Hausdorff Dimension of Level Set Related to Symbolic System

Qiuli Guo 1
Institute of Mathematics, Zhejiang Wanli University, Ningbo, 315100, P. R. China
(Received 12 December 2006, accepted 26 December 2006)

Abstract. This paper proves that the Hausdorff dimension of some level set related to symbolic system is less than 1.

Keywords: fractal; Hausdorff dimension; level set; symbolic system

1 Introduction

Let Σ_2 denote the symbolic system $\prod_{n=0}^{\infty} \{-1,1\}$, that is,
$$\Sigma_2 = \{ x = x_0x_1\cdots x_n \cdots | x_i = -1 \text{ or } 1 \}.$$

Suppose Σ_2 is equipped with a metric d defined by $d(x, y) = 2^{-m}$ with $m = \min\{ i : x_i \neq y_i \}$ for $x \neq y$, where $x = x_0x_1\cdots x_{n-1}\cdots$ and $y = y_0y_1\cdots y_{n-1}\cdots$.

Let σ be the left shift operator on Σ_2 defined by $\sigma(x_0x_1\cdots x_{n-1}\cdots) = x_1\cdots x_{n-1}\cdots$. The cylinder $[x_0x_1\cdots x_{n-1}]$ is the set $\{ y = y_0y_1\cdots y_{n-1}\cdots | y_i = x_i \text{ for } 0 \leq i \leq n-1\}$. There is a measure μ such that
$$\mu([x_0x_1\cdots x_{n-1}]) = 2^{-n}$$
for any cylinder $[x_0x_1\cdots x_{n-1}]$. We use the notation \dim_H to denote the Hausdorff dimension. In fact, we have
$$\dim_H \Sigma_2 = 1 \text{ (see [6]).}$$

Given a real sequence $\{b_n\}_{n=0}^{\infty}$ with $\lim_{n \to \infty} b_n = 0$ and $\sum_{n=0}^{\infty} |b_n| = +\infty$, for any $a \in \mathbb{R}$, let
$$E_a = \{ x \in \Sigma_2 : \sum_{n=0}^{\infty} b_nx_n = a \}.$$

A work of Beyer [1] got an lower estimation $\dim_H E_a \geq 1/2$ for each $a \in \mathbb{R}$ under the variational condition
$$\sum_{n=0}^{\infty} |b_{n+1} - b_n| < \infty.$$

J. WU [5] proved that $\dim_H E_a = \dim_H \Sigma_2 = 1$ also under the variational condition. Furthermore, L. F. XI [7] proved that $\dim_H E_a = 1$ without the variational condition $\sum_{n=0}^{\infty} |b_{n+1} - b_n| < \infty$. Please see [2-4] and [8-11] for related topics.

For any $a \in \mathbb{R}$, we have $E_a \subset \Delta$, where
$$\Delta = \{ x = x_0x_1\cdots \in \Sigma_2 : \sum_{n=0}^{\infty} b_nx_n \text{ converges} \}.$$

1 Corresponding author. Tel.: +86-574-8822 2230; Fax: +86-574-8822 2090. E-mail address: guoqiuli@zwu.edu.cn

Copyright ©World Academic Press, World Academic Union
IJNS.2007.01.15/062
In this paper, we will study the Hausdorff dimension of Δ.

In [7], we have the following result: If $\{b_n\}_{n \geq 0}$ is a real sequence such that $\lim_{n \to \infty} b_n = 0$, then $\dim_H \Delta = 1$, i.e.,

$$\dim_H \{x \in \Sigma_2 : \sum_{n=0}^{\infty} b_n x_n \text{ converges} \} = 1.$$

Note that in this result of [7], we do not need the conditions $\sum_{n=0}^{\infty} |b_n| = +\infty$ and $\sum_{n=0}^{\infty} |b_{n+1} - b_n| < \infty$.

Let $f : \Sigma_2 \to \mathbb{R}$ be defined by $f(x_0 x_1 \cdots x_{n-1} \cdots) = x_0$ for $x_0 x_1 \cdots x_{n-1} \cdots \in \Sigma_2$. Then we have

$$\sum_{n=0}^{\infty} b_n x_n = \sum_{n=0}^{\infty} b_n f(\sigma^n x),$$

and naturally the following claim may be true:

Claim 1. For any real sequence $\{b_n\}_{n \geq 0}$ with $b_n \to 0$ and any continuous function $f : \Sigma_2 \to \mathbb{R}$,

$$\dim_H \{x \in \Sigma_2 : \sum_{n=0}^{\infty} b_n f(\sigma^n x) \text{ converges} \} = 1.$$

However the above claim is not true. In fact, we can prove the following theorem, which shows that the integral of f shall be zero for the validity of the above claim.

Theorem 1. There is a sequence $\{a_n\}_{n \geq 0}$ of positive numbers with $\lim_{n \to \infty} a_n = 0$ and $0 < a_{n+1} \leq a_n$ for all n, such that for any continuous function $f : \Sigma_2 \to \mathbb{R}$ satisfying $\int_{\Sigma_2} f \, d\mu \neq 0$,

$$\dim_H \{x \in \Sigma_2 : \sum_{n=0}^{\infty} a_n f(\sigma^n x) \text{ converges} \} < 1.$$

2 Preliminary

Suppose $f : \Sigma_2 \to \mathbb{R}$ is a continuous function.

Lemma 1. Suppose $f(x)$ only depends on the first q digits $x_1 \cdots x_q$ of $x \in \Sigma_2$ satisfying $\int_{\Sigma_2} f \, d\mu = 0$. If $\delta > 0$, then there is a constant $0 < \tau < 1$ such that for any n,

$$\mu \{x : \sum_{i=0}^{n-1} f(\sigma^i x) \geq n\delta \} \leq O(\tau^n).$$

Proof. Without loss of generality, we may assume that $n \geq \lceil 4q \max_{y \in \Sigma_2} |f(y)|/\delta \rceil$.

Suppose $n = qk + p$, where $p \in \mathbb{N} \cap [0, q-1]$. Then $2qk \geq n \geq \lceil 4q \max_{y \in \Sigma_2} |f(y)|/\delta \rceil$, which implies $k \geq 2 \max_{y \in \Sigma_2} |f(y)|/\delta$. We have

$$\{x : \sum_{i=0}^{n-1} f(\sigma^i x) \geq n\delta \} \subset \{x : \sum_{i=0}^{qk-1} f(\sigma^i x) \geq n\delta - p \max_{y \in \Sigma_2} |f(y)|\} \subset \{x : \sum_{i=0}^{qk-1} f(\sigma^i x) \geq (qk)(\delta/2)\}.$$

Therefore, it suffices to prove that $\mu \{x : \sum_{i=0}^{qk-1} f(\sigma^i x) \geq (qk)(\delta/2)\} \leq O(\tau^{qk})$ for some constant $\tau \in (0, 1)$.

Then for any $0 \leq i \leq q-1$,

$$\{f \circ \sigma^i, f \circ \sigma^{i+q}, \cdots, f \circ \sigma^{i+(k-1)q}\}$$

IJNS email for contribution: editor@nonlinearscience.org.uk
can be considered as an i.i.d. with expectation 0.

Let
\[S_k^{(i)} = f \circ \sigma^i + f \circ \sigma^{i+q} + \cdots + f \circ \sigma^{i+(k-1)q} = \sum_{j=0}^{k-1} f \circ \sigma^{i+jq}. \]

Then it follows from Cramer Theorem of large deviation theory that
\[\mu\{x: \frac{S_k^{(i)}}{k} \geq \delta/2\} = \exp(-\inf_{|x| \geq \delta/2} \Lambda^*(x)k + o(k)) \leq O(a^k), \]
for some \(a \in (0, 1) \), where legendre transformation \(\Lambda^*(x) \) only depends on \(f \).

On the other hand, we have
\[\{x: \sum_{i=0}^{qk-1} f(\sigma^i x) \geq (qk)\delta/2\} \subseteq \bigcup_{i=0}^{q-1} \{x: \frac{S_k^{(i)}}{k} \geq \delta/2\}, \]
therefore,
\[\mu\{x: \sum_{i=0}^{qk-1} f(\sigma^i x) \geq (qk)(\delta/2)\} \leq qO(a^k) \leq O(\tau^{qk}), \]
for constant \(\tau = a^{1/q} \in (0, 1) \). \(\square \)

3 Proof of Theorem 1

Suppose an integer sequence \(b_k \uparrow \infty \) satisfies \(b_{k-1}/b_k \rightarrow 0 \). Let \(d_k \) be a sequence with \(d_k \uparrow \infty \) and \(d_k/b_k \rightarrow 0 \). We define a new sequence \(a_n \) as follows: If \(n \in [b_k, b_{k+1}) \), set \(a_n = (d_k)^{-1} \). Then \(a_n \downarrow 0 \).

Let
\[\tilde{f} = f - \int_{\Sigma_2} f \, d\mu, \]
then we have
\[\int_{\Sigma_2} \tilde{f} \, d\mu = 0. \]

Given \(\varepsilon \in (0, \int_{\Sigma_2} f \, d\mu / 4) \), we approximate \(\tilde{f}(x) \) by some function \(\tilde{f}(x) \) whose value only depends on the first \(q \) digits of \(x \), such that
\[\sup |\tilde{f}(x) - \tilde{f}(x)| \leq \varepsilon \]
and \(\int_{\Sigma_2} \tilde{f} \, d\mu = 0. \)

Fix \(y \in \Sigma_2 \). Suppose \(\sum_{n=0}^{\infty} a_n f(\sigma^n y) \) converges, then there is \(k(y) \in \mathbb{N} \) such that
\[|\sum_{b_k \leq n < b_{k+1}} a_n f(\sigma^n y)| \leq \varepsilon, \]
whenever \(k \geq k(y) \), which implies
\[\begin{align*}
| \sum_{b_k \leq n < b_{k+1}} a_n \tilde{f}(\sigma^n y)| &\geq | \sum_{b_k \leq n < b_{k+1}} a_n f(\sigma^n y)| - | \sum_{b_k \leq n < b_{k+1}} a_n f(\sigma^n y)| \\
&\geq [(d_k)^{-1} (b_{k+1} - b_k)] \int_{\Sigma_2} f \, d\mu | - \varepsilon,
\end{align*} \]
consequently,
\[\begin{align*}
| \sum_{b_k \leq n < b_{k+1}} a_n \tilde{f}(\sigma^n y)| &\geq | \sum_{b_k \leq n < b_{k+1}} a_n \tilde{f}(\sigma^n y)| - \sum_{b_k \leq n < b_{k+1}} a_n [\tilde{f}(\sigma^n y) - \tilde{f}(\sigma^n y)] \\
&\geq [(d_k)^{-1} (b_{k+1} - b_k)] \left(\int_{\Sigma_2} f \, d\mu | - \varepsilon \right) - \varepsilon,
\end{align*} \]

IINS homepage: http://www.nonlinearscience.org.uk/
and thus, we have

\[| \sum_{b_k \leq n < b_{k+1}} \tilde{f}(\sigma^n y) | \geq (b_{k+1} - b_k) \left(| \int_{\Sigma_2} f d\mu | - \varepsilon (1 + \frac{d_k}{b_{k+1} - b_k}) \right), \]

where \(\frac{d_k}{b_{k+1} - b_k} < 1 \) for any \(k \geq k_1 \) where integer \(k_1 \) is a constant. Let \(m_k = b_{k+1} - b_k \) with \(m_k \to \infty \) as \(k \to \infty \), \(\delta = | \int_{\Sigma_2} f d\mu | / 2 \), and \(z = \sigma^{b_k} y \). Then for any \(k \geq \max(k(y), k_1) \), we have

\[| \sum_{i=0}^{m_k-1} \tilde{f}(\sigma^i z) | \geq m_k \delta, \]

which implies

\[\{ y : \sum_{n=0}^{\infty} a_n f(\sigma^n y) \text{ converges} \} \subseteq \bigcup_{n} \bigcap_{k \geq n} \sigma^{-b_k} \{ z : | \sum_{i=0}^{m_k-1} \tilde{f}(\sigma^i z) | \geq m_k \delta \}. \]

It suffices to show that there is a constant \(s \in (0, 1) \) such that for any \(k \),

\[\dim_{H} \left(\bigcap_{k \geq n} \sigma^{-b_k} \{ z : | \sum_{i=0}^{m_k-1} \tilde{f}(\sigma^i z) | \geq m_k \delta \} \right) \leq s. \]

Let \(A_k \) be the set of all the words \(x_1 \cdots x_{m_k+q-1} \in \{-1, 1\}^{m_k+q-1} \) such that \(| \sum_{i=0}^{m_k-1} \tilde{f}(\sigma^i z) | \geq m_k \delta \) whenever \(z \) lies in the cylinder \([x_1 \cdots x_{m_k+q-1}] \).

Then by Lemma 1, we have

\[\sharp A_k = 2^{m_k+q-1} \cdot \mu \{ z : | \sum_{i=0}^{m_k-1} \tilde{f}(\sigma^i z) | \geq m_k \delta \} \leq O((2\tau)^{m_k}). \]

Consider the set \(\bigcap_{k \geq n} \sigma^{-b_k} \{ z : | \sum_{i=0}^{m_k-1} \tilde{f}(\sigma^i z) | \geq m_k \delta \} \), for any \(k \geq n \), we give a natural covering

\[\bigcup_{(x_1 \cdots x_k) \in \{-1, 1\}^k, (y_1 \cdots y_{m_k+q-1}) \in A_k} [x_1 \cdots x_k y_1 \cdots y_{m_k+q-1}]. \]

Thus for any \(s \in (\log(2\tau) / \log 2, 1) \),

\[(2^{b_k} \sharp A_k) [2^{-\sigma^{-b_k+1+q-1}}] \leq O((2\tau)^{m_k} 2^{b_k - \sigma(b_k+1+q-1)}) \leq O(1), \]

since \(b_k/b_{k+1} \to 0 \) and \(m_k/b_{k+1} \to 1 \).

Therefore,

\[H^s \left(\bigcap_{k \geq n} \sigma^{-b_k} \{ z : | \sum_{i=0}^{m_k-1} \tilde{f}(\sigma^i z) | \geq m_k \delta \} \right) \leq O(1), \]

which implies

\[\dim_{H} \left[\bigcap_{k \geq n} \sigma^{-b_k} \{ z : | \sum_{i=0}^{m_k-1} \tilde{f}(\sigma^i z) | \geq m_k \delta \} \right] \leq \log 2\tau / \log 2. \]

Consequently, we have

\[\dim_{H} \{ y \in \Sigma_2 : \sum_{n=0}^{\infty} a_n f(\sigma^n y) \text{ converges} \} \]

\[\leq \dim_{H} \bigcup_{n} \bigcap_{k \geq n} \sigma^{-b_k} \{ z : | \sum_{i=0}^{m_k-1} \tilde{f}(\sigma^i z) | \geq m_k \delta \} \]

\[\leq \sup_{n} \dim_{H} \left[\bigcap_{k \geq n} \sigma^{-b_k} \{ z : | \sum_{i=0}^{m_k-1} \tilde{f}(\sigma^i z) | \geq m_k \delta \} \right] \]

\[\leq \log 2\tau / \log 2 < 1. \]
Acknowledgements

This research is supported by National Natural Science Foundation of China (Grant No. 10571063).

References

