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Abstract: In this paper, the bifurcation analysis for Burgers mapping has been studied. The
existence and stability of the fixed points of this map was derived. The conditions of existence
for pitchfork bifurcation, flip bifurcation and Neimark-Sacker bifurcation are derived by using
center manifold theorem and bifurcation theory. The control of the map around stable Neimark-
Sacker bifurcation has been achieved by using feedback polynomial controller technique. The
complex dynamics, bifurcations and chaos are displayed by numerical simulations.
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1 Introduction

The Burgers mapping is a discretisation of a pair of coupled differential equations which were used by
Burgers [1] to illustrate the relevance of the concept of bifurcation to the study of hydrodynamics flows.
These equations are indeed a sort of Lorenz model; being in two dimensions they cannot exhibit complex
trajectories (see [2]). The Burgers mapping is defined in the following way [2,3]:

{
xn+1 = (1− ν)xn − y2

n,
yn+1 = (1 + µ)yn + xnyn.

(1)

In [3], the map (1) has been discussed by using the numerical methods. They proved numerically, that
Burgers mapping are produced a much richer set of dynamic patterns than those observed in continuous
case [3,2]. Nevertheless, they have not given theoretical analysis. In this paper we deduce theoretical
analysis for bifurcations phenomenon and the polynomial type controller [4] to achieve control of chaotic
attractor around stable Neimark-Sacker bifurcation for map (1). Jing group have been applied the forward
Euler scheme for the BVP oscillator, FitzHugh-Nagumo system and Predator-prey [5,6,7], they investigated
the dynamical behaviors in detail as discrete dynamical systems by using the qualitative analysis and center
manifold theorem. In addition, Bifurcations and chaos of the delayed ecological model has been examined
in [8]. Recently, Zhang et al. applied the forward Euler scheme for the simple predator-prey model [9], and
they studied the dynamical behaviors by using the qualitative analysis and center manifold theorem.

This paper is organized as follows. In section 2, the existence and stability of the fixed points and
the qualitative behavior and bifurcations of the map (1) are examined by using the qualitative theory and
bifurcation theory. Also, the conditions of existence for pitchfork bifurcation, flip bifurcation and Neimark-
Sacker bifurcation deduced and proved. In section 3, we applied the controller technique of Chen-Yu [4] for
control this map around stable Neimark-Sacker bifurcation. In section 4, the complex behaviors for the map
via computing bifurcation diagrams, strange attractors and Lyapunov exponents by numerical simulations
were demonstrated. Finally, section 5 draws the conclusion.
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2 Existence and stability of fixed points and bifurcations

In this section, we first determine the existence of the fixed points of the map (1), then investigate their
stability by calculating the eigenvalues for the Jacobian matrix of the map (1) at each fixed point, and
sufficient conditions of existence for pitchfork bifurcation flip bifurcation and Neimark-Sacker bifurcation
by using qualitative theory and bifurcation theory.

By simple computation, the map (1) has the following three fixed points:
(i) E0(0, 0) is trivial fixed point,
(ii) E1(−µ,

√
µν) is interior fixed point exist for µν > 0, and

(iii) E2(−µ,−√µν) is the other interior fixed point. Where E1 and E2 are symmetric fixed points of
coordinates.

Next we will investigate qualitative behaviors of the map (1). The local dynamics of map (1) in a
neighborhood of a fixed point is dependent on the Jacobian matrix of (1). The Jacobian matrix of map (1) at
the state variable is given by

J(x, y) =
(

1− ν −2y
y 1 + µ + x

)
. (2)

2.1 Bifurcations of E0(0, 0)

We consider the Jacobian matrix at E0 which has the form

J(E0) =
(

1− ν 0
0 1 + µ

)
, (3)

which has two eigenvalues λ1 = 1− ν and λ2 = 1 + µ. From the above one can make conclusions:

Proposition 1 (1) When 0 < ν < 2 and −2 < µ < 0, E0 is a stable node (sink); (2) When ν > 2
and µ > 0, E0 is unstable node (source); (3) When ν > 2 and −2 < µ < 0,or when 0 < ν < 2 and
µ > 0, E0 is saddle point; (4) When ν = 0 or 2 and |λ2| 6= 1 or µ = −2 or µ = 0 and |λ1| 6= 1, E0 is a
non-hyperbolic fixed point.

Considering that µ is a bifurcation parameter, and E0 is a non-hyperbolic fixed point for µ = 0 or
µ = −2, so the stability and bifurcations will be discussed in the following part.

If µ = 0, then J(E0) has two eigenvalues λ1 = 1− ν and λ2 = 1. The fact that the fixed point E0 is a
pitchfork bifurcation point requires the following proposition.

Proposition 2 If µ = 0 and ν 6= 0, the map (1) undergoes a pitchfork bifurcation at E0. Moreover the map
has only one fixed point.

Proof. Let σn = µ, such that parameter σn be a new dependent variable, the map (1) can be rewritten in the
following form:




xn+1

σn+1

yn+1


 =




1− ν 0 0
0 1 0
0 0 1







xn

σn

yn


 +




−y2
n

0
xnyn + σnyn


 .

By the center manifold theory there exists a center manifold of the map (1), which can expressed locally as
follows:

W c(E0) = {(x, y, σ) ∈ R3 |y = w(x, σ), w(0, 0) = Dw(0, 0) = 0, |x| < ε, |y| < δ},

Assume that w(y, σ) has the following form

xn = w(yn, σn) = a1y
2
n + a2ynσn + a3σ

2
n + o((|xn|+ |yn|)3),

which must satisfy
w(y + ynw + ynσn, σn+1) = (1− ν)w − y2

n.
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Thus, we can obtain that

a1 = −1
ν

and a2 = a3 = 0,

therefore, we have xn = w(yn, σn) = −1
ν

x2
n, and the map is restricted to the center manifold, which given

by

f1 : yn+1 = yn + σnyn − 1
ν

y3
n − o((|yn|+ |σn|)4).

Since
∂2f1

∂yn∂σn

∣∣
(0,0) = 1 6= 0,

∂3f1

∂y3
n

∣∣
(0,0) = −6

ν
6= 0 and f̃1(y, σ) = y + σy − 1

ν
y3 is odd function for y,

then map (1) undergoes a pitchfork bifurcation at E0. If ν > 0 , then the map (1) undergoes a supercritical
pitchfork bifurcation, whereas the map (1) undergoes a subcritical pitchfork bifurcation when ν < 0.This
completes the proof

Now the flip bifurcation of the map (1) at E0 is considered. If µ = −2, then J(E0) has two eigenvalues
λ1 = 1−ν and λ2 = −1. The fact that the fixed point E0 is a flip bifurcation point is given by the following
proposition.

Proposition 3 If µ = −2, ν 6= 0, the map (1) undergoes a flip bifurcation at E0.

Let σn = µ+2, such that parameter σn be a new dependent variable, the map (1) can be rewritten in the
following form:




xn+1

σn+1

yn+1


 =




1− ν 0 0
0 −1 0
0 0 −1







xn

σn

yn


 +




−y2
n

0
xnyn + σnyn


 .

Assume that w(y, σ) has the following form:

xn = w(yn, σn) = b1y
2
n + b2ynσn + b3σ

2
n + o((|yn|+ |σn|)3).

It must satisfy

w(−yn + ynw + σnyn, σn+1) = (1− ν)w − y2
n.

Thus, we can obtain that

b1 = −1
ν

and b2 = b3 = 0,

therefore, we have xn = w(yn, σn) = −1
ν

y2
n, and the map is restricted to the center manifold, which given

by

f2 : yn+1 = −yn + σnyn − 1
ν

y3
n − o((|σn|+ |yn|)4).

Since

α1 = (
∂f2

∂σn

∂2f2

∂y2
n

+ 2
∂2f2

∂yn∂σn
)
∣∣
(0,0) = 2 6= 0,

α2 = (
1
2
(
∂2f2

∂y2
n

)2 +
1
3

∂3f2

∂y3
n

)
∣∣
(0,0) = −2

ν
< 0,

then map (6.1) undergoes a flip bifurcation at E0. If ν > 0 , then the map (1) undergoes a supercritical flip
bifurcation, whereas the map (1) undergoes a subcritical bifurcation when ν < 0. This complete the proof
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2.2 Bifurcation of fixed point E1(−µ,
√

µν)

We consider the Jacobian matrix at E1 which has the form

J(E1) =
(

1− ν −2
√

νµ√
νµ 1

)
, (4)

which has two eigenvalues λ1,2 = 1
2(2 − ν ±

√
(2− ν)2 − 4(1− ν + νµ)). E1(−µ,

√
µν) is nontrivial

fixed point. Under certain conditions, it can be obtained that map (1) also undergoes pitchfork bifurcation
and flip bifurcation at E1(−µ,

√
µν). This will be shown by the following two propositions.

Proposition 4 If ν2 − 4µν > 0 and µ = 0, the map (1) undergoes a pitchfork bifurcation at E1. Moreover
the map has only one fixed point.

Proof. The proof is similar to the proof of proposition 2.

Proposition 5 If ν2 − 4µν > 0 and µ =
ν − 2

ν
, ν 6= 2 the map (1) undergoes a flip bifurcation at E1.

Proof. In order to prove this result, we consider the eigenvalues of Jacobian matrix at E1 which has the
form

J(E1) =
(

1− ν −2
√

νµ√
νµ 1

)
,

which has two eigenvalues are λ1,2 = 1
2(2 − ν ±

√
(2− ν)2 − 4(1− ν + νµ)). For µ = ν−2

ν , the two
eigenvalues becomes λ1 = 3− ν and λ2 = −1.

Let ζn = xn + ν, ηn = yn −√νµ, σn =
√

µ−
√

ν−2
ν and σn be a new dependent parameters, the map

(1) becomes



ζn+1

σn+1

ηn+1


 =




1− a 0 −2
√

ν − 2
0 −1 0√

ν − 2 0 1


 +




2
√

νσnηn − η2
n

0√
νσnζn + ζnηn


 . (5)

Let

T =




−√ν − 2 0 1
0 1 0

1 0 −
√

ν − 2
2


 .

By the following transformation 


ζn

σn

ηn


 = T




un

δn

ϑn




the map (5) becomes



un+1

δn+1

ϑn+1


 =




(3− ν) 0 0
0 −1 0
0 0 −1







un

δn

ϑn


 +




ψ(un, δn, ϑn)
0

φ(un, δn, ϑn)


 , (6)

where

ψ(un, δn, ϑn) =
4
√

ν
√

ν − 2
ν − 4

δnun − ν
√

ν

ν − 4
δnϑn +

3
√

ν − 2
ν − 4

u2
n −

2(ν − 1)
ν − 4

unϑn +
(ν − 2)

√
ν − 2

ν − 4
ϑ2

n

φ(un, δn, ϑn) =
2ν
√

ν

ν − 4
δnun − 4

√
ν
√

ν − 2
ν − 4

δnϑn +
2(ν − 1)
ν − 4

u2
n −

(ν + 2)
√

ν − 2
ν − 4

unϑn +
3(ν − 2)
2(ν − 4)

ϑ2
n

Consider
un = w(ϑn, δn) = c1ϑ

2
n + c2ϑnδn + c3δ

2
n + o((|ϑn|+ |δn|)3),

IJNS email for contribution: editor@nonlinearscience.org.uk



E. M. ELabbasy, H. N. Agiza, H. EL-Metwally, A. A. Elsadany: Bifurcation Analysis, Chaos and· · · 175

which must satisfy that

w(−ϑn + φ(w(ϑn, δn), δn, ϑn)) = (3− ν)w(ϑn, δn) + φ(w(ϑn, δn), δn, ϑn),

Thus we can obtain that

c1 =
√

ν − 2
ν − 4

, c2 = − ν
√

ν

(ν − 2)(ν − 4)
and c3 = 0

and the map is restricted to the center manifold, which is given by

f3 : ϑn+1 = −ϑn − 4
√

ν
√

ν − 2
ν − 4

ϑnδn +
3
2

(ν − 2)
(ν − 4)

ϑ2
n +

ν(2ν − 4 + (ν + 2)
√

ν)
(ν − 4)2

√
ν − 2

ϑ2
nδn

− 2ν3

(ν − 2)(ν − 4)2
ϑnδ2

n −
(ν2 − 4)
(ν − 4)2

ϑ3
n + o((|ϑn|+ |δn|)4)

Since

α1 = (
∂f3

∂δn

∂2f3

∂ϑ2
n

+ 2
∂2f3

∂ϑn∂δn
)
∣∣
(0,0) = −8

√
ν
√

ν − 2
ν − 4

6= 0 for ν 6= 2, 4

α2 = (
1
2
(
∂2f3

∂ϑ2
n

)2 +
1
3

∂3f3

∂ϑ3
n

)
∣∣
(0,0) =

ν2 − 36ν + 68
4(ν − 4)2

6= 0 for ν 6= 2, 4

It is clear that α2 > 0 when ν < 2 and α2 < 0 when ν > 2. Then fixed point E1 is a subcritical flip
bifurcation point of map (1) when ν < 2, whereas the map (1) undergoes a supercritical bifurcation if
ν > 2. This completes the proof.

Next, the Neimark-Sacker bifurcation at E1 will be discussed.

2.2.1 Neimark-Sacker bifurcation

Consider the following two-dimensional map:

Xn+1 = F (Xn, α) (7)

where Xn = (xn, yn) and Fα = (f(xn, yn, α), g(xn, yn, α)) be a one-parameter family of map of R2.
The map (7) exhibits Neimark-Sacker bifurcation ( discrete Hopf bifurcation ) if a simple pair of complex
conjugate eigenvalues of the linearized map crosses the unit circle [4,10].

In order to study the Neimark-Sacker bifurcation of the interior fixed point of studied map, the following
Theorem must be consider firstly.

Theorem 6 (Neimark-Sacker bifurcation [11-13]). Let Fα be a one parameter family of map of R2 satisfy-
ing :

(i) Fα(0) = 0 for α near 0;
(ii) DFα(0) has two complex eigenvalues λ(α), λ(α) for α near 0 with |λ(0)| = 1;
(iii)d|λ(α)|

dα |α=0 > 0;
(iv) λ = λ(0) is not an m-th root of unity for m = 1, 2, 3, 4.

Then there is a smooth α−dependent change of coordinates bring Fα into the form

Fα(X) = Gα(U) + O(|U |5) for U ∈ R2

where U = (u, v) and G = (g1, g2).

Moreover, for all sufficiently small positive (negative) α, Fα has an attracting (repelling) invariant circle
if l(0) < 0 (l(0) > 0) respectively; and l(0) is given by the following formula:

l(0) = −Re[
(1− 2λ)λ2

(1− λ)
γ20γ11]− 1

2
|γ11|2 − |γ02|2 + Re(λγ21). (8)

IJNS homepage:http://www.nonlinearscience.org.uk/



176 International Journal of Nonlinear Science,Vol.4(2007),No.3,pp. 171-185

where

γ20 =
1
8
[(g1uu − g1vv + 2g2uv) + i(g2uu − g2vv − 2g1uv)],

γ11 =
1
4
[(g1uu + g1vv) + i(g2uu + g2vv)],

γ02 =
1
8
[(g1uu − g1vv − 2g2uv) + i(g2uu − g2vv + 2g1uv)],

γ21 =
1
16

[(g1uuu + g1uvv + g2uuv + g2vvv) + i(g2uuu + g2uvv − g1uuv − g1vvv)].

The calculation of l(0) is given by Wan [12].

2.2.2 Neimark-Sacker bifurcation of fixed point E1(−µ,
√

µν)

In this subsection we discuss the Neimark-Sacker bifurcation for fixed point E1(−µ,
√

µν) by using above
theorem. The Jacobian matrix of the map (1) at the fixed point E1 is

J(E1) =
(

1− ν −2
√

µν√
µν 1

)
. (9)

The characteristic equation of the map (1) at the point E1 is

λ2 − (2− ν)λ + (1− ν + 2µν) = 0. (10)

The eigenvalues of J(E1) are

λ1,2 =
1
2
(2− ν ± i

√
8µν − ν2) for µ >

ν

8
, (11)

and
|λ1,2| =

√
1− ν + 2µν. (12)

Let µ0 = 1
2 , thus

d(|λ1,2|)
dµ

|µ=µ0 = ν.

Thus, Neimark-Sacker bifurcation exists when ν > 0, and |λ1,2(µ0)| = 1 and λ1,2(µ0) = 1
2(2 − ν ±

i
√

4ν − ν2) . If λm
1,2 6= 1 for m = 1, 2, 3, 4. By the following transformation: ζn = xn+µ, ηn = yn−√µν

under which the map (1) becomes
{

ζn+1 = (1− ν)ζn − 2
√

νµ ηn − η2
n,

ηn+1 =
√

µνζn + ηn + ζnηn.
(13)

Let (
ζn

ηn

)
= T

(
un

ϑn

)
,

where

T =




1 0

−
√

ν

4
√

µ

√
8µν − ν2

4
√

µν


 ,

under which the map (13) becomes

(
un+1

ϑn+1

)
=




1− ν

2
−

√
8µν − ν2

2√
8µν − ν2

2
1− ν

2




(
un

ϑn

)
+

(
g1(un, ϑn)
g2(un, ϑn)

)
(14)
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where

g1(un, ϑn) = − ν

16µ
u2

n +

√
8µν − ν2

8µ
unϑn − 8µν − ν2

16µν
ϑ2

n

g2(un, ϑn) = − 16µν + ν2

16
√

8µν − ν2
u2

n + (1 +
ν

8µ
)unϑn

√
8µν − ν2

8
ϑ2

n.

Note that (10) is exactly in the form on the center manifold, in which the coefficient l [9]. By using (10) we
have

γ20

∣∣∣µ0= 1
2

=
3

8
√

4ν − ν2
(
√

4ν − ν2 − νi);

γ11

∣∣∣µ0= 1
2

= − 1
4
√

4ν − ν2
(
√

4ν − ν2 + 3i);

γ02

∣∣∣µ0= 1
2

= − 1
8
√

4ν − ν2
((ν + 1)

√
4ν − ν2 + (ν2 − ν)i);

γ21

∣∣∣µ0= 1
2

= 0.

and substituting into (8), we can obtain

l = −(3ν3 − 6ν2 − 24ν − 27)
32(ν2 − 4ν)

< 0, ν 6= 4

From the above analysis, we have the following proposition:

Proposition 7 the map (1) undergoes a Neimark-Sacker bifurcation at the fixed point E1(−µ,
√

µν) if ν2−
8µν < 0 , ν > 0 and µ0 = 1

2 , ν 6= 4. Moreover, an attracting invariant closed curve bifurcates from the
fixed point for µ > 1

2 .

We will not discuss the bifurcations of point E2 , because it has symmetrical structure with E1 , and has
similar situation..

3 Controlling Neimark-Sacker bifurcations by using polynomial functions

Various methods have been used to control bifurcations in discrete dynamical systems. Bifurcation control
has been designed for fixed points [14], discrete Hopf [15], period doubling bifurcations [16]. All of these
method are reviewed by Chen and Yu in [4]. Chen and Yu are designed a nonlinear feedback control with
polynomial functions to control a discrete Hopf bifurcations (Neimark-Sacker) in discrete time systems and
applied this method in some systems delay logistic map, two dimensional Henon map and three dimensional
Henon map [4].

In this section we applied the same technique [4] to control our map about Neimark-Sacker bifurcation.
As deduced by proposition that a stable Neimark-Sacker bifurcation occurs at µ = 0.5 . It is clear that, a
stable closed orbit in the phase space( see Figure 1).

Based on the above work, we may choose control component for first equation of the map (1). We can
explicitly write the controller as

kn = A11xn(xn + µ)2 + A12yn(y2
n − µ2),

which preserves the three fixed points of the map (1). Then the controlled system given by


 xn+1 = −y2

n + A11xn(xn + µ)2 + A12yn(y2
n − µ2),

yn+1 = (1 + µ)yn + xnyn.
(15)
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Figure 1: The first stable closed orbit in the map (1) without control for µ = 0.51 .

The Jacobian matrix of the map (15) evaluated at E1(−µ,
√

µ) is

(
0 −2

√
µ + 2µA12√

µ 1

)
. (16)

The controlled system has a Neimark-Sacker bifurcation when the eigenvalues of (16) satisfied λ1 = λ2 and
|λ1| = 1. The necessary condition for (16) to have a pair complex eigenvalues is

A12 <
8µ− 1
8µ
√

µ

Thus we may further choose A12 = 1
2 , A11 = 0 and µ = 1 . Then the Jacobian matrix evaluated at E1 of

controlled system becomes (
0 −1
1 1

)

This matrix indicates that the Neimark-Sacker bifurcation occurs at µ = 1 for the controlled map (15)
instead of the Neimark-Sacker bifurcation occurs at µ = 1

2 for uncontrolled map (1). By using above choice
the map (15) becomes {

xn+1 = −y2
n + 1

2y3
n − 1

2yn,
yn+1 = 2yn + xnyn.

(17)

Let ζn = xn + 1 and ηn = yn − 1, then the controlled map (17) becomes

{
ζn+1 = −ηn + 1

2η2
n + 1

2η3
n,

ηn+1 = ζn + ηn + ζnηn.
(18)

We can deduced that

T =

(
1 0
−1

2

√
3

2

)
.

By the following transformation (
ζn

ηn

)
= T

(
un

ϑn

)

the map (18) becomes

(
un+1

ϑn+1

)
=

(
1
2 −

√
3

2√
3

2
1
2

)(
un

ϑn

)
+

(
1
8u2

n −
√

3
4 unϑn + 3

8ϑ2
n − 1

16u3
n + 3

√
3

16 u2
nϑn − 9

16unϑ2
n + 3

√
3

16 ϑ3
n,

− 7
8
√

3
u2

n + 3
4unϑn +

√
3

8 ϑ2
n − 1

16
√

3
u3

n + 3
16u2

nϑn − 3
√

3
16 unϑ2

n + 3
16ϑ3

n.

)
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Note that (15) is exactly in the form on the center manifold. By simple computation and using Eq. (4), we
have

γ20 =
1

8
√

3
(
√

3− i); γ11 =
1

4
√

3
(
√

3− i); γ02 = − 1
4
√

3
(
√

3 + 2i); γ21 = −
√

3
8

i.

Thus, l = − 1
32 < 0.

Figure 2: The first stable closed orbit in the controlled map (18) for µ = 1.1 .

Since l < 0 , the Neimark-Sacker bifurcation of the controlled map is a stable. The numerical simulation
result is shown in Figure 2, confirming the existence of a stable closed orbit in the phase space. From above
analysis, we deduce that the feedback controller polynomial function delays the appearance of Neimark-
Sacker bifurcation and control the map around stable closed orbit.

4 Numerical Simulations

In this section, some numerical simulation results are presented to confirm the previous analytic results and
to obtain even more dynamics behaviors of the map (1). To do this, we will use the bifurcation diagrams,
phase portraits, Lyapunov exponents and Sensitive dependence on initial conditions and show the new in-
teresting complex dynamical behaviors. The bifurcation parameters are considered in the following three
cases :

(i) varying µ in range 0 ≤ µ < 1, and fixing ν = 1.

(ii) varying µ in range 0 ≤ µ < 1, and fixing ν = 2.

(iii) varying µ in range 0 ≤ µ < 1, and fixing ν = 0.5.

For case (i). Let ν = 1, the bifurcation diagram of x with respect to µ is presented in Figure 3. This
Figure shows that the pitchfork bifurcation occurs at µ = 0, i.e., with the increase of the parameter µ, the
stable fixed point E0(0, 0) loses its stability at µ = 0. When ν = 1, µ = 1

2 , according to the theoretical
analysis given in section 2.2 , a Neimark-Sacker bifurcation should occur. This result has been proved by
the numerical simulation is shown in Figure 3.

We give the bifurcation diagram of the map (1) with ν = 1 in (µ−y) plane covering range µ ∈ [0, 0.99]
in Figure 4 and the local amplification for µ ∈ [0.68, 0.72] in Figure 5 . Infact, the fixed points E1 and E2

of the map (1) losetheir stability at Neimark-Sacker bifurcation value at µ = 1
2 , so there is appearing of an

invariant circles when µ ≥ 1
2 .

Figures 3-5 show the dynamical behaviors of the map (1) become complex when the parameter µ > 1
2 .

Lyapunov exponents measure the exponential rates of convergence or divergence, in time, of adjacent trajec-
tories in phase space. In order to analyze the parameter sets for which stable, periodic and chaotic behavior,
one can compute the maximal Lyapunov exponents depend on µ . For the stable fixed points the maximal
Lyapunov exponents is negative. For quasiperiodic, invariant closed curve the maximal Lyapunov expo-
nents is zero. For chaotic behavior the maximal Lyapunov exponents is positive. The maximal Lyapunov
exponents corresponding to Figures 3-4 computed and presented in Figure 6.
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Figure 3: Bifurcation diagram in
(µ− x) plane for ν = 1.

Figure 4: Bifurcation diagram in
(µ− y) plane for ν = 1.

Figure 5: Local amplification
corresponding to 3.

Figure 6: Maximal Lyapunov exponents corresponding to Fig.3 and 4.

From Figure 6, one can see that the maximal Lyapunov exponents is in neighborhood of zero for µ ∈ [0, .65],
which corresponds to fixed points or continuous closed invariant circles. When µ ∈ (0.65, 1) the maximal
Lyapunov exponents is positive which corresponding to chaotic behavior.
For case (ii). The bifurcation diagram of map (6.1) in ( µ− y) plane for ν = 2 is shown in Figure 6.7. The
bifurcation diagram of the map (1) in ( µ− x) plane for ν = 2 is disposed in Figure 8. From this figure its
clear that the flip bifurcation emerges from the fixed point (−0.5, 1).

The maximal Lyapunov exponents corresponding to Figures 7, 8 is given in Figure 9, showing the period
orbits and the existence of chaotic regions as the parameter µ varying.

Case (iii), The bifurcation diagram of the map (1) in ( µ − x) plane for ν = 0.5 is plotted in Figure
10, Also maximal Lyapunov exponents is disposed in Figure 10. The Neimark-Sacker bifurcation emerges
from the fixed points (−0.5, 0.5) at ν = 0.5. It shows the correctness of Proposition 7.

From proposition 7, we deduced that the first Neimark-Sacker bifurcation takes place for µ = 1
2 and for

Figure 7: Bifurcation diagram in
(µ− y) plane for ν = 2.

Figure 8: Bifurcation diagram in
(µ− x) plane for ν = 2.

Figure 9: Maximal Lyapunov
exponents corresponding to
Fig.7 and 8.
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Figure 10: Bifurcation diagram in (µ − x) plane for ν = 0.5 and corre-
sponding Maximal Lyapunov exponents .

Figure 11: The first Neimark-
Sacker bifurcation when µ =
0.5 .

Figure 12: The invariant closed
curve around the fixed point E1

created after Neimark-Sacker
bifurcation when µ = 0.52 .

Figure 13: The breakdown of
the invariant closed curve when
µ = 0.7 .

values lower than µ = 1
2 a stable fixed points exists. For µ = 1

2 and ν = 1 the fixed point E1 occurs at

x = −1
2 , y = 0.707 and the associated pair of complex conjugate eigenvalues are λ1,2 = 1

2 ±
√

3
2 i with

|λ1,2| = 1, which shows that the first Neimark-Sacker bifurcation occurs at µ = 1
2 as shown in Figure. 11.

Continuing to increase the value of µ , we see what happens for µ = 0.52 and ν = 1 . One can see that
the fixed point E1 became unstable and an invariant closed curve was created around the fixed point E1, as
shown in the Figure 12.

The breakdown of the invariant closed curve around the fixed point E1 when µ = 0.7 and ν = 1 shown
in Figure 13.

Further increases in µ the chaotic attractors arises. A typical double chaotic attractors presented in
Figure 14, with µ = 0.83 and ν = 1, one chaotic attractor around fixed point E1 and the other one is around
E2 .

In addition, Figure 15 shows more complex double chaotic attractorswith µ = 0.88 and ν = 1 .
When µ = 0.9999 and ν = 1, invariant disc will appear due to a contact bifurcation between the attractor

and its basin boundary see Figure 16. The invariant disc disappear when µ = 1 . From Figure 16 its clear
that the existence of an invariant circle and invariant absolutely continuous measure on the disc bounded
by this circle. It is true that the measure of the whole disc is infinitely large because the corresponding
density is nonintegrable, the integral of this density logratithmicaly diverges near the boundary. In computer
simulation, one can observe the longtime walking of iterations on the disc, but later all of them leave the
disc and go to infinity. This caused by transverse instability of the invariant boundary circle. It follows
particularly from the existence of unstable fixed points (0, 0) , (−1,±1) (and others unstable cycles) on its
boundary. After iterates arrive in a sufficiently small vicinity of such unstable fixed point or cycle they leave
the disc with a good probability because of round-of errors, see V. Tsybulin and V. Yudovich [17].

At ν = 1.5, the phase portraits corresponding to µ = 0.45, 0.5, 0.6, 0.75, and 0.85 are shown in Figure
17(1)-(5) respectively. We see that the fixed points of the map (1) are stable for µ < 0.5 , and loses stability
at µ = 0.5, an invariant closed curve appears when the parameter µ exceeds 0.5 . There is an invariant
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Figure 14: Double chaotic at-
tractor when µ = 0.83 .

Figure 15: Double chaotic at-
tractor when µ = 0.88 .

Figure 16: Invariant disc(full
developed chaos) when µ =
0.999 .

closed curve for more large regions of µ ∈ (0.5, 0.72). When µ increases there are orbits of higher order
and attracting chaotic sets.

(a) (b)

(c) (d)

(e)

Figure 17: Phase portraits for various values of µ when ν = 1.5 .

In Figure 18, we see three typical chaotic attractors of the map (1) associated with the three cases (i)-(iii).

From above analysis one can deduce that Burgers mapping contains very rich nonlinear dynamics when
its parameters are varied. Many forms of complexities are observed such as chaotic bands (including peri-
odic windows, pitchfork bifurcation, flip bifurcation, Neimark-Sacker bifurcation and attractors crisis) and
chaotic attractors.
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(a) (b)

(c)

Figure 18: Phase portraits for various values of ν when µ = 0.78 .

4.1 Sensitive dependence on initial conditions

To demonstrate the sensitivity to the initial conditions of the Burgers mapping, two orbits with initial points
(x0 , y0) and (x0 +0.0001, y0) are computed, respectively,and are represented in Figure 19. At the beginning,
the two time series are overlapped and are undistinguishable; but after a number of iterations, the difference
between them builds up rapidly. Fig. 19 shows a sensitive dependence on initial conditions for x− coordinate
of the two orbits for the model (1), which is plotted against the time with the parameter value µ = 0.73 and
ν = 2. The difference between the two x− coordinates is 0.0001 , while the other coordinate is kept to has
the same value. For this case the two orbits with initial points (−0.04, 0.2) and (−0.0401, 0.2) are computed
respectively and plotted in Figure 19 as a function of time.

Figure 19: Sensitive dependence on initial conditions for map (1),x-coordinates of the two orbits,plotted
against time;the x-coordinates of initial condition differ by 0.0001,and the other coordinate kept equal.

Also, the sensitive dependence on initial conditions, y− coordinates of the two orbits, for the map (1), are
plotted against the time in Figure 20. The y− coordinate of initial conditions differs by 0.0001 ,while the
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Figure 20: Sensitive dependence on initial conditions for map(1),y-coordinates of the two orbits,plotted
against time;the y-coordinates of initial condition differ by 0.0001,and the other coordinate kept equal.

other coordinate is kept at the same value. From Figures 19 and 20 it is shown that the time series of the
map (1) is a sensitive dependence to initial conditions, i.e. complex dynamic behaviors occur in this map.

5 Conclusions

In this paper, we have analyzed the dynamical behaviors for Burgers mapping map in R2 , and found many
complex and interesting dynamical behaviors. Our theoretical analysis have demonstrated that the map (1)
undergoes pitchfork bifurcation, flip bifurcation and Neimark-Sacker bifurcation. We controlled the map
around stable Neimark-Sacker bifurcation by using feedback polynomial controller method. Numerical
simulations carried out to verify our theoretical analysis.
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