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Abstract: This paper demonstrates the use of Lyapunov direct method in synchronizing two
identical Lorenz-Stenflo (LS) systems, two identical Qi systems and two non-identical systems
comprising the LS and Qi chaotic systems.The designed controllers enable the state variables
of the slave system to globally synchronize with the state variables of the master system in both
the identical and non-identical systems.The results are validated using numerical simulations.
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1 Introduction

It has been shown that the synchronization of chaotic systems has potential applications in physical systems
[1-3], chemical reactor, ecological systems [4, 5], biomedical systems, secure communications [6-8] to
mention but a few.

Resulting from the seminal work of Pecora and Caroll [9] on the synchronization of chaotic systems
and the potential application thereof is a new body of research activities which is at the fore front of recent
application topics in Nonlinear Dynamics [1,10-12]. Progress in these research activities has given birth to
various methods of synchronization. Notable among these methods are linear feedback [2, 3, 13-16], adap-
tive synchronization [17-18], backstepping nonlinear control [19-24], sliding mode control [25], and active
control [26-35]. The Lyapunov direct method has been used for stabilization of systems [36,37] and in the
construction of some of the methods of synchronization [19-24], however it has not been applied directly for
synchronization. In this paper we apply the Lyapunov method directly to achieve synchronization between
identical and non-identical chaotic systems.

The problem of chaos synchronization is related to the observer problem in control theory. In general
the designed controller makes the trajectories of the state variables of the response system to track the trajec-
tories of the drive system. The two cases of 4-D chaotic systems to be synchronized are the Lorenz-Stenflo
(LS) system [38] and a new 4-D chaotic system referred to as the Qi system [39]. These systems have been
synchronized in very recent papers [34, 35] via active control. In addition chaos control in these systems
has been examined based on recursive backstepping approach [24]. Also reduced-order synchronization of
LS system (4-D) with Lorenz system (3-D) has been carried out using adaptive control [40].

However, considering the calculations involved in the active control and backstepping methods we pro-
pose the synchronization of these systems via Lyapunov direct method. This method is shorter and easier to
manipulate than the methods of active control and backstepping.

In this paper Lyapunov direct method is applied to synchronize two identical LS systems, two identical
Qi systems and two non-identical chaotic systems comprising the LS and Qi systems. The rest of the
paper is organized as follows. Section 2 studies the synchronization behaviour of two identical LS systems,
section 3 deals with the synchronization behaviour of two identical Qi systems, section 4 considers the
synchronization between the LS and Qi systems and section 5 concludes the paper.
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2 Synchronization of two identical Lorenz-Stenflo systems

2.1 The Lorenz-Stenflo system

The Lorenz-Stenflo (LS) system was formulated by Stenflo [38] from a low-frequency short-wavelength
gravity wave equation. It comprises the following system of first order differential equations.

ẋ = α (y − x) + γw

ẏ = x (r − z)− y

ż = xy − βz

ẇ = −x− αw (1)

where the dots denote derivatives with respect to time, the parameters r,α,γ,β (all positive) are respectively
the Rayleigh number, Prandtl number, rotational number, and geometric parameter. The LS system (1) is
similar to the famous Lorenz equation, but differs from it by the introduction of the new control parameter
γ, and a new state variable w describing the flow rotation. Thus system (1) reduces to the Lorenz system if
γ and w are set to zero. With r =26.0, α=2.0, γ=1.5 and β=0.7, the LS system exhibits the chaotic attractor
shown in Fig.1. The attractor is different from those obtained in [34,38] with α = 1.

2.2 Formulation

We consider an LS system given by
ẋ1 = α (y1 − x1) + γw1

ẏ1 = x1 (r − z1)− y1

ż1 = x1y1 − βz1 (2)

ẇ1 = −x1 − αw1

which drives a similar LS system given as

ẋ2 = α (y2 − x2) + γw2 + u1 (t)

ẏ2 = x2 (r − z2)− y2 + u2 (t)

ż2 = x2y2 − βz2 + u3 (t)

ẇ2 = −x2 − αw+u4 (t) (3)

where u (t) = [u1 (t) , u2 (t) , u3 (t) , u4]
T is the control function which will be determined such that system

(3) can synchronize with system (2). Now, let the error states between the state variables of systems (3) and
(2) be

ex = x2 − x1, ey = y2 − y1, ez = z2 − z1, ew = w2 − w1 (4)

⇒ x2 = x1 + ex, y2 = y1 + ey, z2 = z1 + ez, w2 = w1 + ew (5)

Subtracting (2) from (3) and replacing i2 − i1 with ei and i2 with i1 + ei, i = x, y, z, w we obtain the
error dynamics between (3) and (2) as

ėx = α (ey − ex) + γew + u1 (t)

ėy = ex (r − z1)− ey − ez (ex + x1) + u2 (t)

ėz = ex (ey + y1) + eyx1 − βez + u3 (t) (6)

ėw = −ex − αew + u4 (t)

By the Lyapunov direct method we consider a Lyapunov function

V (ex, ey, ez, ew) =
1
2

∑

i

kie
2
i (7)
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[where ki(> 0), i = x, y, z, w, are constant coefficients], differentiate it with respect to t and choose the
controller u (t) such that V̇ (ex, ey, ez, ew) is negative definite in order to stabilize the error dynamics (6) and
hence to achieve synchronization between the two systems under the chosen controller. The time derivative
of (7) is

V̇ (ex, ey, ez, ew) = kxexėx + kyey ėy + kzez ėz + kwewėw (8)

Substituting the ėi, i = x, y, z, w, in (8) with the corresponding expressions in (6) and choosing u (t) to
be

u1 (t) = −ex − α (ey − ex)− γew

u2 (t) = ez (ex + x1) + ex (z1 − r)

u3 (t) = −ez (1− β)− ex (ey + y1)− eyx1 (9)

u4 (t) = ex − ew (1− α)

equation (8) becomes
V̇ (ex, ey, ez, ew) = −kxe2

x − kye
2
y − kze

2
z − kwe2

w (10)

which is negative definite thereby guaranteeing stability of the error dynamics (6) at the origin and hence
the synchronization of systems (2) and (3) by the controller defined in (9).

2.3 Numerical results

Using the fourth order Runge-Kutta algorithm with initial conditions (x1, y1, z1, w1) =(0.01,0.02,0.03,0.04),
(x2, y2, z2, w2) =(0.05,0.06,0.07,0.08), a time step of 0.005 and fixing the parameters values of r, α, γ, β
as in Fig.1, to ensure chaotic motion we solved the systems (2) and (3) with the controller u (t) as defined
in (9). The results obtained show that the error states oscillate chaotically with time when the controller is
turned off (Fig.2) and when the controller is switched on at t =100 the error states converge exponentially
to zero (Fig.3). We thus see that the master-slave system is synchronized by the designed controller. This
is also confirmed by the convergence of the synchronization quality defined by the error propagation on the
error states as

e =
√

e2
x + e2

y + e2
z + e2

w (11)

Figure 1: 2-Dimensional
(x-w) view of the Lorenz-
Stenflo attractor for
parameter values α=2.0,
β=0.7, γ=1.5 and r=26.0.

Figure 2: Time se-
ries of the error states
(ex, ey, ez, ew) and the
error propagation e of
the coupled Lorenz-
Stenflo systems when the
controller is deactivated.

Figure 3: Time se-
ries of the error states
(ex, ey, ez, ew) and the
error propagation e of the
coupled Lorenz-Stenflo
systems when the con-
troller is activated at
t=100.
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3 Synchronization of two identical Qi systems

3.1 The Qi system

The Qi system [39] comprises the following 4-D autonomous system of equations with three cross products.

ẋ = a (y − x) + yzw

ẏ = b (x + y)− xzw

ż = −cz + xyw

ẇ = −dw + xyz (12)

where x, y, z and w are the state variables of the system and a, b, c and d are all positive real constant
parameters. System (12) has been found to exhibit complex dynamics leading to chaos [39]. For instance in
Fig.4, we show a chaotic attractor in the x− w plane for a =30, b =10, c =1 and d =10.

3.2 Formulation

Again, as in section 2, we choose a master Qi system given by

ẋ1 = a (y1 − x1) + y1z1w1

ẏ1 = b (x1 + y1)− x1z1w1

ż1 = −cz1 + x1y1w1 (13)

ẇ1 = −dw1 + x1y1z1

which drives a slave Qi system given by

ẋ2 = a (y2 − x2) + y2z2w2 + u1 (t)

ẏ2 = b (x2 + y2)− x2z2w2 + u2 (t)

ż2 = −cz2 + x2y2w2 + u3 (t)

ẇ2 = −dw2 + x2y2z2 + u4 (t) (14)

where u (t) = [u1 (t) , u2 (t) , u3 (t) , u4 (t)]T is the control function to be determined. Subtracting (13) from
(14) and using (4) and (5) we obtain the following system of error dynamics.

ėx = a (ey − ex) + (ew + w1) (eyez + eyz1 + ezy1)− ewy1z1 + u1 (t)

ėy = b (ex + ey)− (ew + w1) (exez + ezx1 + exz1)− ewx1z1 + u2 (t)

ėz = −cez + (ew + w1) (exey + exy1 + eyx1) + ewx1y1 + u3 (t)

ėw = −dew + (ez + z1) (exey + exy1 + eyx1) + ezx1y1 + u4 (t) (15)

Again we apply the Lyapunov direct method outlined in subsection 2.2 by substituting (15) in (8) and
choosing the controller u (t) = [u1 (t) , u2 (t) , u3 (t) , u4 (t)]T as

u1 (t) = −ex − a (ey − ex)− (ew + w1) (eyez + eyz1 + ezy1)− ewy1z1

u2 (t) = −ey − b (ex + ey) + (ew + w1) (exez + exz1 + ezx1) + ewx1z1

u3 (t) = ez (c− 1)− (ew + w1) (exey + exy1 + eyx1)− ewx1y1 (16)

u4 (t) = ew (d− 1)− (ez + z1) (exey + exy1 + eyx1)− ezx1y1

so as to make V̇ (ex, ey, ez, ew) in (8) negative definite as in (10). This guarantees the stability of the error
dynamics (15) at the origin and hence the synchronization of systems (13) and (14).
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3.3 Numerical results

Using the fourth order Runge-Kutta algorithm with initial conditions (x1, y1, z1, w1) =(0.01,0.02,0.03,0.04),
(x2, y2, z2, w2) =(0.05,0.06,0.07,0.08), a time step of 0.0005 and fixing the parameter values of a, b, cdas
in Fig.4, to ensure chaotic motion we solved the systems (13) and (14) with the controller u (t) as defined
in (16). The results obtained show that the error states oscillate chaotically with time when the controller is
switched off (Fig.5) and when the control is switched on at t =12 the error states converge to zero (Fig.6).
We thus see that the two systems are synchronized by the designed controller. This is also confirmed by the
convergence of the synchronization quality defined in (11).

Figure 4: 2-Dimensional
(x-w) view of the Qi at-
tractor for parameter val-
ues a=30, b=10, c=1 and
d=10.

Figure 5: Time se-
ries of the error states
(ex, ey, ez, ew) and the
error propagation e of the
coupled Qi systems when
the controller is deactivate.

Figure 6: Time se-
ries of the error states
(ex, ey, ez, ew) and the
error propagation e of the
coupled Qi systems when
the controller is activated
at t=12.

4 Synchronization between LS and Qi systems

4.1 Formulation

Here we choose the LS system (2) as the drive system and the Qi system (14) as the response system. This
implies that when the two systems are synchronized the Qi system will track the LS system. To achieve this
we proceed as in subsections 2.2 and 3.2, that is, we subtract (2) from (14) and apply (4) and (5) to obtain
the following error dynamics.

ėx = a (ey − ex)− (a− α) (x1 − y1)− γw1 + (ew + w1) (eyez + eyz1 + ezy1 + y1z1) + u1 (t)
ėy = b (ex + ey + y1)− (r − b− z1) x1 − (ew + w1) (exez + exz1 + ezx1 + x1z1) + u2 (t)
ėz = βz1 − c (ez + z1) + (ew + w1) (exey + exy1 + eyx1 + x1y1) + u3 (t)
ėw = αw1 − d (ew + w1) + (ez + z1) (exey + exy1 + eyx1 + x1y1) + u4 (t) (17)

As before we apply the Lyapunov direct method outlined in subsection 2.2 by substituting (17) in (8)
and choosing the controller u (t) = [u1 (t) , u2 (t) , u3 (t) , u4 (t)]T as

u1 = (a− 1) ex − aey + (a− α) (x1 − y1) + γw1 − (ew + w1) (eyez + eyz1 + ezy1 + y1z1)

u2 = (r − b− z1) x1 − (b + 1) (ey + y1)− bex + (ew + w1) (exez + exz1 + ezx1 + x1z1)

u3 = (c− 1) ez + (c− β) z1 − (ew + w1) (exey + exy1 + eyx1 + x1y1)

u4 = (d− 1) ew + (d− α) w1 − (ez + z1) (exey + exy1 + eyx1 + x1y1) (18)

If (17), with u (t) as defined in (18), is substituted in (8) the time derivative of the Lyapunov function,
V̇ (ex, ey, ez, ew), is negative definite as in (10) which implies stability of the error dynamics (17) at the
origin and hence the synchronization of the LS and the Qi systems by the controller (18).
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4.2 Numerical results

Using the fourth order Runge-Kutta algorithm with initial conditions (x1, y1, z1, w1) =(0.01,0.02,0.03,0.04),
(x2, y2, z2, w2) =(0.05,0.06,0.07,0.08), a time step of 0.0001 and fixing the parameter values of r, α, γ, β
as in Fig.1 and a, b, cdas in Fig.4, to ensure chaotic motion we solved the systems (2) and (14) with the con-
troller u (t) as defined in (18). The results obtained show that the error states oscillate chaotically with time
when the controller is switched off (Fig.7) and when the control is switched on at t =6 the error states con-
verge to zero (Fig.8). We thus see that the LS and Qi systems are synchronized by the designed controller.
This, again, is confirmed by the convergence of the synchronization quality defined in (11)

Figure 7: Time series of the error states
(ex, ey, ez, ew) and the error propagation e
of the coupled LS and Qi systems when the
controller is deactivate.

Figure 8: Time series of the error states
(ex, ey, ez, ew) and the error propagation e
of the coupled LS and Qi systems when the
controller is activated at t=6.

5 Conclusion

This paper has examined the use of Lyapunov direct method in the synchronization of 4-D chaotic systems,
consisting of two identical Lorenz-Stenflo (LS) systems, two identical Qi systems and two non-identical
systems comprising the LS and Qi systems. The designed controllers were capable of making the time
derivative of the Lyapunov function negative definite in each case. This guarantees stability of the error
dynamics at the origin and hence synchronization of the identical and non-identical systems. Numerical
simulations were also carried out to illustrate the effectiveness of the approach. The Lyapunov direct method
of designing chaotic controllers is shorter and easier to carry out than other methods in the same category,
and the designed controllers are effective in chaos synchronization.
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