemes) lying ahead. 
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