(2,1)-Total Labelling of Cactus Graphs

Nasreen Khan¹, Madhumangal Pal² and Anita Pal³

¹,² Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore-721102, INDIA.
³ Department of Mathematics, National Institute of Technology Durgapur, Durgapur-713209, INDIA

(Received August 9, 2010, accepted October 8, 2010)

Abstract. A (2,1)-total labelling of a graph $G = (V, E)$ is an assignment of integers to each vertex and edge such that: (i) any two adjacent vertices of G receive distinct integers, (ii) any two adjacent edges of G receive distinct integers, and (iii) a vertex and its incident edge receive integers that differ by at least 2. The span of a (2,1)-total labelling is the maximum difference between two labels. The minimum span of a (2,1)-total labelling of G is called the (2,1)-total number and denoted by $\lambda_t(G)$.

A cactus graph is a connected graph in which every block is either an edge or a cycle. In this paper, we label the vertices and edges of a cactus graph by (2,1)-total labelling and have shown that, for a cactus graph, where $2 \leq \Delta \leq \Delta + 2$ for a cactus graph, where Δ is the degree of the graph G.

Keywords: Graph labelling; (2,1)-total labelling; cactus graph

1. Introduction

Motivated by frequency channel assignment problem Griggs and Yeh [5] introduced the $L(2,1)$-labelling of graphs. The notation was subsequently generalized to the $L(p,q)$-labelling problem of graphs. Let p and q be two non-negative integers. An $L(p,q)$-labelling of a graph G is a function c from its vertex set $V(G)$ to the set $\{0,1,\ldots,k\}$ such that $|c(x) - c(y)| \geq p$ if x and y are adjacent and $|c(x) - c(y)| \geq q$ if x and y are at distance 2. The $L(p,q)$-labelling number $\lambda_{p,q}(G)$ of G is the smallest k such that G has an $L(p,q)$-labelling c with $\max\{c(v) \mid v \in V(G)\} = k$.

The $L(p,q)$-labelling of graphs has been studied rather extensively in recent years [2, 8, 12, 16, 17, 18]. Whittlesey at el. [19] investigated the $L(2,1)$-labelling of incidence graphs. The incidence graph of a graph G is the graph obtained from G by replacing each edge by a path of length 2. The $L(2,1)$-labelling of the incident graph G is equivalent to each element of $V(G) \cup E(G)$ such that:

(i) any two adjacent vertices of G receive distinct integers,
(ii) any two adjacent edges of G receive distinct integers, and
(iii) a vertex and an edge incident receive integers that differ by at least 2.

This labelling is called $(2,1)$-total labelling of graphs which introduced by Havet and Yu [6] and generalized to the $(d,1)$-total labelling, where $d \geq 1$ be an integer. A k-$(d,1)$-total labelling of a graph G is a function c from $V(G) \cup E(G)$ to the set $\{0,1,\ldots,k\}$ such that $c(u) \neq c(v)$ if u and v are adjacent and $|c(u) - c(e)| \geq d$ if a vertex u is incident to an edge e. The $(d,1)$-total number, denoted by $\lambda_{d}(G)$, is the least integer k such that G has a k-$(d,1)$-total labelling. When $d = 1$, the $(1,1)$-total labelling is well known as total colouring of graphs.
Let $\Delta(G)$ (or simply Δ) denote the maximum degree of a graph G.

Havet and Yu [6] proposed the following conjecture.

Conjecture 1 $\lambda_d^t(G) \leq \min\{\Delta + 2d - 1, 2\Delta + d - 1\}$.

2. Some general bounds of $(d,1)$-total labelling

It is shown in [6] that for any graph G,

(i) $\lambda_d^t(G) \leq 2\Delta + d - 1$;

(ii) $\lambda_d^t(G) \leq 2\Delta - 2\log(\Delta + 2) + 2\log(16d - 8) + d - 1$; and

(iii) $\lambda_d^t(G) \leq 2\Delta - 1$ if $\Delta \geq 5$ is odd.

Again in [6] it was shown that

(i) $\lambda_d^t(G) \geq \Delta + d - 1$;

(ii) $\lambda_d^t(G) \geq \Delta + d$ if G is Δ-regular;

(iii) $\lambda_d^t(G) \geq \Delta + d$ if $d \geq \Delta$; and

(iv) $\lambda_d^t(G) \leq \chi(G) + \chi'(G) + d - 2$, where $\chi(G)$ and $\chi'(G)$ are known as chromatic number and chromatic index of G respectively.

Let $\text{Mad}(G)$ is the maximum average degree of G, $\text{Mad}(G) = \max\{|E(H)|/|V(G)|, H \subseteq G\}$.

Montassier and Raspaud [15] proved that if G be a connected graph with maximum degree Δ, $d \geq 2$, then $\lambda_d^t(G) \geq \Delta - 2d - 2$ in the following cases:

(i) $\Delta \geq 2d + 1$ and $\text{Mad}(G) \leq \frac{5}{2}$;

(ii) $\Delta \geq 2d + 2$ and $\text{Mad}(G) \leq 3$;

(iii) $\Delta \geq 2d + 3$ and $\text{Mad}(G) \leq \frac{10}{3}$.

For a complete graph K_n, the result for $(d,1)$-total labelling is given in [6]. If n is odd then $\lambda_d^t(K_n) = \min\{n + 2d - 2, 2n + d - 2\}$; if n is even then $\lambda_d^t(K_n) = \min\{n + 2d - 2, 2n + d - 2\}$, $n \leq d + 5$, $\lambda_d^t(K_n) = n + 2d - 1$, $n > 6d^2 - 10d + 4$ and $\lambda_d^t(K_n) \in \{n + 2d - 2, 2n + d - 1\}$ otherwise. Then they focused in $(2,1)$-total labelling and shown that if $\Delta \geq 2$, then $\lambda_d^t(K_n) \leq 2\Delta + 2$ and therefore the $(d,1)$-total labelling conjecture is true when $p = 2$ and $\Delta = 3$. In fact, the bound for this special case is tight as $\lambda_d^t(K_3) = 7$ [6].

In [13], Molloy and Reed proved that the total chromatic number of any graph with maximum degree Δ is at most Δ plus an absolute constant. Moreover, in [14], they gave a similar proof of this result for sparse graphs.

In [7], it was shown that for any tree T, $\Delta + 1 \leq \lambda_d^t(T) \leq \Delta + 2$, where Δ is the maximum degree among all the vertices of the tree.

The $(d,1)$-total labelling for a few special graphs have been studied in literature, e.g., complete graphs [6], complete bipartite graphs [11], planar graphs [1], outer planar graphs [3], products of graphs [4], graphs with a given maximum average degree [15], etc. A more generalization of total colouring of graphs so called $[r,s,t]$-colouring, was defined and investigated in [9].

It is shown in [10] that for any cactus graphs, $\Delta + 1 \leq \lambda_{2,1} \leq \Delta + 3$. Now in this paper, we label the vertices and edges of a cactus graphs G by $(2,1)$-total labelling and it is shown that $\Delta + 1 \leq \lambda_d^t \leq \Delta + 2$.

JIC email for contribution: editor@jic.org.uk
Lemma 1 [6] If H is a subgraph of G, then $\lambda_2^1(H) \leq \lambda_2^1(G)$.

3. The (2,1)-total labelling of induce sub-graphs of cactus graphs

Let $G = (V, E)$ be a given graph and U is a subset of V. The induced subgraph by U, denoted by $G[U]$, is the graph given by $G[U] = (U, E')$, where $E' = \{(u, v) : u, v \in U \text{ and } (u, v) \in E\}$.

![Figure 1: Some induce subgraphs of cactus graph.](image)

The star graph $K_{1,\Delta}$ is a subgraph of $K_{n,m}$. For any star graph $K_{1,\Delta}$ one can verify the following result.

Lemma 2 For any star graph $K_{1,\Delta}$, $\lambda_2^1(K_{1,\Delta}) = \Delta + 2$.

3.1. (2,1)-total labelling of cycles

3.1.1 (2,1)-total labelling of one cycle

Lemma 3 For any cycle C_n of length n, $\lambda_2^1(C_n) = 4 = \Delta + 2$.

Proof. Let $v_0, v_1, \ldots, v_{n-1}$ be the vertices of the cycle C_n. We classify C_n into two groups, viz., C_{2k}, C_{2k+1}. Then the (2,1)-total labelling of vertices and edges of the cycle are as follows.

Case 1. Let $n = 2k$ (see Figure 2(a)).

$$c(v_0) = 0, \quad c(v_{2i+1}) = 1, \quad c(v_{2i}, v_{2i+1}) = 3, \quad \text{for} \quad i = 0, 1, 2, \ldots, k-1; \quad c(v_{2i+1}, v_{2i+2}) = 4, \quad \text{for} \quad i = 0, 1, 2, \ldots, k-2 \text{ and } c(v_{2k-1}, v_0) = 4.$$

![Figure 2: Illustration of Lemma 3](image)

Case 2. Let $n = 3$ (see Figure 2(b)).

$$c(v_0) = 0, \quad c(v_1) = 2, \quad c(v_2) = 4, \quad c(v_0, v_1) = 4, \quad c(v_1, v_2) = 0 \text{ and } c(v_2, v_0) = 2.$$

Case 3. Let $n = 2k + 1$ (see Figure 2(c)).

We label the vertices as $c(v_{2i}) = 0$, for $i = 0, 1, 2, \ldots, k-1$; $c(v_{2i+1}) = 1$, for $i = 0, 1, 2, \ldots, k-2$; $c(v_{2k+1}) = 2$ and $c(v_{2k}) = 4$. And we label the edges as

$$c(v_{2i-1}, v_2i) = 3, \quad c(v_{2i}, v_{2i+1}) = 4, \quad \text{for} \quad i = 0, 1, 2, \ldots, k-1; \quad c(v_{2k-1}, v_{2k}) = 0 \text{ and } c(v_{2k}, v_0) = 2.$$

From all above cases, we conclude that, $\lambda_2^1(C_n) = 4 = \Delta + 2$. □
3.1.2 (2,1)-total labelling of two cycles

Lemma 4 If a graph $G = (C_n \cup C_m)$ contains two cycles having a common cutvertex with degree 4, then,

$$\lambda'_2(G) = \begin{cases}
6, & \text{when length of each cycle is even;} \\
5, & \text{otherwise.}
\end{cases}$$

Proof. Let G contains two cycles C_n and C_m of lengths n and m respectively. Again let v_0 be the cutvertex and $v_0, v_1, \ldots, v_{n-1}$ and $v_0', v_1', \ldots, v_{m-1}'$ be the vertices of C_n and C_m respectively. Now we label the vertices and edges of the graph as follows.

Case 1. For $n = 3, m = 3$ (shown in Figure 3(a)).

At first we label the cutvertex v_0 by 0. Then we label the vertices and edges of first C_3 (i.e., C_n) as same as given in case 2 of previous lemma. And then we label other vertices and edges as $c(v_i') = 1$, $c(v_1') = 2$, $c(v_0, v_1) = 3$, $c(v_1', v_2') = 4$ and $c(v_2', v_0) = 5$.

Case 2. For $n = 3, m = 2k + i$, $i = 0, 1$.

We label the edges and vertices of C_3 as same as in the above case. Then we label the second cycle as follows.

When m is even, i.e., $m = 2k$ (shown in Figure 3(b)), then

$$c(v_{2i}') = 0, \quad c(v_{2i+1}') = 1, \quad c(v_{2i}', v_{2i+1}') = 3, \quad \text{for } i = 0, 1, 2, \ldots, k - 1; \quad c(v_{2i+1}', v_{2i+2}') = 4, \quad \text{for } i = 0, 1, 2, \ldots, k - 2; \quad c(v_{2k}', v_0') = 3 \quad \text{and} \quad c(v_0, v_1') = 5.$$

When m is odd, i.e., $m = 2k + 1$ (shown in Figure 3(c)), then

we label the vertices $v_i', i = 1, 2, \ldots, 2k - 1$ and the edges (v_i', v_{i+1}'), $i = 1, 2, \ldots, 2k - 2$, (v_0, v_1'), (v_0, v_{2k}') as same as in the above except the label of the vertex v_{2k}' and the edge (v_{2k-1}', v_{2k}'). We label that vertex and that edge as $c(v_{2k}') = 2$ and $c(v_{2k-1}', v_{2k}') = 4$.

Case 3. For $n = 2k + i, m = 2k + i$, $i = 0, 1$.

When $n = 2k$ (even), $m = 2k$ (even) (shown in Figure 3(d)), then we label the vertices and edges of C_n as same as in case 1 of Lemma 3. Now we label all the vertices of the cycle C_n as the labelling of the vertices of the cycle C_n. Now we label the edges of C_m as follows.

\[\text{JIC email for contribution: editor@jic.org.uk} \]
\[c(v_0, v'_1) = 5, \quad c(v'_{2k-1}, v_0) = 6 \quad \text{and} \quad c(v'_i, v'_{i+1}) = 3, \quad \text{for} \quad i = 0, 1, 2, \ldots, k-1, \]
\[c(v''_{2i}, v''_{2i+1}) = 4, \quad \text{for} \quad i = 0, 1, 2, \ldots, k-2. \]

When \(n = 2k + 1 \) (odd), \(m = 2k \) (even) (shown in Figure 3(e)), then we label the vertices and edges of \(C_n \) as same as in case 3 of previous lemma. Then we label another cycle as same as in the above subcase except the label of the edges \((v_0, v'_1) \) and \((v'_{2k-1}, v_0) \) and we label those edges as
\[c(v_0, v'_1) = 3 \quad \text{and} \quad c(v'_{2k-1}, v_0) = 5. \]

When \(n = 2k + 1 \) (odd), \(m = 2k + 1 \) (odd) (Figure 3(f)), then the labelling procedure of the \(C_n \) as same as given in case 3 of Lemma 3. And then we label the cycle \(C_m \) as same as given in case 2 (for \(n = 3, m = 2k + 1 \)).

Here the degree of the cutvertex \(v_0 \) is 4. Then from all the above cases, it follows that
\[
\lambda_2^*(G) = \begin{cases}
6, & \text{both cycles are of even length}; \\
5, & \text{otherwise}.
\end{cases}
\]

3.1.3 (2,1)-total labelling of three cycles

Lemma 5 Let \(G \) be a graph contains three cycles and they have a common cutvertex \(v_0 \) with degree \(\Delta = 6 \), then
\[
\lambda_2^*(G) = \begin{cases}
\Delta + 2, & \text{when three cycles are of even lengths}; \\
\Delta + 1, & \text{otherwise}.
\end{cases}
\]

Proof. Let \(C_n, C_m \) and \(C_l \) be three cycles and \(v_0, v_1, \ldots, v_{n-1}; v_0, v'_1, \ldots, v'_{m-1}; v_0, v''_1, \ldots, v''_{l-1} \) be the vertices of them. They joined with a common cutvertex \(v_0 \) with degree \(\Delta (= 6) \). The labelling procedure of two cycles are given in previous lemma. Now according to the previous lemma we have to label the vertices and edges of the remaining cycle \(C_l \). When we label \(C_l \), there are three cases arise, viz., \(l = 3, l = 2k \) (even) and \(l = 2k + 1 \) (odd). Here the label of the cutvertex is 0. Then we label the third cycle as follows.

![Figure 4: Illustration of some cases of Lemma 5](image)

![Figure 3: (continuation)](image)
Case 1. When \(l = 3 \), then we relabel \((v_0, v'_0), (v''_1, v'_1), (v''_2, v'_2)\) and \((v''_3, v'_3)\) by 6, 1, 4, 2 and 7 respectively.

Case 2. When \(l = 2k \) (even), then we label the vertices of \(C_{2k} \) as
\[
\begin{align*}
c(v''_{2i}) &= 0, \quad \text{for } i = 1, 2, \ldots, k - 1; \\
c(v''_{2i+1}) &= 1, \quad \text{for } i = 0, 1, \ldots, k - 2; \\
\text{and } c(v''_{2k}) &= 2.
\end{align*}
\]
And the edges as
\[
\begin{align*}
c(v''_{2i}, v''_{2i+1}) &= 3, \quad \text{for } i = 1, 2, \ldots, k - 1; \\
c(v''_{2i+1}v''_{2i+2}) &= 4, \quad \text{for } i = 0, 1, \ldots, k - 2; \\
c(v'_0, v'_1) &= 6 \text{ and } c(v''_{2k-1}, v_0) = 7.
\end{align*}
\]
If the cycle \(C_j \) attach with two cycles of even lengths then the label of two edges incident on \(v_0 \) of \(C_j \) are different. And the labels are
\[
c(v_0, v'_0) = 7 \text{ and } c(v''_{2k-1}, v_0) = 8 \text{ respectively.}
\]
Case 3. When \(l = 2k + 1 \) (odd), then the labels of the vertices and edges of \(C_l \) are same as the labelling of the cycle \(C_m \) given in case 2 (for \(n = 3 \) and \(m = 2k + 1 \)) of lemma 4 except the labels of two edges \((v_0, v'_1)\) and \((v''_{2k-1}, v_0)\). And we relabel these two edges as
\[
c(v'_0, v'_1) = 6 \text{ and } c(v''_{2k-1}, v_0) = 7 \text{ respectively.}
\]
Here we see that the values of \(\lambda^2_c \) are 7 and 8.

Therefore we conclude that,
\[
\lambda^2_c(G) = \begin{cases}
\Delta + 2, & \text{when three cycles are of even lengths;} \\
\Delta + 1, & \text{otherwise.}
\end{cases}
\]

3.1.4 \((2,1)\)-total labelling of finite number of cycles

We can extend the lemmas 4 and Lemma 5 for the finite number of cycles when they are joined at a common cutvertex.

Lemma 6 If a graph \(G \) contains finite number of cycles of finite lengths and if they are joined with a common cutvertex with degree \(\Delta \), then,
\[
\lambda^2_c(G) = \begin{cases}
\Delta + 2, & \text{when all cycles are of even lengths;} \\
\Delta + 1, & \text{otherwise.}
\end{cases}
\]

Proof. Let us consider a graph \(G \) contains \(n \) number of cycles of length 3 (triangles). The \(n \) triangles joined with a common cutvertex say \(v_0 \) with degree \(\Delta = 2n \), then we have to prove that \(\lambda^2_c(G) = \Delta + 1 \). Let \(T_0, T_1, \ldots, T_{n-1} \) be the \(n \) number of triangles and \(v_0 \) be the cutvertex (see Figure 5). Then \(G \) is equivalent to \(\bigcup_{j} T_i \). Again let \(v_{ij}, \quad i = 1, 2 \) and \(j = 0, 1, \ldots, n - 1 \), be the vertices of \(G \). We label the vertices \(v_{ij}, v_{j+1} \) and \((v_{ij}, v_{j+1}) \), for \(j = 1, 2, \ldots, n - 1 \), using the same procedure of labelling of \(v'_1, v'_2 \) and the edge \((v'_1, v'_2)\) of \(C_3 \) in case 1 of Lemma 3. Then we label the remaining two edges as
\[
c(v'_0, v'_1) = \begin{cases}
2j + 2, & \text{if } i = 1; \\
2j + 3, & \text{if } i = 2, \quad \text{for } j = 0, 1, \ldots, n - 1.
\end{cases}
\]
Then the \((2,1)\)-total number of \(G \) is \(2n + 1 \) which is exactly equal to \(\Delta + 1 \).

JIC email for contribution: editor@jic.org.uk
Now we consider the graph G which contains n number of cycles of length 3 and m number of cycles of length 4. They joined with a cutvertex with degree $\Delta = 2(n + m)$. Then the λ'_2-value for that graph is $\Delta + 1$.

Let $T_0, T_1, \ldots, T_{n-1}$ be the n number of cycles of length 3 and $R_0, R_1, \ldots, R_{m-1}$ be the n number of cycles of length 4 (shown in Figure 6). They are joined with a common cutvertex say v_0. Let v'_i, $i = 1, 2$ and $j = 0, 1, \ldots, n-1$, be the vertices of all T_i's and v_0, v'_k, $k = 1, 2$ and $p = 0, 1, \ldots, m-1$, be the vertices of all R_p's. Now the labelling of vertices of all R_p's are same as the labelling of vertices of even number of cycles. Then we label the edges as follows:

$c(v'_{i,p}, v'_{2,p}) = 4$, $c(v'_{2,p}, v'_{3,p}) = 3$, for $p = 0, 1, \ldots, m-1$ and then we label the edges (v_0, v'_k), for $k = 1, 3$ and $p = 0, 1, \ldots, m-1$ as follows:

$c(v_0, v'_k) = \begin{cases} 2n + 2(p + 1), & \text{if } k = 1; \\ 2n + 2(p + 1) + 1, & \text{if } k = 2, \text{ for } p = 0, 1, \ldots, m-1. \end{cases}$

We have $c(v_0, v'_{3,n-1}) = 2n + 2m + 1 = \Delta + 1$.

Lastly we prove that if a graph contains n number of cycles of length 4 and all the cycles joined with a cutvertex then the value of λ'_2 is $\Delta + 2$.

Let us denote the n number of cycles of length 4 by $R_0, R_1, \ldots, R_{n-1}$ (see Figure 7), joined with a
common cutvertex say v_0. Again let v_0, v_j, $j = 1, 2, 3$ and $i = 0, 1, \ldots, n-1$ be the vertices of R_i’s. We label all the vertices of each cycle as same as the label of the vertices of even cycle. And $c(v_i, v_j) = 4$, $c(v_{2i}, v_{3j}) = 3$, for $i = 0, 1, \ldots, n-1$. Then we label the edges which are incident to the cutvertex v_0 as

$$c(v_0, v_j) = \begin{cases} 2(i+1) + 1, & \text{if } j = 1; \\ 2(i+1) + 2, & \text{if } j = 2, \text{ for } i = 0, 1, \ldots, n-1. \end{cases}$$

We have $c(v_0, v_{2n-1}) = 2(n-1+1) + 2 = 2n + 2 = \Delta + 2$.

By using the above results, the general form can be proved by mathematical induction. That is, if a graph G contains finite number of cycles of finite lengths, then

$$\lambda_2'(G) = \begin{cases} \Delta + 2, & \text{when all cycles are of even lengths}; \\ \Delta + 1, & \text{otherwise}. \end{cases}$$

Lemma 7 If a graph G contains finite number of cycles of any length and finite number of edges joined with a common cutvertex of degree Δ, then $\lambda_2'(G) = \Delta + 1$.

Proof. At first we prove that if a graph G contains n number of cycles of length 3, m number of cycles of length 4, p number of edges and they are joined with a common cutvertex with degree $\Delta (= 2n + 2m + p)$, then the value of $\lambda_2'(G)$ will be $\Delta + 1$. Let v''_i, $i = 0, 1, \ldots, p-1$ be the other end vertices of each edge. We label all v''_i’s as $c(v''_i) = 1$, for $i = 0, 1, \ldots, p-1$. Then according to the previous lemma we label the edges (v_0, v'_i), for $i = 0, 1, \ldots, p-1$ as

$$c(v_0, v'_i) = 2n + 2m + p - 1 + 1 = 2(n + m) + p + 1 = \Delta + 1.$$

Again let us consider that the graph G contains n number of cycles of length 4 and p number of edges joined with a cutvertex with degree $\Delta = 2n + p$. Then we have to prove that $\lambda_2'(G) = \Delta + 1$.

Now we label the vertex v_0 and the edge (v_0, v'_0) by 4 and 2 respectively. Then according to the previous lemma we label the edges as $c(v_0, v'_j) = 2n + 2 + j$, for $j = 0, 1, \ldots, p-1$.

Then we have $c(v_0, v'_{p-1}) = 2n + 2 + p - 1 = 2n + p + 1 = \Delta + 1$.

By the above results, generally we conclude that if a graph contains finite number of cycles of any length and finite number of edges, then $\lambda_2'(G) = \Delta + 1$.

Lemma 8 Let G be a graph, contains a cycle of any length and finite number of edges and they have a common cutvertex v_0. If Δ be the degree of the cutvertex, then $\lambda_2'(G) = \Delta + 2$, if the cycle is of even length and $\Delta + 1$, otherwise.

Proof. We consider that G contains an cycle C_n of length n and p number of edges. Let $v_0, v_1, \ldots, v_{n-1}$ are the vertices of C_n and $v'_0, v'_1, \ldots, v'_{p-1}$ are the end vertices of all edges, joined with the cutvertex. Let Δ be the degree of G, then $\Delta = 2 + p$. Then we label the vertices and edges of G as follows.

![Figure 8: Illustration of Lemma 8](image-url)

Case 1. Let $n = 2k$ (even).
Here $c(v_0) = 0$, then we label all the endvertices of the edges as $c(v'_i) = 1$, for $i = 0, 1, \ldots, p-1$.
Now we label the edges (v_0, v'_j) as $c(v_0, v'_j) = 5 + j$ for $j = 0, 1, \ldots, p-1$.
Now $c(v_0, v'_{p-1}) = p + 4 = \Delta + 2$.

Case 2. Let $n = 3$ and $n = 2k + 1$ (odd).
Here we label the first edge (v_0, v'_0) by 3. Then the labelling procedure of all endvertices are same as given in the above case. And we label the remaining edges as follows

Now $c(v_0, v'_{p-1}) = 3 + k = \Delta + 1$.

From the above two cases we see that $\lambda^1_n(G) = \Delta + 2$, if the cycle is of even length and $\Delta + 1$, otherwise.

3.2. (2,1)-labelling of sun
Let us consider the sun S_{2n} of $2n$ vertices. This graph is obtained by adding an edge to each vertex of a cycle C_n. So C_n is a subgraph of S_{2n}. The result for any sun S_{2n} is given below.

Lemma 9 For any sun S_{2n}, $\lambda^1_n(S_{2n}) = 5 = \Delta + 2$.

Proof. Let $v_0, v_1, \ldots, v_{n-1}$ be the vertices of C_n and v_i is adjacent to v_{i+1} and v_{i-1}. To complete S_{2n}, we add an edge (v_i, v'_i) to the vertex v_i, i.e., v'_i’s are the pendant vertices. To label this graph we consider the following three cases.

Case 1. Let $n = 3$ (shown in Figure 9(a)).
We label the cycle C_3 according to the Case 2 of Lemma 3. Then we label other vertices and edges as follows:
$c(v'_0) = 1, c(v'_1) = 5, c(v'_2) = 0, c(v_0, v'_0) = 3, c(v_1, v'_1) = 1$ and $c(v_2, v'_2) = 5$.

Case 2. Let $n = 2k$ (even) (see Figure 9(b)).
We label the cycle C_n as per Case 1 of Lemma 3. And we label other vertices and edges of S_{2n} as follows:
$c(v'_2) = 1, c(v'_{2i+1}) = 0$ for $i = 0, 1, \ldots, k-1$ and $c(v_i, v'_i) = 5$ for $i = 0, 1, \ldots, n - 1$.

Case 3. Let $n = 2k + 1$ (odd) (see Figure 9(c)).
Here the labelling procedure of the cycle C_{2k+1} is same as the Case 3 of Lemma 3. Now the labelling of other vertices and edges are as follows:

JIC email for subscription: publishing@WAU.org.uk
Nasreen Khan, et al: (2,1)-Total Labelling of Cactus Graphs

\[c(v'_2) = 1, \quad c(v'_{2i+1}) = 0 \quad \text{for} \quad i = 0, 1, \ldots, k - 1, \quad c(v'_{n-1}) = 5, \quad c(v_i, v'_i) = 5 \quad \text{for} \quad i = 1, 2, \ldots, n - 1, \]
\[c(v_0, v'_0) = 3 \quad \text{and} \quad c(v_{n-1}, v'_{n-1}) = 1. \]

Here we see that the (2,1)-total number for that graph is 5.

Hence \(\lambda_2'(S_{2n}) = 5 = \Delta + 2. \]

Lemma 10 Let \(G \) be a graph obtained from \(S_{2n} \) by adding an edge to each of the pendent vertex of \(S_{2n} \), then

\[\lambda_2'(S_{2n}) = \Delta + 2 = 5. \]

Proof. Follows from Figure 10.

![Figure 10: Illustration of Lemma 10](image)

Lemma 11 Let a graph \(G \) contains two cycles of any length and they are joined by an edge. If \(\Delta(= 3) \) be the degree of \(G \), then,

\[\lambda_2'(G) = 5 = \Delta + 2. \]

Proof. Let the graph \(G \) contains two cycles \(C_n \) and \(C_m \) with vertices \(v_0, v_1, \ldots, v_{n-1} \) and \(v'_0, v'_1, \ldots, v'_{m-1} \) respectively. And the cycles are joined by an edge \((v_0, v'_0) \). The degree of the graph is \(\Delta(= 3) \) Now we label the vertices and edges of the graph as follows.

![Figure 11: The graph G](image)

Case 1. Let \(n = 3, \ m = 3 \).

First we label the vertices and edges of \(C_3 \) as same as given in case 2 of Lemma 3. Now we label the edge \((v_0, v'_0) \) by 3 and then we label the other cycles as follows.

\[c(v'_0) = 1, \quad c(v'_1) = 0, \quad c(v'_2) = 2, \]
\[c(v'_0, v'_0) = 4, \quad c(v'_1, v'_1) = 3, \quad c(v'_2, v'_2) = 5. \]

Case 2. Let \(n = 3, \ m = 2k + i, \ i = 0, 1, \)

We label the vertices and edges of \(C_3 \) as same as given in the above case. Then we label the edge

\[JIC \text{email for contribution: editor@jic.org.uk} \]
When \(m \) is even, i.e., \(m = 2k \), then
\[
c'(v'_1) = 1, \quad c'(v'_{2i+1}) = 0, \quad \text{for} \quad i = 0, 1, \ldots, k - 1,
\]
\[
c'(v'_{2i}, v'_{2i+1}) = 3, \quad \text{for} \quad i = 0, 1, \ldots, k - 1,
\]
\[
c'(v'_{2i+1}, v'_{2i+2}) = 4, \quad \text{for} \quad i = 0, 1, \ldots, k - 2
\]
and \(c'(v'_{n-1}, v'_n) = 4 \).

When \(m \) is odd, i.e., \(m = 2k + 1 \), then we label the vertices and edges of \(C_n \) as same as given in the above subcase except the label of the vertex \(v'_{m-1} \), i.e., \(v'_{2k} \) and the edge \((v'_{m-2}, v'_{m-1})\), i.e., \((v'_{2k-1}, v'_{2k})\). We label the vertex and the edge as follows.
\[
c'(v'_{2k}) = 2 \quad \text{and} \quad c'(v'_{2k-1}, v'_{2k}) = 5.
\]

Case 3. Let \(n = 2k + i \), \(m = 2k + i \), \(i = 0, 1 \).

When \(n = 2k \) and \(m = 2k \), then we label the cycle \(C_n \) as same as given in Case 1 of Lemma 3. Then we label the edges \((v_0, v'_0)\) by 5 and the cycle \(C_m \) as same as in the subcase (when \(m \) is even) in Case 2 of this lemma.

When \(n = 2k \) and \(m = 2k + 1 \), then we label the edges and vertices of \(C_m \) as same as given in the subcase (when \(m \) is odd) of the above case.

When \(n = 2k + 1 \) and \(m = 2k + 1 \), then we label the vertices and edges of \(C_n \) as same as given in Case 2.

Finally, we get \(\lambda'_2(G) = 5 = \Delta + 2 \). \(\square \)

Corollary 1 Let a graph \(G \) contains two cycles of any lengths and they are joined by two edges. If \(\Delta \) be the degree of the graph \(G \), then
\[
\lambda'_2(G) = \Delta + 2.
\]

Lemma 12 Let a graph \(G \) contains a cycle of any length and each vertex of the cycle contain another cycle of any length, then
\[
\lambda'_2(G) = 6 = \Delta + 2.
\]

Proof. At first we take the main cycle are of two types, viz., \(C_{2k} \), i.e., even and \(C_{2k+1} \), i.e., odd. Let \(v_0, v_1, \ldots, v_{n-1} \) be the vertices of \(C_n \).
Case 1. Let $n = 2k$ (even).

When each vertex of C_n contains the cycles of length 3 (shown in Figure 12(a)).

Let $v_0, v'_0, v''_0; v_1, v'_1, v''_1; \ldots; v_{n-1}, v'_{n-1}, v''_{n-1}$ are the vertices of the cycles of length 3. Now the labelling of the cycle C_n is same as the labelling procedure of the cycle of even length. Then we label the other vertices and edges as follows:

$$
\begin{align*}
 c(v'_0) = 1, \quad c(v''_0) &= 0 \quad \text{for } i = 0, 1, \ldots, k - 1 \quad \text{and} \quad c(v''_i) = 2 \quad \text{for } i = 0, 1, \ldots, n - 1. \\
 c(v'_i, v''_i) = 5, \quad c(v''_i, v''_i) &= 6 \quad \text{for } i = 0, 1, \ldots, n - 1.
\end{align*}
$$

When each vertex of C_n contains the cycles of length 4 (see Figure 12(b)).

Let $v_0, v'_0, v''_0, v'''_0; v_1, v'_1, v''_1, v'''_1; \ldots; v_{n-1}, v'_{n-1}, v''_{n-1}, v'''_{n-1}$ be the vertices of all the cycles of length 4. We label the cycles as follows:

$$
\begin{align*}
 c(v'_0) = 1, \quad c(v''_0) &= 0 \quad \text{and} \quad c(v'''_0) = 1 \quad \text{for } i = 0, 1, \ldots, k - 1; \\
 c(v'_i, v''_i) = 0, \quad c(v''_i) &= 1 \quad \text{and} \quad c(v'''_i) = 0 \quad \text{for } i = 0, 1, \ldots, k - 1; \\
 c(v''_i, v''_i) = 5, \quad c(v''_i, v''_i) &= 4 \quad \text{for } i = 0, 1, \ldots, n - 1.
\end{align*}
$$

Case 2. Let $n = 2k + 1$ (odd).

When $n = 3$ and all cycles are of length 3 (see Figure 12(c)).

The labelling procedure of the cycle C_n is same as given in case 2 of Lemma 3. Now we label the other vertices and edges as follows:

$$
\begin{align*}
 c(v'_0) = 1, \quad c(v''_0) &= 2, \quad c(v''_0, v'_0) = 3, \quad c(v''_0, v''_0) = 4, \quad c(v''_0, v''_0) = 5; \\
 c(v'_i) = 0, \quad c(v''_i) &= 1, \quad c(v'_i, v''_i) = 5, \quad c(v''_i, v''_i) = 4, \quad c(v''_i, v''_i) = 6; \\
 c(v''_i, v''_i) = 3, \quad c(v''_i, v''_i) &= 2, \quad c(v''_i, v''_i) = 1, \quad c(v''_i, v''_i) = 0, \quad c(v''_i, v''_i) = 6.
\end{align*}
$$

When each vertex of C_n contains the cycles of length 3 (shown in Figure 12(d)).

The labelling procedure for the vertices v'_i, v''_i and the edges $(v'_i, v'_i), (v''_i, v''_i), (v''_i, v''_i)$ for $i = 1, 2, \ldots, 2k - 2$ are same as the labelling of the graph which contains a cycle of even length and each vertex of the cycle contain cycles of length 3 given in case 1. And the labelling of $v'_i, v''_i, (v'_i, v'_i), (v''_i, v''_i), (v''_i, v''_i)$ for $i = 0, 2k - 2, 2k$ as same as the labelling of the above graph for $i = 0, 1, 2$ respectively.

When all the cycles are of length 4 except the main cycle (shown in Figure 12(e)).
We label the vertices and edges \(v_i', v_i'', v_i''', (v_i, v_i') \), \((v_i', v_i'')\), \((v_i'', v_i''')\) and \((v_i''', v_i)\) for \(i = 1, 2, \ldots, 2k - 1\) as same as the labelling procedure of the graph which contains a cycle of even length and each vertex contains another cycle of length 4 except the label of the vertex \(v_{2k-1}\). We label this vertex as \(c(v_{2k-1}) = 2\). For \(i = 0, 2k\), we label the remaining vertices and edges of the graph as follows:

\[
\begin{align*}
&c(v_0') = 1, c(v_0'') = 0, c(v_0''') = 1, c(v_0', v_0'') = 3, c(v_0'', v_0'') = 4, c(v_0''', v_0) = 5; \\
&c(v_{2k}') = 3, c(v_{2k}'') = 2, c(v_{2k}''') = 1, c(v_{2k}', v_{2k}'') = 1, c(v_{2k}''', v_{2k}''') = 0, c(v_{2k}'''', v_{2k}') = 4, c(v_{2k}''''', v_{2k}') = 6.
\end{align*}
\]

Here we see that the minimum label number is 6 which is exactly equal to \(\Delta + 2\).

Finally, we conclude that if a graph \(G\) contains a cycle of any length and each vertex of the cycle contains another cycle of any length then,

\[
\lambda_2(G) = \Delta + 2.
\]

An edge is nothing but \(P_2\), so \(\lambda_2(G) = 3\).

3.3. \((2,1)\)-labelling of paths

Lemma 13 For any path \(P_n\) of length \(n\),

\[
\lambda_2^2(P_n) = 4 = \Delta + 2.
\]

Proof. Let \(v_0, v_1, \ldots, v_{n-2}, v_{n-1}\) be the vertices of the path \(P_n\) of length \(n\) (shown in Figure 13). We classify the path into two cases, viz., even and odd.

![Figure 13: (2,1)-total labelling of path \(P_n\)](image)

Case 1. When \(n = 2k\), i.e., the path is even.

We label the vertices and edges of \(P_n\) according to the following rules.

\[
\begin{align*}
&c(v_i) = 0, \text{ for } i = 0, 1, \ldots, k - 1; \\
&c(v_{2i+1}) = 1, \text{ for } i = 0, 1, \ldots, k - 1; \\
&c(v_{2i}, v_{2i+2}) = 3, \text{ for } i = 0, 1, \ldots, k - 1; \\
&\text{and } c(v_{2i+1}, v_{2i+2}) = 4, \text{ for } i = 0, 1, \ldots, k - 1.
\end{align*}
\]

Case 2. When \(n = 2k + 1\), i.e., the path is odd.

The labelling of the vertices and edges of the path is same as in the above case, only the label of the last vertex \(v_{2k}\) and last edge \((v_{2k-1}, v_{2k})\) are different. We label that vertex and edge as follows:

\[
\begin{align*}
&c(v_{2k}) = 1 \text{ and } c(v_{2k-1}, v_{2k}) = 3.
\end{align*}
\]

From all above cases we see that \(\lambda_2^2(G) = 4 = \Delta + 2\).

3.4. \((2,1)\)-total labelling of caterpillar graph

Now, we label another important subclass of cactus graphs called caterpillar graph.

Definition 1 A caterpillar \(C\) is a tree where all vertices of degree \(\geq 3\) lie on a path, called the backbone of \(C\). The hairlength of a caterpillar graph \(C\) is the maximum distance of a non-backbone vertex to the backbone.

Lemma 14 For any caterpillar graph \(G\), \(\lambda_2^2(G) = \Delta + 2\), where \(\Delta\) is the degree of the caterpillar graph.
Proof. Let \(P_n \) be the backbone of length \(n \) of the caterpillar graph \(G \) and \(v_0, v_1, \ldots, v_{n-2}, v_{n-1} \) be the vertices of \(P_n \). We label the vertices and edges of the path by using the previous lemma. Let \(v_k \) be a vertex on the path \(P_n \) with degree \(k \). Then \(k-2 \) different paths (other than backbone) are originated from \(v_k \) of variable lengths. We denote such paths by \(P_{ij}^k \), where \(i (= 0, 1, \ldots, k-2) \) represents the \(i \)th path originated from the vertex \(k \) and \(j \) is the length of the path. Let us take the first path \(P_{11}^k \) and \(v_k, v_1^k, v_2^k, \ldots, v_{m-1}^k \) be the vertices of it. We label all the vertices of \(P_{11}^k \) by 0 or 1 and label all the edges adjacent to \(v_k \) by 5, 6, 7, \ldots, \(k+2 \) because the label of the edges incident on the vertex \(v_k \) of the path \(P_n \) are either 3 and 4 respectively. We label the first edge of \(P_{11}^k \) by 5 and other edges of \(P_{11}^k \) by using the labelling procedure given in the previous lemma. All the labels are allowed to label the vertices of the remaining portion of the path \(P_{m}^{k1} \). Now we take the second path \(P_{12}^k \). Here also the labelling procedure for the path is same as given in Lemma 13 except the label of the edge incident on the vertex \(v_k \). We label the edge by 6 and so on. Lastly, we label the first edge of the \((k-2) \)th path incident on the vertex \(v_k \) by \(k+2 \). Here \(\Delta = k \), so the value of \(\lambda_i^k \) is \(\Delta + 2 \). Similar method apply to all paths joined with the vertices of the path \(P_n \).

\[
\begin{align*}
\lambda_3^7(G) &= 6 = \Delta + 2 \\
\lambda_5^7(G) &= 6 = \Delta + 2 \\
\lambda_7^7(G) &= 10 = \Delta + 2 \\
\lambda_5^7(G) &= 10 = \Delta + 2
\end{align*}
\]

Figure 14: Labelling of caterpillar graphs

Therefore, we conclude that, for any caterpillar graph, \(\lambda_i^k(G) = \Delta + 2 \).

The proof of lemma 14 is illustrated in Figure 14.

4. (2,1)-total labelling of lobster

Another subclass of cactus graphs is the lobster graph. The definition of lobster graph is given below.

Definition 2 A lobster is a tree having a path (of maximum length) from which every vertex has distance at most \(k \), where \(k \) is an integer.

The maximum distance of the vertex from the path is called the diameter of the lobster graph. For the above definition \(k \) is the diameter. There are many types of lobsters given in literature like diameter 2, diameter 4, diameter 5, etc. Figure 16 shows a lobster of diameter 4.

Lemma 15 For any lobster \(G \), \(\lambda_3^k(G) = \Delta + 2 \), where \(\Delta \) is the degree of the lobster.

Proof. Assume that \(P_n \) be a path of length \(n \) of the lobster graph \(G \) and \(v_0, v_1, \ldots, v_{n-1} \) be the vertices of it. Let us consider a vertex \(v_k \) on \(P_n \) from which \(p \) number of trees be originated. Let \(T_1, T_2, \ldots, T_p \) be such
trees. Without lose of generality let the label of the vertex \(v_k \) be 0. Again, let \(\Delta_i \), \(i = 1, 2, \ldots, p \) be the degrees of these trees. We know that \(\lambda_i^1(T_i) \) is \(\Delta_i + 2 \) (if \(\Delta_i \geq 4 \)) [7].

Figure 15: Illustration of Lemma 15

Now we label the edge of the tree \(T_i \) \(i = 1, 2, \ldots, p \) originated from \(v_k \) by \(i + 4 \). Let \(v_{k-1} \) and \(v_{k+1} \) be two adjacent vertices of \(v_k \) on \(P_n \). We label these vertices \(v_{k-1} \) and \(v_{k+1} \) by 1 (or 0) because the label of \(v_k \) can be assigned to 0 (resp. 1). And we label the edges \((v_k, v_{k-1})\) and \((v_k, v_{k+1})\) by 3 and 4 respectively. So we see that there are no extra labels are required to label the edges incident on \(v_k \) of the path \(P_n \). So, the value of \(\lambda_i^1 \) of the lobster is \(\Delta + 2 \), where \(\Delta = \max \{ \Delta_1, \Delta_2, \ldots, \Delta_p \} \).

Figure 16 is an example of 4-diameter lobster and the proof of Lemma 15 is illustrated here.

![Figure 16: (2,1)-total labelling of 4-diameter lobster](image)

Lemma 16 Let \(G_1 \) and \(G_2 \) be two cactus graphs. If \(\Delta_i + 1 \leq \lambda_i^1(G_i) \leq \Delta_i + 2 \) and \(\Delta_2 + 1 \leq \lambda_2^1(G_2) \leq \Delta_2 + 2 \), then \(\Delta + 1 \leq \lambda_i^1(G) \leq \Delta + 2 \), \(G \) is the union of two graphs \(G_1 \) and \(G_2 \), they have only one common vertex \(v \) and \(\max \{ \Delta_1, \Delta_2 \} \leq \Delta \leq \Delta_1 + \Delta_2 \).

Proof. Let \(G_1 \) and \(G_2 \) be two cactus graphs and \(\Delta_1, \Delta_2 \) be the degrees of them. Now if we merge two cactus graphs \(G_1 \) and \(G_2 \) with the vertex \(v \) then we get a new cactus graph \(G \) \((= G_1 \cup G_2) \). Let \(\Delta \) be the degree of new cactus graph \(G \) and it can be shown that \(\max \{ \Delta_1, \Delta_2 \} \leq \Delta \leq \Delta_1 + \Delta_2 \). For the graph \(G_1 \), \(\Delta_1 + 1 \leq \lambda_i^1(G_1) \leq \Delta_1 + 2 \) and \(G_2, \Delta_2 + 1 \leq \lambda_2^1(G_2) \leq \Delta_2 + 2 \). Now we have to prove that the lower and upper bounds of \(\lambda_i^1 \) will preserve for the new cactus graph \(G \). Let \(u \) and \(v \) be two vertices of that graphs and \(u_0, u_1; v_0, v_1 \) be the adjacent vertices of \(u \) and \(v \) respectively. Let \(x \) be the label of \(u \), then the label of \(u_0 \) and \(u_1 \) may be \(x + 1 \) and \(x + 1 \) or \(x + 4 \). And the label of the edges \((u, u_0)\) and \((u, u_1)\) may be \(x + 3 \)
and \(x+4 \) or \(x+1 \) respectively. Similarly, if \(y \) be the label of \(v \), then the label of \(v_0 \) and \(v_1 \) may be \(y+1 \) and \(y+1 \) or \(y+4 \). And the label of the edges \((v,v_0)\) and \((v,v_1)\) may be \(y+3 \) and \(y+4 \) or \(y+1 \) respectively.

Assume that the label of \(u \) be fixed and let it be 0, i.e., \(x = 0 \), and the label \(y \) of \(v \) lies between 0 to \(\Delta_2 + 2 \). That is, the label difference between \(x \) and \(y \) is one of the integer 0,1,…,\(\Delta_2 + 2 \).

![Figure 17](image1.png)

Let the label of the vertices \(u \) and \(v \) be same, i.e., \(x = y \) (Figure 17). If we join two cactus graphs at \(v \), then the label of \(v \) remains unchanged and the labels of adjacent vertices \(v_0 \) and \(v_1 \) will change to \(x+1 \) and \(x+1 \) or \(x+2 \). And the labels of the edges \((v,v_0)\) and \((v,v_1)\) will change to \(x+5 \) and \(x+6 \) or \(x+4 \) and \(x+5 \). If we increase the label numbers by 1 of all the vertices and edges of \(G_2 \) except \(v \) then there are at least one vertex or edge in which we adjust the labelling to preserve the lower and upper bounds of \(\lambda'_2 \).

When the label difference between \(x \) and \(y \) is 1, i.e., \(y = x+1 \) (see Figure 18), then without loss of generality we assume that the label numbers of adjacent vertices of \(u \) are \(x+1 \) and \(x+1 \) or \(x+4 \). And the label of the edges \((u,u_0)\) and \((u,u_1)\) are \(x+3 \) and \(x+4 \) or \(x+1 \). Now the label numbers of adjacent vertices of \(v \) are \(x \) or \(x+2 \) and \(x \) or \(x+2 \) or \(x+3 \) respectively. And for the edges \((v,v_0)\) and \((v,v_1)\), \(x+3 \) or \(x+4 \) and \(x+4 \) or \(x \) respectively. Now if we increase the label numbers by 1 of all the vertices and edges of \(G_2 \) except \(v \) then we get at least one vertex or edge in which we adjust the labelling to preserve the lower and upper bounds of \(\lambda'_2 \), i.e. the \(\lambda'_2 \)-value of new cactus graph can't be less than \(\Delta+1 \) and greater than \(\Delta+2 \).

![Figure 18](image2.png)

Similarly, for the label differences 2,3,…,\(\Delta_2 + 2 \), the lower and upper bounds of \(\lambda'_2 \) for the new cactus graph will preserve.

\[\square\]
Figure 19: (2,1)-total labelling of cactus graphs

The (2,1)-labelling of all subgraphs of cactus graphs and their combinations are discussed in the previous lemmas. From these results we conclude that the λ_1^t-value of any cactus graph can not be more than $\Delta + 2$ and less than $\Delta + 1$. Hence we have the following theorem.

Theorem 1 If Δ is the degree of a cactus graph G, then

$$\Delta + 1 \leq \lambda_1^t(G) \leq \Delta + 2.$$

The graph of Figure 19 is an example of a cactus graph, contains all possible subgraphs and its (2,1)-total labelling.

5. **Conclusion**

The bounds of (2,1)-total labelling of a cactus graph and various subclass viz., cycle, sun, star, tree, caterpillar and lobster are investigated. The bounds of $\lambda_1^t(G)$ for these graphs are $\lambda_1^t(C_n) = 4$ and for sun, star, caterpillar and lobster it is $\Delta + 2$. For the cactus graph the bound for λ_1^t is $\Delta + 1 \leq \lambda_2^t(G) \leq \Delta + 2$, where Δ is the maximum degree of the cactus graph G.

6. **References**

