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Abstract. The classic problem of the motion of a point mass (projectile) thrown at an angle to the horizon  
is reviewed. The air drag force is taken into account in the form of a quadratic function of velocity with the  
coefficient of resistance assumed to be constant. Analytical methods for the investigation are mainly used.  
With the help of simple approximate analytical formulas a full investigation of the problem was carried out. 
This study includes the determining of  eight basic parameters of projectile motion (flight range, time of  
flight, maximum ascent height and others). The study also includes the construction of the basic functional  
dependences  of  the motion,  the determination of the optimum angle  of throwing,  providing the greatest 
range;  constructing of the envelope of a family of trajectories of the projectile and  finding the vertical  
asymptote of projectile motion. The motion of a baseball is presented as examples. 
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1. Introduction 
The problem of the motion of a point mass (projectile) thrown at an angle to the horizon has a long 

history.  The number  of works devoted to this task  is  immense. It  is a  constituent of many introductory 
courses  of  physics.  This task arouses interest of authors as before [1 – 3].  With zero air drag force, the 
analytic solution is well known. The trajectory of the point mass is a parabola. In situations of practical 
interest, such as throwing a ball, taking into account the impact of the medium the quadratic resistance law is  
usually used. In that case the problem probably does not have an exact analytic solution and therefore in  
most  scientific publications it  is  solved numerically [4 – 9].  Analytic  approaches to  the  solution of the 
problem  are  not  sufficiently  advanced.  Meanwhile,  analytical  solutions  are  very  convenient  for  a 
straightforward  adaptation  to  applied  problems  and  are  especially  useful  for  a  qualitative  analysis.  
Comparativly simple approximate analytical formulas to study the motion of the point mass in a medium 
with a quadratic drag force have been obtained using such an approach [10 – 15]. These formulas make it  
possible to carry out a complete qualitative and quantitative analysis without using numerical integration of 
differential equations of point mass motion. This article brings together these works [10 -15] within a unified 
approach and gives a full investigation of the problem. The proposed analytical solution differs from other  
solutions by easy formulas, ease of use and high accuracy. In this article the following stages of research are  
consistently described:

– equations of motion and the construction of the trajectory;
– analytical formulas for determining the basic parameters of projectile motion (flight  range, time of 
flight, maximum ascent height and others);
–  analytical formulas for the basic functional dependences of the problem;
–  the determination of the optimum angle of throwing, providing the greatest range;
–  constructing the envelope of a family of trajectories of the projectile; 
–  finding the vertical asymptote of projectile motion.
All these characteristics are determined directly from the initial conditions of projectile motion -  the 

initial  velocity and angle of throwing.  The proposed formulas  make  it  possible to carry out  a complete  
analytical investigation of the motion of a point mass in a medium with the resistance in the way  it is done  
for the case of no drag. In this article the term “point mass” means the centre of mass of a smooth spherical  
object of  finite radius r and cross-sectional area S = πr2.     The conditions of applicability of the quadratic 
resistance law are deemed to be fulfilled, i.e. Reynolds number Re lies within 1 10 3  < Re < 2 10 5 [2]. 
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These values corresponds to the velocity of motion of a point, lying in the range between  0.25 m/s and 53  
m/s.

2. Equations of motion and the construction of the trajectory
Suppose that the force of  gravity affects the  point mass together with the force of air resistance  R 

(Figure 1), which is proportional to the square of the velocity of the point and directed opposite the velocity 
vector. For the convenience of further calculations,  the drag force  will be written as R=mgkV 2 . Here   m 
is the mass of the projectile,  g  is the acceleration due to gravity,  k  is the proportionality factor. Vector 
equation of the motion of the point mass has the form

mw = mg + R,
where w – acceleration vector of the point mass. Differential equations of the motion, a commonly used in  
ballistics, are as follows [16]

              
dV
dt

=−g sin −gkV 2
, 

d 
dt

=− g cos
V , 

dx
dt

=V cos , 
dy
dt

=V sin                         (1)

Here V is the velocity of the point mass, θ is the angle between the tangent to the trajectory of the point 

mass and the horizontal, x, y are the Cartesian coordinates of the point mass, k=
a cd S
2 m g

=const  is the 

proportionality factor, a is the air density, cd  is the drag factor for a sphere, and  S  is the cross-section 
area of the object (Figure 1). The first two equations of the system (1) represent the projections of the vector  
equation  of  motion  for  the  tangent  and  principal  normal  to  the  trajectory,  the  other  two are  kinematic 
relations connecting the projections of the velocity vector point mass  on the axis x, y with derivatives of the  
coordinates.

 Fig. 1 : Basic motion parameters.

The well-known solution of Equations (1) consists of an explicit analytical dependence of the velocity on  
the slope angle of the trajectory and three quadratures 

V =
V 0cos0

cos1kV 0
2cos20  f 0− f 

,   f = sin 

cos2
ln tan  

2


4
          (2) 
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                t=t0−
1
g ∫

0


V

cos d  ,  x= x0−
1
g ∫

0



V 2d  ,  y= y0−
1
g ∫

0



V 2 tan d                   (3)

Here  V0   and  θ0  are the initial values of the velocity and the slope of the trajectory respectively, t0 is the 
initial value of the time, x0, y0 are the initial values of the coordinates of the point mass ( usually accepted 
t0=x0= y0=0 ). The derivation of the formulas (2) is shown in the well-known monograph [17].

The integrals on the right-hand sides of (3) cannot be expressed in terms of elementary functions. Hence, 
to determine the variables t, x and y we must either integrate (1) numerically or evaluate the definite integrals 
(3). 

It turns out [10] that, using a special form of organised integration of quadratures (3) by parts in a fairly  
small interval [θ0, θ] , the variables  t, x and  y can be written in the form

 

t=t0
2V 0sin0−V sin

g 2  ,    x= x0
V 0

2sin 20−V 2sin 2

2g 1  

                       y= y0
V 0

2sin20−V 2 sin2

g 2
,   =k V 0

2sin0V 2sin                                    (4) 

We will obtain the first of the formulae (4). The method of calculating the quadratures is based on the 
use of the relation between an auxiliary variable u=V cos and the independent variable θ.  This relation 
has the following differential form [16]

                                                                        
du
u3 =k d 

cos3
                                                                     (5)

 We will consider the first of the quadratures (3) and we write it, using the relation  u=V cos , in the 
form   

                                           t=t0−
1
g∫

0


V

cos 
d  = t0−

1
g ∫

0


u

cos2
d                                              (6)

 We take the integral (6) by parts

t=t0−
u tan

g │0

 
1
g ∫

0



tandu=t0−
V sin 

g │0

 
1
g ∫0



tan du

 Using relation (5) we convert the last term

    
1
g∫

0



tan du=
k
g ∫

0



V 3 tan d =−k∫
0



V 2sin dt

 Hence

       t=t0−
V sin 

g
∣0

 −ktV 2sin ∣0

 k∫
0



t d V 2sin                                  (7)

Suppose  the  range  of  integration   −0=∆    is  fairly  small.  Then  the  integral  in  (7)  can  be 

calaulated as the area of a trapezium with bases  t0 , t and height  h=V 2sin −V 0
2sin 0 . We have

k∫
0



t d V 2sin≈
k t0 t 

2 ∫
0



d V 2sin=1
2

k t0t V 2sin−V 0
2sin0

As a result, formula (7) takes the form 

t 1
2
=t0 1 

2


V 0sin 0−V sin 

g
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 (the variable  ε  is defined by last of relations (4)). Finally 

t=t0
2V 0 sin 0−V sin 

g 2
We can similarly derive the other two formulas (4).

Hence, in a small interval  [θ0, θ]  the trajectory of the point mass can be approximated by Eqs (4). These 
formulas have a local nature. We can calculate the whole trajectory very accurately in steps by calculating  
V(θ), t(θ),  x(θ),  y(θ) using Eqs (2), (4) at the right-hand end of the interval  [θ0,  θ] and taking them as the 
initial values for the following step

V 0=V θ ,  t0=t θ  ,  x0=x  , y0= y 

This cyclical  procedure replaces  both numerical  integration of  system (1)  and the evaluation of  the 
integrals (3). The smaller the value of   k  the greater the range  [θ0, θ] of applicability of the formulas 
obtained. When  k =  0,  i.e. when  there is no drag, formulas (4) transform to the well-known accurate  
formulas of the theory of the parabolic motion pf a point mass and become valid for any values   θ0  and  θ. 
Moreover, formulas (4) are accurate in those finite intervals of  [θ0,  θ] where the variables  t,  x  and  y 
depend linearly on the auxiliary variable  z = V 2 sinθ.

As calculations show, the trajectory obtained by integrating system of equations (1) and the trajectory 
constructed using formulas (2) and (4), are identical. Here,  to construct the trajectory it is sufficient to use a  
step ∆=−0 of the order of  0.1◦.

3. Analytical formulas for determining the main parameters of motion of the 
point mass
Equations (4) enable us to obtain simple analytical formulas for the main parameters of motion of the  

point mass.  In Figure 2 we have drawn a graph of the coordinate   y  (measured in meters)  against  the 
auxiliary dimensionless variable  R y=−kV 2sin  , where  R y is the projection of the normalized drag of 

the medium on the  y  axis. We used the following values  V0, θ0  and the coefficient k, the corresponding to 
the movement of the baseball [6]

V0 = 44.7  m/s ,  θ0  = 60°,  k = 0.000548  s2/m2 ,  g = 9.81  m/s2.

Fig. 2: The graph of the function y = y(Ry).

The variable  R y is similar to the above-mentioned variable z. It can be seen that, both at the ascending 
stage ( the left part of the graph) and the descending stage (the right part) this graph is close to linear. Hence  
it follows that the maximum height of ascent of the poin mass   H  can be obtained approximately using 
formula (4) for  y  in the finite interval  [θ0, 0],  i.e.  by taking  θ = 0  in this formula. 
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From the relation for the maximum height of ascent  H  we can derive comparatively simple approximate 
analytical formulas for the other parameters of motion of the poin mass. The four parameters correspond to 
the top of the trajectory, four – point of drop. We will give a complete summary of the formulas for the  
maximum height of ascent of the point mass  H,  motion time Т,  the velocity at the  trajectory apex  Va , 
flight range   L,  the time of ascent  ta ,  the abscissa of the trajectory apex  хa ,  impact angle with respect to 
the horizontal   θ1  and the final velocity  V1 :

H =
V 0

2sin20

g 2kV 0
2sin 0

,  T=22 H
g

V a=
V 0cos 0

1kV 0
2 sin 0cos20 ln tan

0
2


4



L=V a T
,  ta=

T−kHV a
2

,   
xa=LH cot0

                                                                                                                                                

                            1=−arctan[ LH
L−xa 

2 ] ,   V 1=V 1                                               (8)

In formulas (8) V0  and  θ0  are the initial values of the velocity and the slope of the trajectory of the point 
mass,  respectively.  Formulas  (8) enable us to calculate the basic parameters of motion of a point  mass  
directly from the initial data  V0 , θ0 , as in the theory of parabolic motion. With zero drag ( k = 0 ), formulas 
(8) go over into the respective formulas of point mass parabolic motion theory. 

As an example of the use of formulas (8) we calculated the motion of a baseball with the folowing initial 
conditions

V0 = 45  m/s     ;   θ0  = 40°  ;   k = 0.000548  s2/m2 , g = 9.81  m/s2.

Table 1.

             Parameter         Numerical value        Analytical value               Error (%)

               Н, m                30.97                31.43                 +1.5

               Т, sec                  5.00                  5.06                 +1.2

               Va , m/s              23.19                23.19                   0.0

               L, m               117.8                117.4                 -0.3

               ta , sec                 2.35                  2.33                  -0.9

               хa , m               65.36                 66.32                  +1.5

               θ1 , deg              -53.04               -54.73                  +3.2

               V1 , m/s               27.45                27.99                  +2.0
The results of calculations are recorded in Table 1. The second column shows the values of parameters  

obtained by numerical integration of the motion equations (1) by the fourth-order Runge-Kutta method. The  
third  column  contains  the  values  calculated  by  formulas  (8).  The  deviations  from the  exact  values  of 
parameters are shown in the fourth column of the table.

Figure 3 is an interesting geometric picture for Table 1. If we use motion parameters    L, Н, хa   to 
construct the ABC triangle with the height  BD = LH ,  segments   AD = xa

2 and  CD = L− xa 
2 , then in 

this triangle   0    C  1  husfor the values   L = 117.8 ,   Н = 30.97 ,  хa = 
65.36  we have:     = 40.5°,  C  = 53°.   
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Fig.3: Motion parameters.

4. Analitical formulas for basic functional relationships of the problem
Formulas  (8)  make  it  possible  to  obtain  simple  approximate  analitical  expressions  for  the  basic 

functional relationships of the problem  y(x), y(t), y(θ), x(t), x(θ), t(θ).
We construct the first of these dependencies. In the absence of a drag force, the trajectory of a point mass  

is a parabola, whose equation using parameters  H , L , xa   can be written as      

   y(x)=
H
xa

2 x (L – x)                                                                    (9) 

When the point  mass  is  under  a drag force,  the  trajectory becomes  asymmetrycal.   The top of  the 
trajectory  is  shifted  toward  the  point  of  incidence.  In  addition,  a  vertical  asymptote   appears  near  the  
trajectory. Taking these circumstances into account, we shall construct the function  y(x) as

y x =
Hx L−x 

xa
2ax , 

where  a – is a negative coefficient to be determined. We define it by the condition  y xa =H . We get 
a=L−2 xa . Then the sought dependence  y(x) has the form

                                                               

y x =
Hx L−x 

xa
2L−2 xa  x

                                                           (10) 
Constructed dependence  y(x) provides shift  of  the apex of the trajectory to the right and has a vertical 

asymptote, since the coefficient  a0 . In the case of no drag  L=2 xa , relationship (10) goes over into 
(9).

Exactly the same way, we construct the function  y(t) described as

    

y t= Ht T −t 
ta
2T−2 ta t

                                                            (11)
Since  T−2 ta0 , the maximum of the function  y(t) drifts to the left, to the launching side.
       From the equations of motion (1) there follows  the equation  dy/dx = tan θ. From this equation, upon 
differentiation of  Eq. (10) and putting the results in it, we get the expression for  x(θ)

x =a31
1−a1

1a2 tan                                                         (12)

Here  a1=L/ xa ,  a2=L−2 xa /H ,  a3=xa 2−a1
−1 .

Putting (12) to (10), we get the function  y(θ)
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                                                          y =b1b2−
2a2 tan

1a2 tan  ,                                                   (13)

where   b1=H a1−12−a1
−2 ,  b2=2H /b1 .

Using (10) and (11), we get the x(t) function

                                                      x t =
Lw1

2w2w1w1
2cw2

2 w1
2a1w2

,                                              (14)

where w1t =t−ta , w2t =2t T −t /a1 ,  c=2a1−1/a1 .

Using (11) and (13), we construct  the function  t = t(θ) described as

t =T
2

d 1 y ∓H− y d 2−d 1
2 y  ,                                    (15)

where  d 1=
1
H

ta−
T
2

 ,  d 2=
T 2

4 H
.  The minus sign in front of the radical in (15) is taken on the interval 

0 ≤ θ ≤ θ0   and the plus sign is taken on the interval  θ1 ≤ θ ≤ 0. 
Another form of the function  t(θ)  can be obtained from the equation of the motion dy / dt=V sin   

likewise formula (12)

                                                       t =l21 1−l1

1l3V sin   ,                                                     (16)

where  l1=T / ta ,    l2=ta 2−l1
−1 ,    l3=T−2 ta/ H . The function  V(θ)  in (16) is defined by 

relation (2).

Thus, with the known motion parameters   H,  L,  T,  xa , ta    formulas (10) - (16) make it possible to 
consruct functions   y(x), y(t), y(θ), x(t), x(θ), t(θ).

Here  is  an  example  of  using  these  formulas.  The  following values  of  the  parameters  are  taken  to  
calculate the motion of a baseball

a = 1.2  kg/m3, cd = 0.25,  r = 0.0366 m,  m = 0.145 kg ,
V0 = 50  m/s     ;   θ0  = 40°       g = 9.81 m/s2 ,     k = 0.00044 s2/m2. 

The results of calculations are shown in Figures  4 – 9. In all Figures thin solid lines are obtained by  
numeric  integration  of  motion  equations  (1),  broken   lines  in  the  Figures  show  the  same  functions  
constructed from formulas (8), (10) — (16). Numerical integration of system (1) was realized with the aid of  
the  4-th  order  Runge-Kutta  method.  Analisis  of  the  curves  in  Fig.  4  through  9  shows  that  analytical 
dependencies  y(x), y(t), y(θ), x(t), x(θ), t(θ)  approximate numerically obtained functions rather well.

Fig. 4:  The graph of the function y= y(x).
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Fig.5:   The graph of the function y=y(t).

Fig. 6: The graph of the function y=y(θ).

Fig. 7:   The graph of the function x= x(t).

Fig. 8:  The graph of the function x= x(θ).
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Fig. 9:   The graph of the function t= t(θ).

5. The determination of the optimum angle of throwing, providing the 
maximum range
The formula for the range of throw of the point mass is written as L 0 =V a 0T 0 and is defined 

by relations (8). The optimal angle of throwing  α , which provides the maximum distance of flight, is a root 
of equation 

dL0

d 0
=0

Differentiating  the  L 0   function  with  respect  to   θ0 ,  after  certain  transformations,  we  obtain  the 
equation for finding the angle  α  when the points of throwing and downs are on the same horizontal

tan2 p sin 
44 p sin 

= 1 p

1 psin cos2
                                         (17)

Here    p=kV0
2  ,    =ln tan  

2


4
 .   When  k = 0 , equation (17)  gives  the  known solution 

α = 45°. When   k ≠ 0, equation (17) is easily solved graphically or numerically. The value of the optimum 
angle  α  depends on the value of the parameter  р.  This parameter represents the force of air resistance at the 
start of motion, referred to the weihgt of the object.

With a condition  p=kV 0
2=const it is possible to change values  k  and  V0  simultaneously.  The 

optimal angle of throwing  α  will be alike. But main parameters of motion   H , L  , T  will change as it 
follows from the formulas (8). 

Let the values of motion parameters   H1 , L1 , T1  correspond to drag coefficient  k1 , and values  H2 , L2 , 
T2   to drag coefficient  k2 = qk1 . Then with the condition

                                                        p=k1V 01
2 =k 2V 02

2 =const                                                       (18)
we get the correlations

H 2=
H1
q

, L2=
L1
q

, T 2=
T 1

q
. The trajectories of the point mass will be similar when the condition (18) 

are fulfilled.
The graph of function  α = α(p)  is submitted in Figure 10. The solid line in the Figure is based on the 

results of solving equation (17). The dots denote the values of the optimum angle of the throwing obtained  
by numerical integration (1). The Figure shows that at a sufficiently large interval of the parameter   р  the 
solution (17) well approximates the numerical solution.
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Fig.10:  The graph of the function   α =  α(p).

6. Constructing the envelope of a family of trajectories of the projectile
In the case of no air drag the trajectory of a point mass is a parabola. For the different angles of throwing 

under one and same initial velocity projectile trajectories form a family of parabolas. Maximum range and 
maximum height for limiting parabolas are given by formulas 

                                                             Lmax=
V 0

2

g
,    H max=

V 0
2

2g
                                                    (19)

The envelope of this family is also a parabola, equation of which is usually written as 

  y x =
V 0

2

2g
− g

2V 0
2 x2

                                                           (20)

Using (19), we will convert the equation (20) as

                 y x =
H max Lmax

2 − x2

Lmax
2                                                        (21)

We will set up an analytical formula similar to (21) for the envelope of the point mass trajectories taking 
into account the air drag force. Taking into account the formula (21), we will construct an equation of the 
envelope as 

                                       y x =
H max Lmax

2 − x2

Lmax
2 −ax2                                                          (22)

Such structure of equation (22) takes into account the fact that the envelope has a maximum under х = 0. 
Besides, function (22) under a0 has a vertical asymptote, as well as any point mass trajectory accounting 
resistance of air. In formula (22) H max is the maximum height, reached by the point mass when throwing 

with initial conditions V0 , θ0 = 90° ; Lmax - the maximum range, reached when throwing a point mass with 
the initial velocity  V0  under some optimum angle 0= . In the parabolic theory an angle  α = 45°   under 
any initial velocity V0 .  Taking into account the resistance of air, an optimum angle of throwing α  is less 
than  45°and depends on the value of parameter  p=kV0

2 .  Parameter H max  with the preceding 

notation is defined by formula [16]

                                                              H max=
1

2 gk
ln 1kV 0

2                                                             (23)

A choice of a positive factor  a  in the formula (22) is sufficiently free. However it  must  satisfy the 
condition   a = 0    in  the  absence  of  resistance  (  k = 0 ).  We  shall  find  this coefficient  under  the 
following considerations.
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It was shown above, that while taking into account air resistance, the trajectory of a point mass is well  
approximated by the function

                                                              y x =
Hx L−x 

xa
2L−2 xa  x ,                                                          (24)

here  x, y  are the Cartesian coordinates of the point mass;  parameters  Н,  L, xa    are shown in Figure 1. 
Thus, for the  generation of the equation of  the maximum  range  trajectory three parameters are required :  
H,  Lmax,  xa .  We  will  calculate  these  parameters  as  follows.  Under a  given  value of quantity  
p=kV0

2
 we  will  find  the  root  α  of equation (17).  An angle  α  ensures the maximum range  of  the 

flight.  By integrating  numerically  system  (1)  with  the initial conditions  V0 , α , we obtain  the  values 
H(α),  Lmax = L(α),  xa(α)   for  the  maximum  range  trajectory. The parameter  a in the formula (22) we 
find as follows.  We  set   the equal slopes of the tangents to envelope (22) and to the maximum range 
trajectory

 y  x =
H  x Lmax−x 

xa
2 Lmax−2 xa x

in the spot of incidence x=Lmax  . It  follows that parameter  a  is defined by formulas

                               a=1−
2 H max
H  1−

xa 

Lmax 
2

                                                    (25)

In the absence of air resistance parameter  a = 0 .
The equation of  the  envelope can  be  used  for the determination of  the  maximum range if the spot of  

falling  lies  above  or  below the spot of  throwing. Let the spot of falling be on a horizontal straight  line 
defined  by  the  equation  y= y1=const .   We  will  substitute  a  value y1  in  the equation (22) and 
solve it for х. We obtain the formula

                     xmax=Lmax  H max− y1
H max−ay1

                                (26)

The correlation (26) allows us to find a maximum range under the given height of the spot of falling.

As an example we will consider the moving of a baseball with the resistance factor  k = 0.000548 s2/m2 

[6]. Other parameters of motion are given by values 

g = 9.81  m/s2   V0 = 50  m/s,   y1 = ±20, ±40, ±60  m. 
Substituting values  k  and  V0  in the formula (23), we get  H max = 80.26 m. Hereinafter we solve an 

equation (17) at the value of non-dimensional parameter  p=kV 0
2 = 1.37.  The root of this equation gives 

the value of an optimum angle of throwing. This angle ensures the maximum range: α = 40°. By integrating 
the system of equations (1) with the initial conditions

 V0 = 50,  θ0 = 40°, x0 = 0, y0 = 0 , 
we find meanings

H(α)= 36.2 m,   Lmax = L(α) = 133.6 m,   xa(α) = 75.1 m
According to the formula (25) the factor is a = 0.149.  The graph of the envelope (22) is plotted in 

Figure 11  together with the family of trajectories. We note that family of trajectories is received by means of 
numerical integrating of the equations of motion of a point mass (1). A standard  fourth-order Runge-Kutta  
method was used.
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 Fig.11:  The family of projectile trajectories and the envelope of this family.

The results of calculations using the formula (26) are presented in Table 2.  The second column of the 
table  contains  range  values  calculated  analytically  by the  formula  (26).  The  third  column  of  the  table  
contains range values from integration of the equations of motion (1). The fourth column presents an error of  
the calculation of the range in the percentage. Error does not exceed  0.4 %. Formula (26) gives almost the 
exact value of the maximum range in a wide range of height point drop ( 120 m ). The tabulated data show 
that formulas (8), (17), (22), (26) ensure sufficiently pinpoint accuracy of the calculation of parameters of  
motion. 

Note that values of  H(α),   Lmax =  L(α),  xa(α)  can be obtained by using the formulas (8), without 
numerical integration of the system (1). Substituting  V0  and  α  in the formulas (8), we have

H(α) = 36.5 m,  Lmax = L(α)= 132.4 m,  xa(α) = 76.0 m
For these values   a = 0.2.  The graph of the envelope does not nearly change. The right end of the graph 

shift along the  x  axis is less than 1%.

Table 2. Maximum range under different heights of the spot of the falling

  
               y1 , m

         Analytical value 
                xmax  , m

       Numerical value 
               xmax  , m

Error 
( % ) 

60  71.2  71.1 0.1

40  98.3  98.3                  0.        

20                    118.0                 118.0                  0. 

0                    133.6                 133.6                  0.

-20                    146.6                 146.5                  0.1 

-40                    157.8                 157.5                  0.2

-60                    167.5                 166.9                  0.4

7. Finding the vertical asymptote of projectile motion
It is well known that the projectile trajectory has a vertical asymptote in the resistant medium. We will 

deduce an appropximate analytical formula for the value of the asymptote  xas =  x*   (Figure 1). Note that 
different assumtion formulas can be taken to yield the formula for x*. Accordingly, the final formula for x* 

will be also different. This matter is well worth another look. In this paper we are using the first of formulas 
(1) to solve the task : 

dV
dt

=−g sin −gkV 2
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Multiplying the two parts of the formula by the expression 
dt
V

cos , we get the equation

                            cos dV
V

=−g sin cos dt
V

−gkVcos dt                                                   (27)

From the second and third equations of (1)  it follows that

dt=− V d 
gcos ,  dx=Vcos dt                                                                 (28)

Using the ratio (28), we transform the equation (27) to the form

   cos dV
V

=sin d −gk dx                                                      (29) 

In turn, the ratio (29) can be written as
gk dx=−d cos−cos d ln V                                                     (30)

Flight range  L  is determined by the appropriate formula (8). There is no need to integrate the equation 
(30) along the whole trajectory. We will integrate the equation (30) only in the interval from  x = L  to  x = 
xas = x*  (Figure 1). We take into account that the value  x = L corresponds to the value of the trajectory angle 
θ = θ1 .  The value  θ1   is also calcalated with the aid  of the formulas (8). We have

                  gk ∫
L

xas

dx=−∫
1

−

2

d cos− ∫
1

−

2

cos d ln V                                          (31) 

After the substitution of limits in the first two integrals we get

    gk xas−L=cos1− ∫
1

−

2

cos d  ln V                                                (32)

To calculate the  integral  in  equation  (32)  we  apply  a trapezoidal rule. We split the interval of  

integration   [ θ1 ,-

2 ]  in two equal segments with a point 2=

1
2
1−


2

 . At each of the segments  [ θ1, 

θ2 ] and  [ θ2 ,
−

2 ]  we calculate the integral in the equation (32) as an area of appropriate trapezoid. We 

have

gk xas−L=cos1−
1
2
cos1cos 2ln V 2− ln V 1−

1
2
cos2cos −

2
ln  1

k
− ln V 2

Here symbols  V 1=V 1 ,   V 2=V 2  are introduced .  The values  V1  ,  V2  are calculated by 

formula (2). We take into account that when  θ =  ‒

2 the point mass velocity accepts the terminal value 

Vterm : V −
2

=V term= 1
k . After some transformations we get the final formula

               x* = xas = L + 
1

2 gk
ln [e2 V 1

V 2

cos1

k V 1
 cos2]                                    (33)

Here  е = 2. 71828.  Note that using formulas  (2) , (8), (33)  the value of  x*  is directly determined by 
the initial conditions of throwing   V0 , θ0 .

As an example, we consider the motion of the baseball for the following parameters [6]:

     k = 0.000548  s2/m2,    g = 9.81  m/s2 .                                              (34)
The calculations are carried out in the following ranges of changes of launch angle and initial velocity : 

0 ≤ θ0 ≤ 90°,   20 ≤  V0  ≤ 50 m/s. The results of calculations are recorded in Table 3 and shown in Fig.12 and 
13.
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Table 3. Numerical and analytical values of asymptote  x*  for different  values V0 , θ0

   θ0  ,degree   0° 15° 30° 45° 60°  75°

                    
                20 

  
                  30
 V0 , m/s 
                40 

  

50  

 120.4
 122.8

 121.5
 124.6

114.5
117.3

 98.8
100.9

73.8
75.3

40.2
40.9

  166.4
  165.8

 169.1
 170.8

 160.9 
162.7

 140.4
 141.7

106.7
107.5

59.1
59.7

  205.0
  200.8

 208.8
 209.3

 200.0
 199.9

 175.4
  175.0 

134.5
134.3

75.1
75.5

  237.8
  230.3

 242.7
 241.7

 232.4
 230.3

 204.8
 202.0

157.6
155.8

 89.0
 88.4

Upper value of each table cell represents the value of  x*  (in metres) obtained numerically. Lower value 
of each  cell is calculated by formula (33).   The numerical values are found by integrating the system of 
equations (1)  with the fourth-order Runge-Kutta method. The table data show that the formulas (2), (8), (33)  
ensure an accuracy high enough for calcucating asymptote. In Fig. 12 the graphs of dependencies  x* = x*(θ0) 
are plotted for three different values of initial velocity V0  with parameters (34). 

Fig. 12:  The graph of the function  x* = x*(θ0).

The upper curve is for the value V0 = 50 m/s ; the average one– for the V0 = 40 m/s; the lower one – for 
the value V0 = 30 m/s. The solid line is calculated using the formula (33), the dotted line is plotted on the  
results of numerical integration of the system (1). It is seen from the graphs that in the considered range of  
parameters  V0 , θ0   formula (33)  approximates the function  x*(θ0) rather well not only qualitativly but also 
quantitatively. The maximum value of asymptote is achieved at the significance  θ0  ≈ 15° . The analytical 
formula  (33)  makes  it  easy  to  plot  not  only  the  curves  x*(θ0) , x*(V0) , but  also  the  surface  x*(θ0, V0). 

In Fig. 13 the surface  x* = x*(θ0, V0)  is constructed in the range of arguments mentioned above. 
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Fig. 13:  The  x* = x*(θ0, V0)  surface.

8. Conclusion
The proposed approach based on the use of analytical formulas make it possible to simplify significantly 

a qualitative analysis of the motion of a point mass with air drag taken into account. All basic parameters are  
described by simple analytic formulas. Moreover, numerical values of the sought variables are determined  
with acceptable accuracy.  Thus,  proposed formulas  make it  possible to carry out  a complete analytical  
investigation of the motion of a point mass in a medium with drag in the way it is done for the case of no  
drag.
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