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Abstract. Researchers in sport science typically find themselves simultaneously examining many 
questions and hypothesis through multiple dependant variable analyses. When more than one independent 
test is used, the likelihood of finding significant effects due to chance increases linearly based on the number 
of analyses being conducted. In recent years however a division has emerged between those performing 
comparative clinical or semi-clinical analyses with aetiological components and so called conventionalists 
who have continued to employ traditional methods such as Bonferroni corrections to control for type I error. 
The problem with alpha level adjustments is that whilst they do reduce the likelihood of making a type I error, 
the probability of making a type II error correspondingly increases. This review advocates a strategy of not 
making adjustments for multiple analyses as it leads to less errors of interpretation. Researchers should not be 
punished by missing potentially meaningful findings for their willingness to explore additional information. 
Sport science by its very nature comprises a multitude of hypotheses and comparisons, and this simple fact 
leads to the conclusion that adjustments for multiple comparisons are not necessary. 
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1. Introduction  
The goal of comparative inferential statistical analyses in sports science is to make inferential decisions 

regarding the effect of two or more independent variables on an outcome measure in relation to the null 
hypothesis (Thomas and Nelson, 2005). Researchers typically find themselves simultaneously examining 
many questions and hypothesis through multiple dependant variables analyses (Hsu, 1996 and Ludbrook, 
1991). The key issue surrounding multiple comparisons when using an alpha level of 0.05 is type I error, 
whereby a researcher may erroneously reject the null hypothesis due to the number of analyses being made 
(Benjamini and Hochberg, 1995 and Shaffer, 1995).  

In recent years a division has emerged between those performing comparative clinical and semi-clinical 
analyses with aetiological components, and so called conventionalists who have continued to employ 
traditional methods such as Bonferroni corrections to control for type I error (Rothman, 1990 and Feise, 
2002). Both sides have presented legitimate arguments to support their approaches, but a consensus has yet 
to be reached. The primary aim of this review is to evaluate the need for alpha level adjustments when 
multiple comparisons are made. 

2. Multiple comparisons and type I error – the traditional approach 
Standard academic practice for statistical analyses is to accept an alpha level of 0.05 in order to 

distinguish statistical significance from non-significance. By definition this approach when conducting 
twenty analyses will result in one variable that will appear to be significant when in reality it is co-incidental 
(Williams, 1971). The occurrence of rejecting the null hypothesis when it is in fact true is referred to as a 
type I error. When more than one independent test is used, the likelihood of finding one significant effect due 
to chance increases linearly based on the number of tests that are conducted (Williams, 1971).  

Therefore alpha level adjustments are based around the following premise: if the null hypothesis is 
indeed true then significant observations may still be observed. To accommodate and control for this, the 
alpha level for each analysis is adjusted to ensure that the overall likelihood of obtaining a significant effect 
is still at the α=0.05 level. This importantly allows multiple analyses to be performed with a minimal risk of 
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type I error. Conventionalists who advocate adjustments for multiple comparisons argue that control over 
type I error or false positives are imperative to avoid spurious associations (Perneger, 1998).  

3. General procedures for multiple test adjustments 
Classicists believe that if multiple measures are tested in a given study, the alpha level should be 

adjusted in order to reduce the chance of observing spurious statistical significance (Tukey, 1977, Bland and 
Atman 1995). This view is based on the theory that if you test long enough, you will inevitably find 
something statistically significant (false-positives) due to random variability, even if no real effects exist 
(Greenhalgh, 1997 and Ludbook, 1998). This has been referred to as the multiple testing problem or the 
problem of multiplicity (Ahlbom, 1993). A variety of methods have been developed, but no gold standard 
method exists (Sidak, 1967, Williams, 1971 and Holm, 1979). 

3.1. Bonferroni  
One of the fundamental and historically utilized adjustments for type I error is the Bonferroni correction 

(Perneger, 1998). The Bonferroni correction adjusts the alpha level at which a statistical test considered to be 
significant based on the total number of analyses being conducted. Specifically, the utilized alpha level is 
quantified as being the original alpha level of α=0.05 divided by the number of comparisons being made. 
Implicitly, the Bonferroni adjustment assumes that these test statistics are independent. For example when 
conducting four analyses an overall desired alpha level of 0.05 would translate into individual tests each 
using an p-value threshold of 0.05/4 = 0.0125. The Bonferroni adjustment procedure has the advantage of 
being simple and valid even when the analyses being conducted are dependent. Although Bonferroni is the 
conventional method of adjusting the alpha level, it is frequently considered to be overly conservative.  

3.2. Holm-Bonferroni 
An equivalently more powerful statistical procedure (i.e. more stringent irrespective of the values of the 

unobservable parameters) is the Holm–Bonferroni technique (Holm, 1979). The Holm-Bonferroni technique 
is a successively rejective adaptation of the simpler Bonferroni adjustment for multiple analyses, and 
strongly controls the alpha level. The Holm-Bonferroni adjustment ranks all of the observed p-values in 
order from smallest to largest, if the first p-value is greater than or equal to the alpha level/ the number of 
comparisons being made then the procedure is halted and the null hypothesis is accepted. If the first p-value 
is found to be significant (i.e. less than p-value/ the number of comparisons) the second p-value is compared 
to the alpha level / number of comparisons-1. This process continues until one of the variables is found to be 
non-significant then the analysis ceases.  

3.3. Hochberg 
The Hochberg procedure is very similar to the Holm-Bonferroni technique (Hochberg, 1988). The only 

difference is that this technique is regarded as a step-up, rather than step-down, procedure as it ranks the 
observed p-values from high to low. The analysis then examines the observed p-values from the highest to 
the lowest, and discontinues as soon as the p-value is less than is the adjusted alpha, and from here onwards 
represents significant p-values. 

3.4. Sidak 
The Šidák correction is conducted by assuming that the conducted analyses tests are independent (Sidak 

1967). Since all of the variables are considered to be independent, the adjusted alpha level is equal to 1-(1-
unadjusted alpha level) multiplied by the 

 number of comparisons. The Šidák correction gives a stronger 
bound than the Bonferroni correction but can be limited by the condition of independence and is less 
stringent in its control over type I error. Because the Šidák correction requires calculating fractional powers, 
it is complicated to perform and the simpler Bonferroni correction is often preferred. 

3.5. Dunnett 
Dunnett's test is specifically designed to allow variables means to be contrasted against a single reference 

mean (Dunnett, 1955 and 1964). It is commonly used after the homogeneity assumption has been violated. 
Its aim is to identify variables whose means are significantly different from the reference. It examines the 
null hypothesis in that none of the variable means is significantly different from the reference mean. 

4. Abandoning the type I error paradigm 
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Whilst the justification for techniques such as Bonferroni corrections appears to be reasonable, two key 
empirical issues exist. Alpha level adjustment procedures such as Bonferroni serve to examine a so called 
universal null hypothesis against the alternative hypothesis (O’Keefe, 2003 and Savitz and Olshan 1995). As 
such the rejection of the universal null hypothesis as opposed to the alternative is simply a statement that one 
or more of the variables that compromise the universal null hypothesis is rejected, but without the ability to 
define which one (Cox and Wong, 2004 and Wacholder et al., 2004). It could be argued that a researcher 
should be most interested in examining individual hypotheses, and that examining the so called composite 
hypothesis is rarely of practical or scientific concern. A second more understated problem for researchers 
and statisticians is that the likelihood of a falsely rejected null hypothesis cannot be localized to an 
unambiguous set of analyses (Everitt, 2000). Simply stated a researcher is able to subjectively select the 
analyses over which an alpha level adjustment is applied, and this subjective choice can produce unreliable 
conclusions.  

A further objection that researchers typically make to alpha level adjustments is that whilst the likelihood 
of making a type I error is reduced; the probability of making a type II error correspondingly increases 
(Rothman, 1990, Perneger, 1998 and Thomas et al., 1985). By changing the alpha level required to reject the 
null hypothesis (or equivalently widening the uncertainty intervals) the quantity of rejected null hypotheses 
will decrease (Halperin et al., 1988 and Einot, and Gabriel, 1975). Although this will serve to reduce the 
number of false rejections, it will also serve to increase the number of instances in which the null hypothesis 
is not rejected when in fact it is false. As such, the conventionally advocated alpha level corrections can 
severely reduce the power to detect an important effect. By reducing the likelihood of type I errors through 
alpha level adjustments, you increase the incidence of type II error. Type II errors can be no less serious than 
type I errors particularly in sport science as it may result in a valid result being discarded. Thus, it is 
recommended that the consequences of type II errors be considered more extensively by researchers.  

5. Discussion 
The proposed approach advocated by this article, has two fundamental differences from the classical 

perspective. Firstly, it is recommended that Type 1 error be de-emphasized to some extent because it is not 
possible for the null hypothesis to be strictly accurate. Secondly, it is proposed in sports science that type II 
errors pose a more significant threat to the efficacy of exploratory analyses; and that researchers should not 
be punished for presenting a more complete picture of their study through the inclusion of more variables. 
Conventionalists who subscribe to the theory of adjustments for multiple analyses face the problem 
described by Rothman, (1990) as the penalty for peeking. If this premise is allowed, many logical 
inconsistencies may arise.  

The paradox of paying a penalty for having more information is a concept that has commonly been 
accepted (Rothman, 1990 and Benjamini and Hochberg, 1995). The paradox arises only if researchers are 
willing to assume the truth of the universal null hypothesis; however, the premise of a universal null 
hypothesis is one that empirical science constantly refutes (Altman, 1991 and Armitage and Perry, 1994) as 
it lacks any apparent heuristic value. Therefore to pay a penalty for making additional observations should be 
considered unacceptable to any scientist. This review advocates a strategy of not making adjustments for 
multiple analyses as it will lead to less errors of interpretation. Researchers should not be punished by 
missing potentially meaningful findings for their willingness to explore additional information. Sport science 
by its very nature comprises a multitude of hypotheses and comparisons, and this simple fact leads to the 
conclusion that adjustments for multiple comparisons are not necessary. 
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