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Abstract. Altitude and weather affect air density, which in turn affects how far a batted baseball or softball 
travels. This paper shows that air density is inversely related to altitude, temperature and humidity, and is 
directly related to barometric pressure. Regression analysis is used to show the relative importance of each of 
the four factors (altitude, temperature, humidity, and barometric pressure) and to look for interactions 
between them. As shown by this model, on a typical July afternoon in a major league baseball stadium, 
altitude is easily the most important factor, explaining 80% of the variability. This is followed by temperature 
(13%), barometric pressure (4%) and relative humidity (3%). A simple linear algebraic equation presented in 
this paper predicts air density well. The model shows how the batted ball’s range depends on both the drag 
force and the Magnus force (the force due to a spinning object moving in an airflow) and considers the 
relative importance of the drag and Magnus forces. 

Keywords: baseball, softball, home run, altitude, temperature, barometric pressure, relative humidity, air 
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1. Movement of the Pitch 
Baseball batters say that the pitch hops, drops, curves, breaks, rises, sails or tails away. Baseball pitchers 

say that they throw fastballs, screwballs, curveballs, drop curves, flat curves, knuckle curveballs, sliders, 
change ups, palm balls, split fingered fastballs, splitters, forkballs, sinkers, cutters, two-seam fastballs and 
four-seam fastballs. This sounds like a lot of variation. However, no matter how the pitcher grips or throws 
the ball, once it is in the air its motion depends only on gravity, its velocity and its spin. (This statement is 
true even for the knuckleball, because it is the shifting position of the seams during its slow spin en route to 
the plate that gives the ball its erratic behavior.) In engineering notation, these pitch characteristics are 
described respectively by a linear velocity vector and an angular velocity vector, each with magnitude and 
direction. The magnitude of the linear velocity vector is called pitch speed and the magnitude of the angular 
velocity vector is called the spin rate. These vectors produce a force acting on the ball that causes a 
deflection of the ball’s trajectory. The first sections of this paper are based on [Bahill and Karnavas, 1991; 
Bahill and Baldwin, 2003; Bahill, 2004; Bahill, Botta, and Daniels, 2006; Bahill and Baldwin, 2007; Bahill 
and Baldwin, 2008]. 

Isaac Newton [1671] noted that spinning tennis balls experienced a lateral deflection mutually 
perpendicular to the direction of flight and to the direction of spin. Later, Benjamin Robins [1742] bent the 
barrel of a musket to produce spinning musket balls and also noted that the spinning balls experienced a 
lateral deflection perpendicular to the direction of flight and to the direction of spin. In 1853, Gustav Magnus 
(see [Briggs, 1959; Barkla and Auchterlonie, 1971] studied spinning artillery shells fired from rifled artillery 
pieces and found that the range depended on crosswinds. A crosswind from the right lifted the shell and gave 
it a longer range: a crosswind from the left made it drop short. In 1902 the Polish born Martin Kutta and 
independently in 1906 Nikolai Joukowski studied cylinders spinning in an airflow. They were the first to 
model this force with an equation. Although these four experiments sound quite different (and they did not 
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know about each other’s work), they were all investigating the same underlying force. This force, commonly 
called the Magnus force, operates when a spinning object (like a baseball) moves through a fluid (like air) 
which results in it being pushed sideways. Two models explain the basis of this Magnus force: one is based 
on conservation of momentum and the other is based on Bernoulli’s principle [Bahill and Karnavas, 1993; 
Watts and Bahill, 2000; NASA, 2008]. 

Figures 1 and 2 show the effects of spin on the pitch. During the pitch of a major league baseball, the ball 
falls about three feet due to gravity (d= ½ at2). However, the fastball has backspin that opposes gravity and 
the curve ball has top spin that aids the fall due to gravity.  

 

Fig. 1. A 90 mph (40 m/s) overhand fastball launched one-degree downward with 1200 rpm of backspin. Copyright , 

 

2008, Bahill, from http://www.sie.arizona.edu/sysengr/slides/ used with permission. 

Fig. 2. An 80 mph (36 m/s) overhand curveball launched two-degrees upward with 2000 rpm of topspin. Copyright , 

2008, Bahill, from http://www.sie.arizona.edu/sysengr/slides/ used with permission. 

In the simulations of Figures 1 and 2, the pitcher releases the ball five feet (1.5 m) in front of the rubber 
at a height of six feet (1.8 m). The batter hits the ball 1.5 feet (0.5 m) in front of the plate. These figures also 
show what the batter is doing during the pitch. During the first third of the pitch, he is gathering sensory 
information (mostly with his eyes) about the speed and spin of the pitch. During the middle third of the pitch, 
he is computing where and when the ball will cross the plate. During the last 150 msec, he is swinging the 
bat and can do little to alter its trajectory. 
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We will now apply the right-hand rules to the linear velocity vector and the angular velocity vector in 
order to describe the direction of the spin-induced deflection of the a spinning ball in flight. 

2. Right-hand Rules Applied to a Spinning Ball in Flight 
First we use the angular right-hand rule to find the direction of the spin axis. As shown in Figure 3, if 

you curl the fingers of your right hand in the direction of spin, your extended thumb will point in the 
direction of the spin axis. 

                                               
 

Fig. 3. The angular right-hand rule. When the 
fingers are curled in the direction of rotation, 
the thumb points in the direction of the spin 

axis. Photograph by Zach Bahill. Copyright , 

2004, Bahill, used with permission from 
http://www.sie.arizona.edu/sysengr/slides/. 

Fig. 4. The coordinate right-hand rule. If the thumb 
points in the direction of the spin axis and the index 
finger points in the direction of forward motion, then 
the middle finger will point in the direction of the 
spin-induced deflection. Photograph by Zach Bahill. 

Copyright , 2004, Bahill, used with permission 

 

 

 

 from http://www sie arizona edu/sysengr/slides/

Next we use the coordinate right-hand rule to determine the direction of the spin-induced deflection 
force. Point the thumb of your right hand in the direction of the spin axis (as determined from the angular 
right-hand rule), and point your index finger in the direction of forward motion (Figure 4). Bend your middle 
finger so that it is perpendicular to your index finger. Your middle finger will be pointing in the direction of 
the spin-induced deflection (of course, the ball also drops due to gravity). The spin-induced deflection force 
will be in a direction represented by the cross product of the angular velocity vector (the spin axis) and the 
linear velocity vector of the ball: Angular velocity × Linear velocity = Spin-induced deflection force. Or 
mnemonically, Spin axis × Direction = Spin-induced deflection (SaD Sid). This acronym only gives the 
direction of spin-induced deflection. The equations yielding the magnitude of the spin-induced deflection 
force are discussed in section 4. 

3. Direction of Forces Acting on Specific Pitches 
Figures 5 and 6 show the directions of spin (circular red arrows) and spin axes (straight black arrows) of 

some common pitches from the perspective of the pitcher (Figure 5 represents a right-hander’s view and 
Figure 6 a left-hander’s view). We will now consider the direction of the spin-induced deflection of each of 
these pitches. 
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Fig. 5. The direction of spin (circular red arrows) and the spin axes (straight black arrows) of a three-quarter arm 
fastball, an overhand curveball and a slider, all from the perspective of a right-handed pitcher, meaning the ball is 

moving into the page. VaSa is the angle between the Vertical axis and the Spin axis (VaSa). The spin axes could be 

labelled spin vectors, because they suggest both magnitude and direction. Copyright , 2005, Bahill, from 

http://www.sie.arizona.edu/sysengr/slides/ used with permission. 

 
Fig. 6. The direction of spin (circular arrows) and the spin axes (straight arrows) of an overhand fastball, an overhand 

curveball, a slider and a screwball from the perspective of a left-handed pitcher. The ball would be moving into the page. 

Copyright , 2004, Bahill, from http://www.sie.arizona.edu/sysengr/slides/ used with permission. 

The spin on the ball is produced by the grip of the fingers and the motion of the pitcher’s arm and wrist. 
When a layperson throws a ball, the fingers are the last part of the hand to touch the ball. If the ball is thrown 
with an overhand motion, the fingers touch the ball on the bottom and thus impart backspin to the ball. The 
overhand fastball shown in Figure 6 has predominantly backspin, which gives it lift, thereby decreasing its 
fall due to gravity as shown in Figure 1. However, most pitchers throw the fastball with a three-quarter arm 
delivery, which means the arm does not come straight over-the-top, but rather it is in between over-the-top 
and sidearm. This delivery rotates the spin axis from the horizontal as shown for the fastball in Figure 5. This 
rotation of the axis reduces the lift and also introduces lateral deflection, to the right for a right-handed 
pitcher. 

The curveball can also be thrown with an overhand delivery, but this time the pitcher rolls his wrist and 
causes the fingers to sweep in front of the ball. This produces a spin axis as shown for the overhand curveball 
of Figure 5. This pitch will curve at an angle from upper right to lower left as seen by a right-handed pitcher. 
Thus, the ball curves diagonally. The advantage of the drop in a pitch is that the sweet area of the bat is about 
two inches long (5 cm) [Bahill, 2004] but only one-third of an inch (8 mm) high [Bahill and Baldwin, 2003; 
Baldwin and Bahill, 2004]. Thus, when the bat is swung in a horizontal plane, a vertical drop is more 
effective than a horizontal curve at taking the ball away from the bat's sweet area. 

The slider is an enigmatic pitch. It is thrown somewhat like a football. Unlike the fastball and curveball, 
the spin axis of the slider is not perpendicular to the direction of forward motion. As the angle between the 
spin axis and the direction of motion decreases, the magnitude of deflection decreases, but the direction of 
deflection remains the same. If the spin axis is coincident with the direction of motion, as for the backup 
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slider [Bahill and Baldwin, 2007, footnote 3], the ball spins like a bullet and experiences no deflection. 
Therefore, a right-handed pitcher usually throws the slider so that he sees the axis of rotation pointed up and 
to the left. This causes the ball to drop and curve from the right to the left. Rotation about this axis allows 
some batters to see a red dot at the spin axis on the upper-right-side of the ball (See Figure 7). Baldwin, 
Bahill and Nathan [2007] and Bahill, Baldwin and Venkateswaran [2005] show pictures of this spinning red 
dot. Videos of this spinning red dot are on Bahill’s web site (www.sie.arizona.edu/sysengr/baseball/). Seeing 
this red dot is important — if the batter can see this red dot, then he will know the pitch is a slider and he can 
better predict its trajectory.  

 
Fig. 7. The batter’s view of a slider thrown by a right-handed pitcher: the ball is coming out of the page. The red dot 

alerts the batter that the pitch is a slider. Copyright , 2004, Bahill, from http://www.sie.arizona.edu/sysengr/slides/ 

used with permission. 

4. Magnitude of Forces Acting on a Spinning Ball in Flight 

 

Fig. 8. The forces acting on a spinning ball flying through the air. Copyright , 2007, Bahill, from 

http://www.sie.arizona.edu/sysengr/slides/ used with permission. 

Our tactics are to use baseball units (e. g. feet, mph and pounds) for inputs, SI units (e. g. meters, 
kilograms and seconds) for computations, and baseball units for outputs. 

Three forces affect the ball in flight, as shown in Figure 8: gravity pulls the ball downward, air resistance 
or drag operates in the opposite direction of the ball’s motion and, if it is spinning, there is a force 
perpendicular to the direction of motion. The force of gravity is downward, , where  is 

the mass of the ball and g is the acceleration due to gravity: the magnitude of is the ball’s weight, as in 

Table 1a. 

gravity ballF m

gravityF

g ballm

The magnitude of the drag force opposite to the direction of flight is 
2 2

drag ball d ball0.5 πF r C v                                              (1) 
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where  is air mass density,  is the ball speed and  is the radius of the ball [Watts and Bahill, 2000, 

p. 161]. Typical values for these parameters are given in Table 1. Of course SI units should be used in this 
equation, but if English units are to be used in Equations (1-7) then 

ballv ballr

 should be in lb-s2/ft4,  should be in 

ft/s,  should be in ft, F should be in lb and in later equations ω should be in radians/s. For the 

aerodynamic drag coefficient, 

ballv

dC
ballr drag

dC , a value of 0.5 is used [Watts and Bahill, 2000, p. 157]: has no units. 

This drag coefficient is discussed in the 8 Modeling Philosophy section of this paper.  

Table 1a: Typical baseball and softball parameters for line drives [Bahill and Baldwin, 2007] 

 Major League 
Baseball 

Little 
League 

NCAA 
Softball 

Ball Baseball Baseball Softball 
Ball weight (oz) 5.125 5.125 6.75 
Ball weight, Fgravity, (lb) 0.32 0.32 0.42 
Ball radius (in) 1.45 1.45 1.9 
Ball radius,  (ft) ballr 0.12 0.12 0.16 

Pitch speed (mph) 85 50 65 
Pitch speed,  (ft/s) ballv 125 73 95 

Distance from front of rubber to tip 
of plate (ft) 

60.5 46 43 

Pitcher’s release point: (distance 
from tip of plate, height), (ft) 

(55.5, 6) (42.5, 5) (40.5, 2.5) 

Bat-ball collision point: (distance 
from tip of plate, height), (ft) 

(3, 3) (3, 3) (3, 3) 

Bat type Wooden C243 Aluminum Aluminum 
Typical bat weight (oz) 32 23 25 
Maximum bat radius (in) 1.375 1.125 1.125 
Speed of sweet spot (mph) 60 45 50 
Coefficient of restitution (CoR) 0.54 0.53 0.52 
Backspin of batted ball (rps) 10 to 70 10 to 70 10 to 70 
Backspin of batted ball,  (rad/s) 63 to 440 63 to 440 63 to 440 

Initial batted-ball speed,  (ft/s) ballv 135 109 109 

Desired ground contact point from 
the plate (ft) 

120 to 240 80 to 140 80 to 150 

Air weight density, (lbm/ft3) 0.065 0.065 0.065 
Air mass density, ρ (lb-s2/ft4) 0.002 0.002 0.002 
Air density depends on altitude, temperature, barometric pressure and humidity. 

NCAA stands for the National Collegiate Athletic Association, which is the governing body for 
university sports in the United States. 

Table 1b: Typical baseball and softball parameters for line drives (SI units) 

 Major League 
baseball 

Little 
League 

NCAA 
Softball 

Bat type Wooden C243 Aluminum Aluminum 
Ball type Baseball Baseball Softball 
Pitch speed,  (m/s) ballv 38 22 29 

Speed of sweet spot (m/s) 27 20 22 
CoR 0.54 0.53 0.52 
Typical bat mass (kg) 0.9 0.6 0.7 
Ball mass, (kg) ballm 0.145 0.145 0.191 

Maximum bat radius (m) 0.035 0.029 0.029 
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Ball radius,  (m) ballr 0.037 0.037 0.048 

Distance from front of rubber to tip 
of plate (m) 

18.4 14.0 13.1 

Pitcher’s release point: distance 
from tip of plate and height 

17 m out 
2 m up 

13 m out 
1.5 m up 

12 m out 
0.8 m up 

Bat-ball collision point: distance 
from tip of plate and height 

1 m out 
1 m up 

1 m out 
1 m up 

1 m out 
1 m up 

Backspin of batted ball, ω (rad/s) 100 to 500 100 to 500 100 to 500 
Initial batted-ball speed,  (m/s)ballv 41 33 33 

Desired ground contact point: 
distance from the plate (m) 

37 to 73 24 to 43 24 to 46 

Air density, ρ (kg/m3) This is the 
average air density for a game 
played in a major league stadium 
on a July afternoon. 

1.045 1.045 1.045 

Air density depends on altitude, temperature, barometric pressure and humidity. 
Table 2 shows typical parameters for major league pitches. We estimate that 90% of major league 

pitches fall into these ranges. The pitch speed is the speed at the release point: the ball will be going 10% 
slower when it crosses the plate. In this paper, the equations are general and should apply to many types of 
spinning balls. However, whenever specific numerical values are given, they are for major league baseball 
(unless otherwise stated). 

Table 2: Typical values for major league pitches [Watts and Bahill, 2000] 

Type of pitch 
Initial 
Speed 
(mph) 

Initial 
Speed 
(m/s) 

Spin 
rate 

(rpm) 

Spin rate 
(revolutions 
per second)

Rotations between 
pitcher’s release and 
the point of bat-ball 

contact 
Fastball 85 to 95 38 to 42 1200 20 8 
Slider 80 to 85 36 to 38 1400 23 10 
Curveball 70 to 80 31 to 36 2000 33 17 
Change-up 60 to 70 27 to 31 400 7 4 
Knuckle ball 60 to 70 27 to 31 30 ½ ¼ 

The earliest empirical equation for the transverse force on a spinning object moving in a fluid is the 
Kutta-Joukowski Lift Theorem 

  L U Γ                                              (2) 

where L is the lift force per unit length of cylinder,   is the fluid density, U  is the fluid velocity and Γ  is 

the circulation around the cylinder. andL, U Γ are vectors. To see the original Sikorsky and Lightfoot 1949 

data about and circulation see Alaways [2008]. When this equation is tailored for a baseball [Watts and 

Bahill, 2000, pp. 77-81], it produces the following equation for the magnitude of the spin-induced force 
acting perpendicular to the direction of flight. 

liftC

3
perpendicular Magnus ball ball0.5 πF F r   v               (3) 

where ω is the spin rate in radians/sec. This is usually called the Magnus force. This is an experimental, not a 

theoretical equation. If we make the approximation ball
lift

ball

r
C

v


  then Equations (1) and (3) are equivalent to 

Equations (2) and (3) in McBeath, Nathan, Bahill and Baldwin [2008] and the equations on pages 159-169 of 
Watts and Bahill [2000]. 

To show how Equations (1) and (3) work, let us now present a simple numerical example. Assume a 95 
mph (42.5 m/s) fastball that has 20 revolutions per second of pure backspin. Using English units and Table 
1a, produces 
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2 2
drag ball d ball

2 2
drag

0.5 π

(0.5)(0.002)(3.14)(0.12) (0.5)(139) 0.44 lb

F r C v

F



 
 

Near the beginning of the pitch, the Magnus force will be straight up in the air, that is, pure lift. 

3
Magnus ball ball

3
Magnus

0.5 π

(0.5)(0.002)(3.14)(0.12) (126)(139) 0.095 lb

F r v

F

 

 
 

For this fastball, the Magnus force is about one-third the force of gravity given in Table 1a (0.32). This is 
consistent with Table 3a. 

Table 3a: Gravity-induced and spin-induced drop (with English units) [Bahill and Baldwin, 2007] 

Pitch speed 
and type 

Spin rate 
(rpm) 

Duration of 
flight (msec)

Drop due to 
gravity (ft) 

Spin-induced 
vertical drop 

(ft) 

Total 
drop (ft) 

95 mph 
fastball 

-1200 404 2.63 -0.91 1.72 

90 mph 
fastball 

-1200 426 2.92 -0.98 1.94 

85 mph 
slider 

+1400 452 3.29 +0.74 4.03 

80 mph 
curveball 

+2000 480 3.71 +1.40 5.11 

75 mph 
curveball 

+2000 513 4.24 +1.46 5.70 

Table 3b: Gravity-induced and spin-induced drop (with SI units) 

Pitch speed 
and type 

Spin rate 
(rad/s) 

Duration of 
flight (msec)

Drop due to 
gravity (m) 

Spin-induced 
vertical drop 

(m) 

Total 
drop (m) 

42.5 m/s 
fastball 

-126 404 0.80 -0.28 0.52 

40.2 m/s 
fastball 

-126 426 0.89 -0.30 0.59 

38.0 m/s 
slider 

+147 452 0.95 +0.23 1.23 

35.8 m/s 
curveball 

+209 480 1.13 +0.43 1.56 

33.5 m/s 
curveball 

+209 513 1.29 +0.45 1.74 

Using SI units and Table 1b, produces 

2 2
drag ball d ball

2 2
drag

0.5 π

(0.5)(1.045)(3.14)(0.037) (0.5)(42.5) 2.03 N

F r C v

F



 
 

and 

3
Magnus ball ball

3
Magnus

0.5 π

(0.5)(1.045)(3.14)(0.037) (126)(42.5) 0.45 N

F r v

F

 

 
 

For this fastball, the Magnus force is about one-third the force of gravity, which is 

gravity g 0.145 9.8 1.42 NballF m     

When the ball’s spin axis is not horizontal, the Magnus force should be decomposed into a force lifting 
the ball up and a lateral force pushing it sideways. 
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3
upward ball ball0.5 π sinVaSaF r v                             (4) 

where VaSa is the angle between the vertical axis and the spin axis (Figure 5). The magnitude of the lateral 
force is 

3
sideways ball ball0.5 π cosVaSaF r v            (5) 

Finally, if the spin axis is not perpendicular to the direction of motion (as in the case of the slider), the 
magnitude of the cross product of these two vectors will depend on the angle between the spin axis and 
direction of motion, this angle is called SaD (Figure 9). In aeronautics, it is called the angle of attack. 

3
lift ball ball0.5 π sin sinVaSa SaDF r v               (6) 

3
lateral ball ball0.5 π cos sinVaSa SaDF r v                (7) 

 
Fig. 9. The first-base coach’s view of a slider thrown by a right-handed pitcher. This illustrates the definition of the 

angle SaD. Copyright , 2007, Bahill, from http://www.sie.arizona.edu/sysengr/slides/ used with permission. 

The spin-induced force on the ball changes during the pitch. Its magnitude decreases, because the drag 
force slows the ball down by about 10%. Its direction changes, because gravity is continuously pulling the 
ball downward, which changes the direction of motion of the ball by 5 to 10 degrees. However, the ball acts 
like a gyroscope, so the spin axis does not change. This means that, for a slider, the angle SaD increases and 
partially compensates for the drop in speed in Equations (6) and (7). 

The right-hand rules for the lateral deflection of a spinning ball and Equations (1) to (7) apply to pitched 
and also batted-balls, except it is harder to make predictions about the magnitude of deflection of batted-balls, 
because the data about the spin of batted-balls are poor. The right-hand rules and these equations can also be 
applied to soccer, tennis and golf, where speeds, spins and deflections are similar to baseball. However, the 
right-hand rules and these equations would be inappropriate for American football, because the spin axis of a 
football is almost coincident with the direction of motion. Therefore the angle SaD is near zero and 
consequently the spin-induced deflections of a football are small [Rae, 2004]. 

5. Effects of Air Density on a Spinning Ball in Flight 
The distance a ball travels is inversely related the air density. But the explanation for this is not 

straightforward. Equations 1 and 3 show that both the drag and Magnus forces are directly proportional to 
the air density. So if air density gets smaller, the drag force gets smaller, this allows the ball to go farther. 
But at the same time, as air density gets smaller, the Magnus force also gets smaller, which means that the 
ball will not be held aloft as long and will therefore not go as far. So these two effects are in opposite 
directions. We have built a computer simulation that implements the above equations. This simulation shows 
that the change in the drag force has a greater affect on the trajectory of the ball than the change in the 
Magnus force does; therefore, as air density goes down, the range of a potential home run ball increases. A 
ten-percent decrease in air density produces a four-percent increase in the distance of a home run ball: 
however, the increase is less than this for pop-ups and greater than this for line drives. 

Air density is inversely related to altitude, temperature and humidity, and is directly related to barometric 
air pressure. These relationships are given in Equation 8. While they appear nonlinear, we will obtain a linear 
approximation that is accurate over the range of values observed at major league ballparks. An equation from 
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the WeatherLink Software [2009; CRC Handbook of Chemistry & Physics, 1980-81)] for these relationships 
is 

273 ( /100)
1.2929

273 760

Air Pres SVP RH
Air Density

Temp
  

   


   (8) 

where Air Density is in kg/m3. 

Temp is temperature in degrees Celsius. 

SVP is saturation vapor pressure in mm Hg. 

RH is relative humidity as a percentage. 

Air Pres is the pressure of the air in mm of Hg.  

This equation uses the absolute (or actual) atmospheric air pressure, which is called station pressure 
because it is the air pressure at a particular weather station. It can be computed from the U. S. Weather 
Service sea-level corrected barometric pressure with the following formula. 

gM

R ( 273.15)[ ]
Altitude

TempAir Press Barometric Pressure e


          (9) 
where g is the Earth’s gravitational acceleration (9.80665 m/s2 at sea level), 

M is the molecular mass of air (0.0289644 kg/mole), 

R is the Universal Gas Constant (8.31447 joules/ °K mole), 

Altitude is the altitude of the ballpark in meters, 

and Temp is the temperature in °C. 

But what is Temp the temperature of? As a simple approximation in the following examples, we have 
used the temperature of the baseball stadium. But the above equation should be integrated with respect to the 
time-averaged temperature from the baseball stadium to mean sea level. Because this is impossible, the 
National Weather Service [2001] uses nine different approximations: about them they write, “There is no 
single true, correct solution of Sea Level Pressure … only estimates.” For any given time and place the most 
accurate measure of air pressure for Equation 8 would be a local barometer that is not corrected to sea level 
(i. e. with its altitude set to 0). 

Dozens of equations have been fit to the experimental saturation vapor pressure (SVP) data. Here is one 
by Buck [1996]. 

18.687 *
234.5

257.144.5841

Temp
Temp

TempSVP e

  
 

    (10) 
As before, Temp is in degrees Celsius and SVP is in mm Hg. 

Air density is inversely related to altitude, temperature and humidity, and is directly related to barometric 
pressure. For the range of values in major league ballparks, the altitude is the most important of the four 
input parameters. Table 4 gives values for a typical late-afternoon summer game, assuming that the stadium 
roofs are open and there are no storms. For these examples, baseball units are used instead of SI units. 

Table 4: Air density in some typical baseball stadiums 

 
Altitude (feet 

above sea 
level) 

Temperature 
(degrees 

Fahrenheit) 
average daily 

maximum in July

Relative 
humidity, on 
an average 

July 
afternoon 

Average 
barometric 
pressure in 
July (inch 

of Hg) 

Air 
density 
(kg/m3) 

Denver 5190 88 34 % 29.98 0.96 
Houston 45 94 63 % 29.97 1.11 
Minneapolis 815 83 59 % 29.96 1.11 
Phoenix 1086 104 20 % 29.81 1.07 
San Francisco 0 68 65 % 29.99 1.19 
Seattle 10 75 49 % 30.04 1.18 

Weather data such as these can be obtained from http://www.weather.com and 
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http://www.wunderground.com/. The multi-year average July afternoon relative humidity data came from 
http://www.ncdc.noaa.gov/oa/climate/online/ccd/avgrh.html. Average daily maximum temperature and 
average afternoon humidity are also available at www.weatherReports.com. The multi-year average July 
barometric pressure data came from presave.ct located at http://eande.lbl.gov/IEP/high-radon/data/lbnl-
met.html. Estimates of barometric pressure are also available at 
http://www.usairnet.com/weather/maps/current/barometric-pressure/. The multi-year average July maximum 
daily temperatures came from http://hurricane.ncdc.noaa.gov/cgi-
bin/climatenormals/climatenormals.pl?directive=prod_select2&prodtype=CLIM81&subrnum=. Programs 
that calculate air density can be downloaded from Linric Company (http://www.linric.com/) or they can be 
used on-line at http://www.uigi.com/WebPsycH.html. 

For a potential home run ball, both the drag and the lift (Magnus) forces are the greatest in San Francisco, 
where the park is just at sea level, and smallest in the “mile high” city of Denver. However, as previously 
stated, the drag force is more important than the Magnus force. Therefore, if all collision parameters (e.g. 
pitch speed, bat speed, collision point, etc.) are equal, a potential home run will travel the farthest in Denver 
and the shortest in San Francisco. 

Table 5: Values used in the simulations 

 Altitude 
(feet 

above 
sea 

level) 

Temperature 
(degrees 

Fahrenheit) 

Relative 
Humidity 
(percent)

Barometric 
pressure 

(inch Hg) 

Air 
density 
(kg/m3) 

Air 
density, 
percent 
change 

from mean
Low altitude 0 85 50 29.92 1.14 9.4 
Low temperature 2600 70 50 29.92 1.08 3.3 
Low humidity 2600 85 10 29.92 1.06 1.6 
Low barometric 
pressure 2600 85 50 29.33 1.02 -2.2 
Mid-level 2600 85 50 29.92 1.04 -0.2 
High barometric 
pressure 2600 85 50 30.51 1.06 1.8 
High humidity 2600 85 90 29.92 1.02 -2.0 
High temperature 2600 100 50 29.92 1.00 -3.9 
High altitude 5200 85 50 29.92 0.95 -8.9 
Highest density 0 70 10 30.51 1.22 16.8 
Lowest density 5200 100 90 29.33 0.87 -16.8 

These values were chosen to show realistic numbers with natural variation. On any given afternoon in 
July, it is almost certain that baseball games will be played at the high and low ends of all these ranges. 

To understand how the four fundamental variables, altitude, temperature, humidity and barometric 
pressure, determine the air density, these equations were evaluated at eighty-one experimental points. These 
points were selected at the low, middle and high values of the fundamental variables, or at 34 or 81 points. 
An edited regression output is given in Table 6. 

Surprisingly, a simple linear equation explains most of the changes, or variability, in the air density 
values. The linear algebraic equation for air density obtained by least squares analysis is 

  Air density (percent change from mean level) =  
- 0.0035 (Altitude - 2600)  
- 0.2422 (Temperature - 85)  
- 0.0480 (Relative Humidity - 50)  
+ 3.4223 (Barometric Pressure - 29.92)                  (11) 

where  Air density is stated as a percent change from mean level of 1.045, Altitude is in feet, Temperature 
is in degrees Fahrenheit, Relative Humidity is in percent and Barometric Pressure is in inches of Hg. The 
parameter estimates are taken from Table 6. This equation can be re-expressed to give the air density in 
kg/m



3 

Air density =   = 1.045 + 0.01045{ 
- 0.0035 (Altitude - 2600)  
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- 0.2422 (Temperature - 85)  
- 0.0480 (Relative Humidity - 50)  
+ 3.4223 (Barometric Pressure - 29.92)}                 (12) 

This Air density is   in Table 1b and Equations (1) to (8). 

Note that the factors are in different dimensions with different ranges. Hence, the magnitudes of the 
coefficients should be interpreted in this light. That is, a coefficient with a larger magnitude does not 
necessarily mean it has a greater impact on the response. Also, keep in mind that the equations that yield the 
air density values are deterministic. That is, there is no random variation. Hence, the sum of squares residual 
is the variation remaining after predicting the response from the linear approximation. There is no pure error, 
but rather simply lack of fit to the true model. The least squares analysis differentiates between the variables 
for the range of the eighty-one observations as follows. Altitude explains 80% of the variability; temperature 
explains 13%, barometric pressure accounts for 4% and relative humidity accounts for 3%.  

Table 6: Edited Regression Summary for Linear Approximation (JMP and Excel) 

Summary of Fit 
RSquare 0.993
RSquare Adjusted 0.993
Root Mean Square Error 0.71
Observations (or Sum Weights) 81 

 
Analysis of Variance 

Source DF 
Sum of 
Squares

Mean 
Square

F Ratio

Model 4 5662 1415 2783 
Error 76 39 0.51  
C. Total 80 5701   

Parameter Estimates 
Term Estimate Std Error t Ratio 
Intercept 0.0   
Altitude (ft) - 2600 -0.0035 0.0000 -94 
Temperature (F) - 85 -0.2422 0.0065 -37 
Relative Humidity (%) - 50 -0.0480 0.0024 -20 
Sea level Corrected Barometric 
Pressure (inch Hg) - 29.92 

3.4223 0.1643 21 

Since Equation (11) is linear, the impact of each factor can be shown graphically. Figure 10 shows the 
changes in air density that should be expected over the range of parameter values that would be typical for a 
baseball stadium on an afternoon in July in the United States of America. It shows that altitude is the most 
important factor, followed by temperature, barometric pressure and relative humidity. Since the factor ranges 
given are indicative of their natural variation, larger absolute slopes means stronger effects. These results are 
for baseball and should not be used for other purposes, such as calculating safe takeoff parameters for a small 
airplane. 

The linear Equation (11) explains 99.3 percent of the variation of air density across the 81 setting. 
However, the unexplained variation, as given by the prediction standard error is 0.71, suggesting that further 
improvement is possible. (It is possible to obtain a very high R2 and still have unexplained variability.) 
Figure 10 shows a quadratic pattern between the residuals and the predicted values of the linear 
approximation, suggesting that second order terms might be helpful. Since altitude is the most important 
factor the square of its value is a likely candidate. After fitting a regression to the complete quadratic model, 
that also includes four pure square terms and six cross product terms, the conjecture is confirmed, the square 
of altitude does play a role. In addition, the cross product term between altitude and temperature, is even 
more important, although they are a magnitude smaller than the linear altitude and temperature terms in their 
effect. 
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Fig. 10. Air density depends on altitude, temperature, barometric pressure and relative humidity. 

 

Fig. 11. Residuals versus predicted air density for the linear approximation 

The impact of augmenting the model with these two second order terms raises the percentage of 
variation explained only slightly (from 99.3 to 99.5%), but decreases the unexplained variation, as measured 
by the prediction standard error from 0.71 to 0.61. The corresponding model is given by Equation (13).  

  Air density (percent change from mean level) =  
- 0.0035 (Altitude - 2600)  
- 0.2422 (Temperature - 85)  
- 0.0480 (Relative Humidity - 50)  
+ 3.4223 (Barometric Pressure - 29.92)   
+ 0.000000061 {(Altitude - 2600)2 - 4506667} 
+ 0.000012 (Altitude - 2600)•(Temperature -85)               (13) 
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Please note that this is not a traditional sensitivity analysis. In a sensitivity analysis each parameter 
would be changed by a certain percent and then the resulting changes in the output would be calculated 
[Smith, Szidarovszky, Karnavas and Bahill, 2008]. For baseball, if we change each parameter by 5% we find 
that the semirelative sensitivity of air density with respect to barometric pressure is 1.07: the semirelative 
sensitivity of air density with respect to temperature is -0.21: the semirelative sensitivity of air density with 
respect to altitude is -0.1: and the semirelative sensitivity of air density with respect to relative humidity is -
0.02. The reason for the different results is that the high, medium and low barometric pressures that could be 
expected on a July afternoon in a major league baseball stadium are 775, 760 and 745 mm Hg. These 
changes are much less than 5%. Whereas, the high, medium and low altitudes that could be expected in a 
major league baseball stadium are 5200, 2600 and 0 feet. These changes are much more than 5%. Stated 
simply, there would be a greater change in air density due to moving from San Francisco to Denver, than 
there would be due to moving from fair weather to stormy weather. 

The range of a batted ball is defined as the distance from home plate to the spot where it first hits the 
ground. Table 7 shows the range for a perfectly hit simulated baseball. The pitch is an 85 mph (38 m/s) 
fastball with 1200 rpm backspin, the ball hits the sweet spot of the bat, which is going 55 mph (24.6 m/s), 
CoR is 0.55, the ball is launched upward at 34 degrees with 2000 rpm of backspin. The ball is in the air for 
five and a half seconds. This is a potential home run ball. Reducing the air density by 10% from 1.0 to 0.9 
increased the range of this potential home run ball by four percent. 

Table 7: Range as a function of air density 

Air Density 
(kg/m3) 

Range (ft) Range (m) 

 
Home 

run 
Pop 
up 

Line 
drive

Home 
run 

Pop 
up 

Line 
drive 

1.3 351 205 114 107 62 35 
1.2 363 209 129 111 64 39 
1.1 377 214 142 115 65 42 
1.0 392 219 158 119 67 48 
0.9 408 224 176 124 68 54 
0.8 425 230 196 130 70 60 

The pop-up was launched at 82 mph (36.7 m/s) at an upward angle of 58 degrees with a backspin of 
4924 rpm. The line drive was launched at 92 mph (41.1 m/s) at an upward angle of 15 degrees with a 
backspin of 263 rpm. 

In this section, average values were used. Of course, ball games are not played at the average values and 
the actual values are not constant throughout the game. In particular, wind speed and direction could change 
on a minute-by-minute basis. In this section, the effects of prevailing winds or height and distance of the 
outfield walls were not modeled. Chambers, Page, and Zaidins, [2003] have written that for most games 
played at Coors Field in Denver there was a light breeze (e. g. 5 mph, 2.2 m/s) blowing from center field 
toward home plate. They stated that the outfield walls at Coors Field were farther back than in most stadiums. 
They concluded that these two factors reduced the number of home runs by three to four percent, which 
nearly compensated for Denver’s high altitude. 

Greg Rybarczyk’s data (personal communication, 2009) show that the greatest wind effects in major 
league stadiums are in San Francisco’s AT&T Park where the average is a gentle breeze blowing from home 
plate into the right-center field stands at 10 mph (4.5 m/s). 

6. Vertical Deflections of Specific Pitches 
The magnitude of the gravity and spin-induced drops for three kinds of pitches at various speeds (as 

determined by our simulations) are shown in Table 3. Our baseball simulations include the force of gravity, 
the drag force, and the vertical and horizontal spin-induced forces [Bahill and Karnavas, 1993; Watts and 
Bahill, 2000; Bahill and Baldwin, 2004]. Looking at one particular row of Table 3, a 90 mph (40.2 m/s) 
fastball is in the air for 426 msec, so it drops 2.92 feet (0.89 m) due to gravity (½ gt2, where the gravitational 
constant g is 32.2 ft/sec2 or 9.8 m/sec2 and t is the time from release until the point of bat-ball collision). But 
the backspin lifts this pitch 0.98 ft (0.3 m), producing a total drop of 1.94 ft (0.59 m) as shown in Table 3. In 
the spin rate column, negative numbers are backspin and positive numbers are top spin. In the spin-induced 
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vertical drop column, negative numbers mean the ball is being lifted up by the Magnus force. All of the 
pitches in Table 3 were launched horizontally - that is, with a launch angle of zero: that is why they are 
different from the pitches in Figures 1 and 2. The angle VaSa was also set to zero (simulating an overhand 
delivery): therefore pitches thrown with a three-quarter arm delivery would have smaller spin-induced 
deflections than given in Table 3. 

A batter’s failure to hit safely is most likely caused by his fallibility in predicting where and when the 
ball will reach the bat-ball contact point. Vertical misjudgment of this potential bat-ball contact point is the 
most common cause of batters’ failure [Bahill, and Baldwin, 2003; Baldwin and Bahill, 2004]. The vertical 
differences between the curveballs and fastballs in Table 3 are greater than three feet (1 m), whereas the 
difference between the two speeds of fastballs is around three inches (7 cm) and the difference between the 
two speeds of curveballs is around seven inches (18 cm). However, the batter is more likely to make a 
vertical error because speed has been misjudged than because the kind of pitch has been misjudged [Bahill, 
and Baldwin, 2003; Baldwin and Bahill, 2004]. A vertical error of as little as one-third of an inch (8 mm) in 
the batter’s swing will generally result in a failure to hit safely [Bahill, and Baldwin, 2003; Baldwin and 
Bahill, 2004]. 

The spin on the pitch causes both vertical and horizontal deflections of the ball’s path. When a batter is 
deciding whether to swing, the horizontal deflection is more important than the vertical, because the 
umpire’s judgment with respect to the corners of the plate has more precision than his or her judgment 
regarding the top and bottom of the strike zone. However, after the batter has decided to swing and is trying 
to track and hit the ball, the vertical deflection becomes more important, because of the dimensions of the 
sweet spot. 

7. Effects of Air Density on Specific Pitches 
A reduction in air density would also reduce the drag and the Magnus forces on the pitch. Table 8 shows 

the speed and the height of the ball when it crosses the front edge of the plate for a 90 mph (40.2 m/s) 
fastball launched horizontally with 1200 rpm of backspin using an over arm delivery and for a 75 mph (33.5 
m/s) curveball launched upward at two degrees with 2000 rpm of pure top spin. 

Table 8: Pitch variations with air density 

Air Density 
(kg/m3) 

90 mph fastball 
75 mph 

curveball 

 
Speed 
(mph) 

Height 
(ft) 

Speed 
(mph)

Height 
(ft) 

1.3 77.52 4.02 62.22 1.54 
1.2 78.45 3.96 65.94 1.75 
1.1 79.38 3.90 66.68 1.95 
1.0 80.33 3.85 67.42 2.14 
0.9 81.29 3.79 68.17 2.33 
0.8 82.26 3.74 68.93 2.53 

A ten-percent decrease in air density from 1.1 to 1.0 increases the speed of the fastball by one percent 
and reduces its rise by four percent. A ten-percent decrease in air density from 1.1 to 1.0 increases the speed 
of the curveball by one percent and reduces its drop by nine percent. Earlier in this paper we wrote, if all 
other things were equal, a ten-percent decrease in air density would produce a four-percent increase in the 
distance of a home run ball. Well now it can be seen that all other things will not be equal: the pitch speed 
will be larger (the bat speed will not change). Using the higher pitch speed changes the conclusion about the 
range of the batted ball by only one hundredth of a percent. 

8. Modeling Philosophy 
A model is a simplified representation of a particular view of a real system. No model perfectly matches 

all views of its real system. If it did, then there would be no advantage to using the model. Although the 
equations and numerical values in this paper might imply great confidence and precision in our numbers, it is 
important to note that our equations are only models. The Kutta-Joukowski lift equation and subsequent 
derivations are not theoretical equations, they are only approximations fit to experimental data. More 
complicated equations for the forces on a baseball have been used (e. g. see [Frohlich, 1984; Adair, 2002 and 
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2004; Sawicki, Hubbard and Stronge, 2003 and 2004; Nathan, et al., 2006]). Furthermore, our model only 
considered certain aspects of the baseball in flight. We ignored the possibility that air flowing around certain 
areas of the ball might change from turbulent to laminar flow en route to the plate. Our equations did not 
include effects of shifting the wake of turbulent air behind the ball. En route to the plate, the ball loses 10% 
of its linear velocity [Watts and Bahill, 2000] and 2% of its angular velocity [McBeath, Nathan, Bahill and 
Baldwin, 2008]: we did not include this reduction in angular velocity in our simulation. We ignored the 
difference between the center of mass and the geometrical center of the baseball [Briggs, 1959]. We ignored 
possible differences in the moments of inertia of different balls. We ignored the precession of the spin axis. 
In computing velocities due to bat-ball collisions, we ignored deformation of the ball and energy dissipated 
when the ball slips across the bat surface. Finally, as we have already stated, we treated the drag coefficient 
as a constant. 

In our models, we used a value of 0.5 for the drag coefficient, . However, for speeds over 80 mph (36 

m/s) this drag coefficient may be smaller [Watts and Bahill, 2000, p. 157; Frohlich, 1984; Adair, 2002; 
Sawicki, Hubbard and Stronge, 2004]. There are no wind-tunnel data showing the drag coefficient of a 
spinning baseball over the range of velocities and spin rates that characterize major league pitches [Sawicki, 
Hubbard and Stronge, 2004]. Data taken from a half-dozen studies of spinning baseballs, nonspinning 
baseballs and other balls showed  between 0.15 and 0.5 [Sawicki, Hubbard and Stronge, 2003]. In most of 

these studies, the value of  depended on the speed of the airflow. In the data of [Nathan, et al., 2006], the 

drag coefficient can be fit with a straight line of 

dC

dC

dC

d 0.45C  , although there is considerable scatter in these 

data. The drag force causes the ball to lose about 10% of its speed en route to the plate. The simulations of 
Alaways, Mish and Hubbard [2001] also studied this loss in speed. Data shown in their Figure 9 for the 
speed lost en route to the plate can be nicely fitted with , which implies 

. 
d20P tSpeedLost Cercen

d 0.5C 

Our models are also hampered by limited data for the spin of the ball. The best, published experimental 
data for the spin rate of different pitched baseballs comes from Selin's cinematic measurements of baseball 
pitches [Selin, 1959]. Furthermore, there are no experimental data for the spin on the batted ball. Table 2 
summarizes the best estimates of speed and spin rates for the most popular major league pitches. 

The numerical values used for the parameters in our equations have uncertainty. However, the 
predictions of the equations match baseball trajectories quite well. When better experimental data become 
available for parameters such as  and spin rate, then values of other parameters will have to be adjusted to 

maintain the match between the equations and actual baseball trajectories. 
dC

There are many models for the flight of the baseball. The models of Bahill [Bahill, and Baldwin, 2007; 
Watts and Bahill, 2000]; Adair [2002 and 2004], Nathan [Nathan, 2006; McBeath, Nathan, Bahill and 
Baldwin, 2008] and Hubbard [Sawicki, Hubbard, and Stronge, 2003 and 2004] all give different absolute 
numerical results. But, we believe, all of them will give the same comparative results. Meaning that they all 
should show that a ten-percent decrease in air density produces about a four-percent increase in the distance 
of a home run ball with the increase being less for pop-ups and greater for line drives. 

The importance of this present paper lies in comparisons rather than absolute numbers. Our model 
emphasizes that the right-hand rules show the direction of forces acting on a spinning ball in flight. The 
model provides predictive power and comparative evaluations of behavior of different types of pitches. 

Larry Stark [1968] explained that models are ephemeral: they are created, they explain a phenomenon, 
they stimulate discussion, they foment alternatives and then they are replaced by new models. When there 
are better wind-tunnel data for the forces on a spinning baseball, then our equations for the lift and drag 
forces on a baseball might be supplanted by newer parameters and equations. But we think our models, based 
on the right hand rules showing the direction of the spin-induced deflections, will have permanence: they are 
not likely to be superseded. 

9. Summary 
Air density is inversely related to altitude, temperature and humidity, and is directly related to barometric 

pressure, Equation (12). Both the drag force (Equation 1) and the Magnus force (Equation 3) are directly 
proportional to the air density. So if air density gets smaller, the drag force gets smaller, this allows the ball 
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to go farther: But at the same time, as air density gets smaller, the Magnus force also gets smaller, which 
means that the ball will not be held aloft as long and will therefore not go as far. These two effects are in 
opposite directions. Simulation shows that the change in the drag force affects the trajectory of the ball more 
than the change in the Magnus force. Therefore, as air density goes down, the range of a potential home run 
ball increases. On a typical July afternoon in a major league baseball stadium, a ten-percent decrease in air 
density can produce a four-percent increase in the distance of a home run ball. 
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