Attractor of Cauchy Problem in Dissipative KdV Type Equation

Wenbin Zhang
Department of computing science, Huaian Institute of Technology
Huaian, Jiangsu, 223001, China
(Received 22 February 2006, accepted 30 March 2006)

Abstract: In this paper we studied the dynamic behavior of Cauchy problem of dissipative KdV equation, and obtain the existence of global attractor in the phase space.

Key words: dissipative KdV equation; global attractor; absorbing set; strong weak convergence

1 Introduction

Our aim in this work is to study the existence of the global attractor of the following type of dissipative KdV equation in the phase place $H^2(R^1)$,

$$u_t + \alpha u u_x + u_{xxx} - u_{xx} + \beta u = f(x)$$ \hspace{1cm} (1.1)

$$u(x,0) = u_0(x), x \in R^1.$$ \hspace{1cm} (1.2)

Where α, β are real constants, and $\alpha > 0, \beta > 0$.

If the weak dispersive term u_{xxx} is rewritten as the strong dispersive term $u_{xxx} + \gamma u_{xxxx}$, then we get

$$u_t + \alpha uu_x + u_{xxx} + \gamma u_{xxxx} - u_{xx} + \beta u = f(x)$$ \hspace{1cm} (1.3)

$$u(x,0) = u_0(x), x \in R^1$$ \hspace{1cm} (1.4)

The existence of the compact global attractor of Eq. (1.3)-(1.4) in the phase space $H^2(R^1)$ is proved by the Theorem in [5]. In order to prove the asymptotic compactness of the solution operator of $S(t)$, the kuratowskii measure of non-compactness [2, 6, 7] is used in conjunction with a suitable splitting of the solutions operator, since $H^s(R') \rightarrow H^s(R')$ is not a compact imbedding. In fact, taking $\gamma \rightarrow 0$ in Eq. (1.3)-(1.4), we obtain the existence of the compact global attractor of Eq. (1.1)-(1.2) in the phase space $H^2(R^1)$.

For convenience, we introduce some notations:

$$\Delta = \frac{\partial^2}{\partial x^2}, \nabla = \frac{\partial}{\partial x}, H^s(R^1) = H^{s,2}(R^1),$$ and we denote (\bullet, \bullet) as the inner product on $L^2(R^1), ||\bullet||$ as the norm of the space $L^2(R^1), ||\bullet||_{s,p}$ as the norm of the space $H^{s,p}(R^1)$.

2 Preliminary estimates and the existence of the solution

We rewrite (1.3)-(1.4), i.e.

$$u_t + \gamma \Delta^2 u + \alpha u \nabla u + \nabla \Delta u - \Delta u + \beta u = f(t, x), x \in R^1, t > 0,$$ \hspace{1cm} (2.1)

$$u(x,0) = u_0.$$ \hspace{1cm} (2.2)

where γ, α, β are real constants and $\alpha > 0, \beta > 0, \gamma > 0$.

For the global existence of solutions to problem (2.1), (2.2), we have

1E-mail: zwb@yahoo.com.cn
Lemma 2.1 Given $f \in L^\infty (R^+; L^2 (R^1))$, there exists a unique solution u to Eq. (2.1)-(2.2) in $L^\infty (R^+; L^2 (R^1))$, such that

$$\sup \|f\|^2 \leq \|u_0\| \exp (-\beta t) + \frac{t}{\beta} (1 - \exp (-\beta t)).$$

Therefore, there exists a $t_1 (R) > 0, \forall t > t_1 (R), \|u_0\| \leq R, such that

$$\|u (t)\|^2 \leq \|u_0\|^2 \exp (-\beta t) + \frac{t}{\beta} (1 - \exp (-\beta t)).$$

Proof. Multiplying (2.1) with u and integrating on R with respect x

$$\frac{1}{2} \frac{d}{dt} \|u\|^2 + \gamma \|\Delta u\|^2 + \|\nabla u\|^2 + \beta \|u\|^2 \leq \|f\| \|u\| \leq \frac{1}{2} \beta \|u\|^2 + \frac{1}{2} \|f\|^2.$$

Using the Lemma of Gronwall

$$\|u (t)\|^2 \leq \|u_0\|^2 \exp (-\beta t) + \frac{t}{\beta} (1 - \exp (-\beta t)).$$

Lemma 2.2 Given $f \in L^\infty (R^+; L^2 (R^1))$, $u_0 \in H^1 (R^1)$, then the solution u to Eq. (2.1)-(2.2) in $L^\infty (R^+; H^1 (R^1))$, and there exists a $t_2 (R) \geq 0, \forall t > t_2 (R), \|\nabla u_0\|^2 \leq R, such that

$$\|\nabla u (t)\|^2 \leq c.$$

Proof: Multiplying (2.1) with $-\Delta u$ and integrating on R with respect x

$$\frac{1}{2} \frac{d}{dt} \|\nabla u\|^2 + \gamma \|\nabla \Delta u\|^2 + \frac{1}{2} \alpha (u^2, \nabla u) + \|\Delta u\|^2 + \beta \|\nabla u\|^2 \leq \|f\| \|\nabla u\|. \tag{2.3}$$

In fact

$$\frac{1}{2} \alpha (u^2, \nabla u) \leq \epsilon_1 \|\nabla \Delta u\|^2 + \epsilon_2 \|\nabla u\|^2 + c \|u\|^6,$$

$$\|f\| \|\nabla u\| \leq c \|f\| (\|u\| + \|\nabla \Delta u\|) \leq \epsilon_1 \|\nabla \Delta u\|^2 + c \|f\|^2 + c \|u\|^2,$$

let $\epsilon_1 = \frac{\gamma}{2}, \epsilon_2 = \frac{\alpha}{2}$, we have

$$\frac{d}{dt} \|\nabla u\|^2 + \gamma \|\nabla \Delta u\|^2 + \|\Delta u\|^2 + \beta \|\nabla u\|^2 \leq \sup_t \|f\|^2 + c \|u\|^6 + c \|u\|^2 \Delta K \tag{2.4}$$

Using the Lemma of Gronwall, then the lemma 2.2 is proved

Corollary 2.3 Given $f \in L^\infty (R^+; L^2 (R^1))$, $\forall u_0 \in H^1$ such that

$$u (t) \in L^\infty (R^+ \times R^1).$$

Lemma 2.4 Given $f \in L^\infty (R^+; L^2 (R^1))$, $\forall u_0 \in H^2 (R^1)$, then the solution u to Eq. (2.1)-(2.2) in $u (t) \in L^\infty (R^+; H^2 (R^1))$, and there exists a $t_3 (R) > 0, \forall t > t_3 (R), \|u_0\|_{2,2} \leq R, such that $\|\Delta u\|^2 \leq c$.

Proof: Multiplying (2.1) with $\Delta^2 u$ and integrating on R with respect x

$$\frac{1}{2} \frac{d}{dt} \|\Delta u\|^2 + \gamma \|\Delta^2 u\|^2 + \alpha (u \nabla u, \Delta^2 u) + \|\nabla \Delta u\|^2 + \beta \|\Delta u\|^2 = (f, \Delta^2 u).$$

In fact
\begin{equation}
\alpha \left(u \nabla u, \Delta^2 u \right) \leq \|u\|_{\infty} \|\nabla u\| \|\Delta^2 u\| \leq \epsilon_1 \|\Delta^2 u\|^2 + c \|u\| \|\nabla u\|^3;
\end{equation}

\begin{equation}
(f, \Delta^2 u) \leq \epsilon_1 \|\Delta^2 u\|^2 + c \|f\|^2,
\end{equation}

let \(\epsilon_2 = \frac{\gamma}{4} \), we have
\[
\frac{d}{dt} \|\Delta u\|^2 + \gamma \|\Delta^2 u\|^2 + \|\nabla \Delta u\|^2 + \beta \|\Delta u\|^2 \leq \|u\| \|\nabla u\| \|\nabla^2 u\|^2 + c \sup_t \|f\|^2 \triangleq K_2.
\] (2.5)

Using the Lemma of Gronwall, then the lemma 2.4 is proved.

Lemma 2.5 Given \(f \in L^\infty (R^+; H^1 (R^1)) \), \(u_0 \in H^2 (R^1) \), such that
\[
\|\nabla u\|^2 \leq c \quad \forall t \geq t_2 + 1.
\]

Proof: Multiplying (2.1) with \(\Delta^2 u \) and integrating on \(R \) with respect \(x \)
\[
\frac{1}{2} \frac{d}{dt} \|\nabla u\|^2 + \gamma \|\Delta^2 u\|^2 + \beta \|\nabla u\|^2 + \|\Delta^2 u\|^2 + \alpha (\Delta u^2, \nabla \Delta^2 u) = (\nabla f, \nabla \Delta^2 u).
\]

In fact
\[
|\alpha (\Delta u^2, \nabla \Delta^2 u)| \leq \frac{1}{4} \gamma \|\Delta u^2\|^2 + c \|\Delta u^2\|^2;
\]
\[
|\nabla f, \nabla \Delta^2 u| \leq \frac{1}{4} \gamma \|\nabla \Delta^2 u\|^2 + c \|\nabla f\|^2.
\]

Form the above Lemma 2.1-2.4, we obtain \(\|\Delta u^2\|^2 < \infty \), such that
\[
\frac{d}{dt} \|\nabla u\|^2 + \gamma \|\nabla \Delta u\|^2 + 2 \beta \|\nabla u\|^2 + \|\Delta^2 u\|^2 \leq c \sup_t \|\nabla f\|^2 + c \|\Delta u^2\|^2 \triangleq K_3.
\] (2.6)

Combing with (2.4), we obtain
\[
\frac{d}{dt} \|\nabla u\|^2 + \gamma \|\nabla u\|^2 \leq K_1,
\]
\[
\gamma \int_t^{t+1} \|\nabla \Delta u\|^2 d\tau + \|\nabla u (t+1)\|^2 \leq K_1 + \|\nabla u (t)\|^2.
\]

Form the Lemma 2.2, we have
\[
\int_t^{t+1} \|\nabla \Delta u\|^2 d\tau \leq K_4
\] (2.7)

By using Gronwall’s inequality, we get the result that
\[
\|\nabla u\|^2 \leq c, \quad \forall t > t_2 (R) + 1.
\]

Theorem 2.6 Given \(f \in L^\infty (R^+; L^2 (R^1)) \), \(\forall u_0 \in H^2 (R^1) \), there exists a unique solution \(u \) to Eq. (2.1)-(2.2) in \(L^\infty (R^+; H^2 (R^1)) \); the solution operator \(S(t) \) is continue in \(H^2 \) and have a bounded absorbing set \(B \subset H^2 (R^1) \). Given \(f \in L^\infty (R^+; H^1 (R^1)) \), such that the bounded absorbing set \(B \subset H^2 (R^1) \).
3 The smoothness of the solution

Given \(f = f(x) \in H^1(R^1) \), and \(\lambda_L(x) \in C_0(R^1), 0 \leq \lambda_L \leq 1 \), which satisfies

\[
\lambda_L = \begin{cases}
1, |x| \leq L, \\
0, |x| > 1 + L,
\end{cases}
\]

Then \(\forall \eta \in (0, 1) \), there exists a \(L(\eta) > 0 \), such that

\[
\|f - f_\eta\|_{1,2}^2 \leq \eta, f_\eta = f \times \lambda_L(\eta), \|\nabla u^2 - \nabla u^2 \lambda_L(\eta)\|_{1,2}^2 \leq \eta.
\]

If \(u_\eta \) is a solution to the following Eq. (3.1)-(3.2)

\[
u_{\eta t} + \gamma \Delta^2 u_\eta + \nabla \Delta u_\eta + \Delta u_\eta + \beta u_\eta = f - f_\eta - \frac{1}{2} \alpha \nabla u^2 (1 - \lambda_L(\eta)), \tag{3.1}
\]

\[
u_\eta(x, 0) = u_0. \tag{3.2}
\]

let \(S_1(\eta) u_0 = u_\eta, w_\eta = S_2(\eta) u_0 = S(t) u_0 - S_1(\eta) u_0 \) is a solution to the following Eq. (3.3)-(3.4)

\[
w_{\eta t} + \nu \Delta^2 w_\eta + \nabla \Delta w_\eta + \Delta w_\eta + \beta w_\eta = f_\eta - \frac{1}{2} \alpha \nabla u^2 \lambda_L(\eta), \tag{3.3}
\]

\[
w_\eta(x, 0) = 0. \tag{3.4}
\]

Lemma 3.1 Under the conditions of Lemma 2.5, there exists a real constant \(c > 0 \), such that

\[
\|u_\eta\|^2, \|\nabla u_\eta\|^2, \|\Delta u_\eta\|^2, \|\nabla \Delta u_\eta\|^2 \leq c, \forall \eta \in (0, 1), \forall t \geq 0;
\]

\[
\|u_\eta\|^2, \|\nabla u_\eta\|^2, \|\Delta u_\eta\|^2 \leq c \eta, \forall \eta \in (0, 1), \forall t \geq t_\eta > 0 (\exists t_\eta > 0).
\]

Proof: Multiplying (3.1) with \(u_\eta \) and integrating on \(R \) with respect \(x \)

\[
\frac{1}{2} \frac{d}{dt} \|u_\eta\|^2 + \gamma \|\Delta u_\eta\|^2 + \|\nabla u_\eta\|^2 + \beta \|u_\eta\|^2
\]

\[
\leq \|f - f_\eta\| \|u_\eta\| + \frac{1}{2} \alpha \|\nabla u^2 - \nabla u^2 \lambda_L(\eta)\| \|u_\eta\|
\]

\[
\leq \frac{1}{2} \beta \|u_\eta\|^2 + c \eta,
\]

By using the Lemma of Gronwall, we have

\[
\|u_\eta(t)\|^2 \leq \|u_0\|^2 \exp(-\beta t) + \frac{1}{\beta} c \eta (1 - \exp(-\beta t)). \tag{3.5}
\]

Therefore, there exists a real constant \(c > 0 \), such that \(\|u_\eta\|^2 \leq c, \forall \eta \in (0, 1) \), and there also exists a \(t_1(R) > 0 \), such that if \(t \geq t_1(R) \), then \(\|u_0\|^2 \exp(-\beta t) < \eta \), i.e., \(\|u_\eta\|^2 \leq c \eta, \forall t \geq t_1 \).

Multiplying (3.1) with \(-\Delta u_\eta \) and integrating on \(R \) with respect \(x \)

\[
\frac{1}{2} \frac{d}{dt} \|\nabla \Delta u_\eta\|^2 + \gamma \|\nabla \Delta u_\eta\|^2 + \|\Delta u_\eta\|^2 + \beta \|\nabla u_\eta\|^2
\]

\[
\leq \|f - f_\eta\| \|\Delta u_\eta\| + \frac{1}{2} \alpha \|\nabla u^2 (1 - \lambda_L(\eta))\| \|\Delta u_\eta\|
\]

\[
\leq \frac{\gamma}{2} \|\nabla \Delta u_\eta\|^2 + c \|f - f_\eta\|^2 + c \|\nabla u^2 (1 - \lambda_L)\|^2,
\]

IJNS email for contribution: editor@nonlinearscience.org.uk
We have
\[
\frac{d}{dt} \| \nabla u \|^2 + \gamma \| \nabla \Delta u \|^2 + 2\beta \| \nabla u \|^2 \leq c\eta. \tag{3.6}
\]
By using the Lemma of Gronwall, we have
\[
\| \nabla u \|^2 \leq \| \nabla u_0 \|^2 \exp (-2\beta t) + \frac{1}{2\beta} c\eta (1 - \exp (-2\beta t)).
\]
there exists a real constant \(c > 0 \), such that
\[
\| \nabla u \|^2 \leq c, \quad \forall \eta \in (0, 1); \nonumber
\]
there also exists a \(t_2(R) \geq t_1(R) \)
\[
\| \nabla u_0 \|^2 \exp (-2\beta t) \leq R^2 \exp (-2\beta t) \leq \eta,
\]
i.e.
\[
\| \nabla u \|^2 \leq c\eta, \quad \forall t \geq t_2(R). \tag{3.7}
\]
Multiplying (3.1) with \(\Delta^2 u_\eta \) and integrating on \(R \) with respect \(x \), we have
\[
\frac{1}{2} \frac{d}{dt} \| \Delta u_\eta \|^2 + \gamma \| \Delta^2 u_\eta \|^2 + \| \nabla \Delta u_\eta \|^2 + \beta \| \Delta u_\eta \|^2
\]
\[
\leq \| f - f_\eta \| \| \Delta^2 u_\eta \|^2 + \frac{1}{2} \alpha \| \nabla u^2 (1 - \lambda_L) \| \| \Delta^2 u_\eta \|^2
\]
\[
\leq \frac{1}{2} \gamma \| \Delta^2 u_\eta \|^2 + c\eta.
\]
In a analogous way to above, there exits a \(t_3(R) \geq t_2(R) \), such that
\[
\| \Delta u_\eta \|^2 \leq c\eta, \quad \forall t \geq t_3(R), \forall \eta \in (0, 1). \tag{3.7}
\]
Multiplying (3.1) with \(-\Delta^3 u_\eta \) and integrating on \(R \) with respect \(x \), we have
\[
\frac{1}{2} \frac{d}{dt} \| \nabla \Delta u_\eta \|^2 + \gamma \| \nabla \Delta^2 u_\eta \|^2 + \| \Delta^2 u_\eta \|^2 + \beta \| \nabla \Delta u_\eta \|^2
\]
\[
\leq \frac{1}{2} \gamma \| \nabla \Delta^2 u_\eta \|^2 + c \| f - f_\eta \|^2 + c \| \nabla u^2 (1 - \lambda_L) \|^2,
\]
We obtain
\[
\frac{d}{dt} \| \nabla \Delta u_\eta \|^2 + 2\beta \| \nabla \Delta u_\eta \|^2 \leq c\eta. \tag{3.8}
\]
Combing with (3.6)
\[
\gamma \int_t^{t+1} \| \nabla \Delta u_\eta \|^2 d\tau \leq c\eta + \sup_{\tau \in R^+} \| \nabla u_\eta(t) \|^2,
\]
By using Gronwall’s inequality, we get the result
\[
\| \nabla \Delta u_\eta \|^2 \leq c.
\]
Lemma 3.2 Under the conditions of Lemma 2.5, there exist \(c_i(\eta) > 0, i = 1, 2, 3, \) such that if \(t \geq t^* \), then
\[
\| x w_\eta \|^2 \leq c_1(\eta), \| x \nabla w_\eta \|^2 \leq c_2(\eta), \| x \Delta w_\eta \|^2 \leq c_3(\eta).
\]
Proof: Multiplying (3.3) with $x^2 w_\eta$ and integrating on R with respect x, we have
\[
(\gamma \Delta^2 w_\eta, x^2 w_\eta) = \gamma \|x \Delta w_\eta\|^2 + 4 \gamma (\Delta w_\eta, x \Delta w_\eta) - 2 \gamma \|\nabla w_\eta\|^2 ,
\]
\[
(\nabla \Delta w_\eta, x^2 w_\eta) = -3 (\Delta w_\eta, x w_\eta) .
\]
then
\[
\frac{1}{2} \frac{d}{dt} \|x w_\eta\|^2 + \gamma \|x \Delta w_\eta\|^2 + \|x \nabla w_\eta\|^2 + \beta \|x w_\eta\|^2 + 2 \gamma \|\nabla w_\eta\|^2
\]
\[
\leq - 4 \gamma (\Delta w_\eta, x \nabla w_\eta) + 3 (\Delta w_\eta, x w_\eta) + (f_\eta, x^2 w_\eta) + \|w_\eta\|^2 - \frac{1}{2} \alpha (\nabla u^2 \lambda_L, x^2 w_\eta)
\]
\[
\leq \frac{1}{2} \gamma \|x \Delta w_\eta\|^2 + \frac{1}{2} \beta \|x w_\eta\|^2 + c \|\nabla w_\eta\|^2 + c \|x f_\eta\|^2 + c \|x \nabla u^2 \lambda_L\|^2 ,
\]
If $t \geq t^*$, it follows that u and w_η are bounded in H^3. Furthermore, if $t \geq t^*$, w_η is bounded in H^3. In fact, if $t \geq 0$, it follows that w_η is bounded in H^2, combing with f_η and $\nabla u^2 \lambda_L$ both have a compact support set, we obtain that $\|x f_\eta\|$ and $\|x \nabla u^2 \lambda_L\|$ are bounded. Thus we can prove
\[
\frac{d}{dt} \|x w_\eta\|^2 + \gamma \|x \Delta w_\eta\|^2 + \beta \|x w_\eta\|^2 \leq c (\eta) .
\]
(3.10)

By using the Lemma of Gronwall, we have
\[
\|x w_\eta (t)\|^2 \leq c_1 (\eta), \forall t \geq 0.
\]

By applying Δ to the term on the both sides of (3.3)
\[
\Delta w_{\eta t} + \gamma \Delta^3 w_\eta + \nabla \Delta^2 w_\eta - \Delta^2 w_\eta + \beta \Delta w_\eta = \Delta f_\eta - \frac{1}{2} \alpha \Delta (\nabla u^2 \lambda_L) .
\]
(3.11)

Multiplying (3.11) with $x^2 \Delta w_\eta$ and integrating on R with respect x, we have
\[
(\gamma \Delta^3 w_\eta, x^2 \Delta w_\eta) = \gamma \|x \Delta w_\eta\|^2 + 4 \gamma (\Delta^2 w_\eta, x \nabla \Delta w_\eta) - 2 \gamma \|\nabla \Delta w_\eta\|^2 ,
\]
\[
(\Delta^2 w_\eta, x^2 w_\eta) = \|\Delta w_\eta\|^2 - \|\nabla \Delta w_\eta\|^2 ,
\]
\[
(\nabla \Delta^2 w_\eta, x^2 \Delta w_\eta) = -3 (\Delta w_\eta, x \Delta^2 w_\eta) ,
\]
\[
(\Delta f_\eta, x^2 \Delta w_\eta) = (f_\eta, x^2 \Delta^2 w_\eta) + 4 (f_\eta, x \nabla \Delta w_\eta) + 2 (f_\eta, \Delta w_\eta) ,
\]
\[
-\frac{\alpha}{2} (\nabla u^2 \lambda_L), x^2 \Delta w_\eta) = -\frac{\alpha}{2} (\nabla u^2 \lambda_L, x^2 \Delta^2 w_\eta) - \frac{\alpha}{2} (\nabla u^2 \lambda_L, 4x \nabla \Delta w_\eta) - \alpha (\nabla u^2 \lambda_L, \Delta w_\eta) ,
\]
we have
\[
\frac{1}{2} \frac{d}{dt} \|x \Delta w_\eta\|^2 + \gamma \|x \Delta^2 w_\eta\|^2 + \beta \|x \Delta w_\eta\|^2 + \|\Delta w_\eta\|^2 + 2 \gamma \|\nabla \Delta w_\eta\|^2
\]
\[
\leq -4 \gamma (\Delta^2 w_\eta, x \nabla \Delta w_\eta) + 3 (\Delta w_\eta, x \Delta^2 w_\eta) + (f_\eta, x^2 \Delta^2 w_\eta)
\]
\[
+ 4 (f_\eta, x \nabla \Delta w_\eta) + 2 (f_\eta, \Delta w_\eta) + \|\nabla \Delta w_\eta\|^2 - \frac{1}{2} \alpha (\nabla u^2 \lambda_L, x^2 \Delta^2 w_\eta)
\]
\[
\leq \frac{1}{2} \gamma \|x \Delta^2 w_\eta\|^2 + c (\eta) ,
\]
therefore
\[
\frac{d}{dt} \| x \Delta w_\eta \|^2 + 2\beta \| x \Delta w_\eta \|^2 \leq c(\eta).
\] (3.12)

By using Gronwall’s inequality, we get the result
\[
\| x \Delta w_\eta \|^2 \leq c_3(\eta), \forall t \geq t^*,
\]
\[
\| x \nabla w_\eta \|^2 = \int x^2 (\nabla w_\eta)^2 dx = -2 \int x \nabla w_\eta w_\eta dx - \int x^2 \Delta w_\eta w_\eta dx \leq c_2(\eta).
\] (3.13)

The proof of Lemma 3.2 is complete.

4 The existence of the global attractor

If \(f(x) \in H^1(R^1), S(t) \) is the solution operator semigroups of Eq. (2.1)-(2.2) by the above proof, we know \(S(t) \) have a bounded absorbing set \(B \subset H^2(R^1) \) in \(H^2(R^1) \). In the following steps, using the Kuratowski \(\alpha \)-measure of non-compactness, we gain the compactness of \(\omega(B) \).

We define a set \(\mathbb{A} \) is \(\alpha \)-measure of non-compactness, if \(\mathbb{A} \) satisfies:
\[
\alpha(\mathbb{A}) = \inf \{ d | d(\mathbb{A}) < d \},
\]
where \(d(\mathbb{A}) \) is the diameter of globules which are a finite covering of \(\mathbb{A} \). In fact \(\alpha(\mathbb{A} \cup \mathbb{B}) \leq \alpha(\mathbb{A}) + \alpha(\mathbb{B}) \). Particularly, If \(\mathbb{A} \) is compact, so \(\alpha(\mathbb{A}) = 0 \). We can found the proof in [4, 5]

Lemma 4.1 Given \(s, s_1 \in \mathbb{Z} \) and \(s > s_1 \), such that it is a compact imbedding form \(H^s(R^n) \cap H^{s_1}(R^n; (1 + x^2) dx) \) to \(H^{s_1}(R^n) \).

By using Lemma 3.2, 4.1, we obtain the compactness of \(S_{2\eta}(t) \) of Eq. (3.3)-(3.4) in \(H^2(R^1) \). Therefore, each bounded set \(\mathbb{B'} \) in \(H^2 \) satisfies
\[
\alpha(S_{2\eta}(t) \mathbb{B'}) = 0, \forall t \geq t^*.
\]

Thus we get the following Theorem

Lemma 4.2 \(\mathbb{A} = \omega(\mathbb{B}) = \cap_{s \geq 0} \cup_{t \geq s} S(t) \mathbb{B} \) is the compact attractor of \(S(t) \) in \(H^2(R^1) \), where we consider the closure in \(H^2(R^1) \).

Proof: \(\forall \epsilon > 0 \), there exists a \(\eta > 0 \), \(t_0 > 0 \), such that
\[
\| S_{1\eta}(t) u_0 \| \leq \epsilon, \forall t \geq t_0, u_0 \in \mathbb{B},
\]

If \(t > t_0 \)
\[
\alpha(S(t) \mathbb{B}) \leq \alpha(S_{1\eta}(t) \mathbb{B}) + \alpha(S_{2\eta}(t) \mathbb{B}) = \alpha(S_{1\eta}(t) \mathbb{B}) \leq \epsilon,
\]
Thus we have \(\lim_{t \to \infty} \alpha(S(t) \mathbb{B}) = 0 \). i.e. \(S(t) \) is asymptotic smoothing.

5 Weak and strong limit as \(\gamma \to 0 \)

We now turn to the study of the behavior of the Couchy problem (2.1) as the dispersive parameter \(\gamma \) tends to zero. i.e.
\[
u t + \alpha u \nabla u + \nabla \Delta u - \Delta u + \beta u = f(t, x), \quad x \in R^1, t > 0, \quad u(x, 0) = u_0\] (5.1)

Where \(\alpha, \beta > 0 \).
Theorem 5.1 Given $f \in L^\infty (R^+; L^2 (R^1))$, $u_0 \in H^2 (R^1)$, $u (x, 0) = u_0$, there exists a solution $u (x, t)$ in $L^\infty (R^+; H^2 (R^1))$, such that

$$u, \nabla u \in L^\infty (R^+; H^2 (R^1))$$

$$u_t + au \nabla u + \nabla \Delta u - \Delta u + \beta u = f (t, x)$$

$$u (x, 0) = u_0$$

In order to obtain Theorem 5.1, we proved the following Lemma 5.2-5.4

Lemma 5.2 Given $u_0 \in L^2 (R^1)$, $0 < \gamma < 1$, $f \in L^\infty (R^+; L^2 (R^1))$, such that

$$\|u_\varepsilon\|_{L^\infty (R^+; L^2 (R^1))} \leq c$$

$$\sqrt{\gamma} \|\nabla u_\varepsilon\|_{L^2 (R^1)} \leq c$$

Where the constant c is independent of ε.

Proof: Multiplying (2.1) with u and integrating on R with respect x, we have

$$\frac{1}{2} \frac{d}{dt} \|u\|^2 + \gamma \|\Delta u\|^2 + \|\nabla u\|^2 + \beta \|u\|^2 \leq \|f\| \|u\| \leq \frac{1}{2} \beta \|u\|^2 + \frac{1}{2} \beta \|f\|^2.$$

We have

$$\frac{d}{dt} \|u\|^2 + 2\gamma \|\Delta u\|^2 \leq K.$$

Thus we complete the proof of (5.7)-(5.8).

Lemma 5.3 Given $v (x) \in H^3 (R^1)$, such that

$$\|v\|_{L^4 (R^1)} \leq c \|v\|^{11/12}_{L^2 (R^1)} \left(\|v\|_{L^2 (R^1)} + \|\nabla v\|_{L^2 (R^1)}\right)^{1/12}$$

$$\left\|\frac{dv}{dx}\right\|_{L^4 (R^1)} \leq c \|v\|^{7/12}_{L^2 (R^1)} \left(\|v\|_{L^2 (R^1)} + \|\nabla v\|_{L^2 (R^1)}\right)^{5/12}$$

Lemma 5.4 Given $u_0 (x) \in H^2 (R^1)$, $f \in L^\infty (R^+; L^2 (R^1))$, such that

$$\|\nabla u\|_{L^\infty (R^+; L^2 (R^1))} \leq c$$

$$\sqrt{\gamma} \|\nabla \Delta u\|_{L^2 (R^1)} \leq c$$

Where the constant c is independent of ε.

Proof: Multiplying (2.1) with $-\Delta u$ and integrating on R with respect x, we have

$$\frac{d}{dt} \|\nabla u\|^2 + \gamma \|\nabla \Delta u\|^2 + \|\Delta u\|^2 + \beta \|\nabla u\|^2 \leq \sup_t \|f\|^2 + c \|u\|^6 + c \|u\|^2$$

We have

$$\frac{d}{dt} \|\nabla u\|^2 + \gamma \|\nabla \Delta u\|^2 \leq K.$$

Thus we complete the proof of (5.7)-(5.8).

Rewrite (2.1)

$$u_t = -\gamma \Delta^2 u - au \nabla u - \nabla \Delta u + \Delta u - \beta u + f (x)$$

IJNS email for contribution: editor@nonlinearscience.org.uk
Multiplying (5.13) with φ and integrating on R with respect x, we have

$$|(u_t, \varphi)| \leq \gamma \|\nabla u\|_{L^2} \|\varphi\|_{H^2} + \frac{1}{2} \|u\|_{L^\infty} \|\varphi\|_{H^2} + \|\nabla u\|_{L^2} \||\varphi|\|_{H^2} + \|u\|_{L^2} \||\varphi|\|_{H^2} + \beta \|u\|_{L^\infty} \|\varphi\|_{H^2} + \|f\|_{L^\infty} \|\varphi\|_{H^2}$$

where $\varphi \in L^2(R^+; H^2(R^1))$.

By the above proof, we have

$$\|u\|_{L^2}, \|\nabla u\|_{L^2}, \|\Delta u\|_{L^2}, \|\nabla \Delta u\|_{L^2} \leq c (c \neq 0)$$

Thus we obtain the uniformly bounded of u_t in $L^2(R^+; H^2(R^1))$

Combing with (5.6),(5.7),(5.10),(5.11), we can select a subsequence $\{u_\varepsilon\}$ such that u_ε weak limit to u in $L^2(R^+; L^2(R^1))$; ∇u_ε weak limit to ∇u in $L^\infty(R^+; L^2(R^1))$; $\partial_u u_\varepsilon$ weak limit to $\partial_u u$ in $L^2(R^+; H^2(R^1))$. Furthermore, we have u_ε strong limit to u in $L^\infty(R^+; L^2(R^1))$; and $u \nabla u_\varepsilon$ weak limit to $u \nabla u$ in $L^\infty(R^+; L^2(R^1))$.

Therefore, we complete the proof. i.e. $\text{Eq. (2.1)} \rightarrow u_t + \alpha u \nabla u + \nabla \Delta u - \Delta u + \beta u = f$.

References

