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Abstract. This paper firstly introduces the chaotic system Newton---Leipnik system which possesses two 
strange attractors.Effective adaptive controllers are proposed for stabilizing chaos to unstable equilibria. In 
addition, Chaos synchronizations achieved by employing active control scheme. Numerical simulations are 
provided to verify the feasibility and effectiveness, so the result of the control is mutually verified with the 
theoretical analyses and numerical simulations. 
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1. Introduction  
Since the seminal work of Ott, Grebogi and Yorke (OGY) [1], there has been an increasing interest in 

recent years in the study of controlling chaotic systems in physics, mathematics and engineering community, 
etc. Different techniques and methods [2-7] have been proposed over the last decade. Moreover, some of these 
methods have been successfully applied to experimental systems. Therefore, controlling and synchronization 
of the chaos have been very important goals and subjects of much current research. 

In 1981, Newton and Leipnik constructed a set of differential equations from Euler’s rigid body 
equations which were modified with a linear feedback [8]. Then in 2002, B. Marlin established the existence 
of closed orbits which were not asymptotically stable for this system [9].In 2002, Chen et al.[10]studied chaos 
control and synchronization of the Newton–Leipnik system for the first time by using a stable-manifold-
based method. Afterwards, Richter further studied the stabilization of a desired motion within one attractor 
as well as taking the system dynamics from one attractor to another applying the Lyapunov function method 
[11]. More recent studies by Wang and Tian[12] showed that this chaotic system can be controlled to unstable 
period orbits and torus with a suited linear controller. 

In this paper, Newton–Leipnik system is controlled with adaptive chaos control method. At the same 
time we use the same method to enable stabilization of chaotic motion to a steady state as well as 
synchronization between two identical systems. Computer simulation is also given for the purpose of 
illustration and verification. 

2. Adaptive control of Newton–Leipnik system 
The Newton–Leipnik system is described by 
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Where a, b are positive parameters. The Newton–Leipnik system is a chaotic system with two strange 
attractors. For the system parameter 175.0,4.0 == ba and initial states )160.0,0,349.0( −  and )180.0,0,349.0( − , 
we can obtain the two strange attractors which are demonstrated in Fig.1and 2. 

This chaotic system has five equilibria: 
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 Fig. 1. Chaotic attractor of Newton–Leipnik system, 
initial point in . )160.0,0,349.0( −

Fig. 2. Chaotic attractor of Newton–Leipnik system, 
initial point in ( . )180.0,0,349.0 −

 
Let us assume that the equations of the controlled Newton-leipnik system are given by 
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Where  and  are external control inputs. It will be suitably designed to drive the trajectory of the 
system, specified by  to each of the five unstable equilibrium points of the uncontrolled 
(i.e., ) system (1)  and . For this purpose the goal of control is to find a 

controller  and the parameters estimation update law for Eq. (2) such that each of the five 
equilibria is asymptotically stable. 
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Tuuuu ],,[ 321=

2.1. Stabilizing the equilibrium  )0,0,0(=O
Assume the parameters and b are unknown constant parameters, we choose Lyapunov function for (2) 

as follows: 
a

)~~(
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Where ,TzyxX ),,(= 1
~ aaa −=  and 1

~ bbb −= ,  are estimate values of the unknown parameters 
respectively. The time derivative of V along trajectories (2) is 

11 ,ba
,,ba

)5()54.0()10()~,~,( 321 uxybzzuxzyxyuyzyaxxbaXV +−+++−−++++−=&  

                                 )(~)(~
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We choose the controller as follows: u

JIC email for contribution: editor@jic.org.uk 



Journal of Information and Computing Science, 3 (2008) 4, pp 281-289 283
 

⎪
⎩

⎪
⎨

⎧

+−=
=

−−=

zbu
u

yzxau

)1(
0

10)1(

13

2

11

                                                                   (3) 

and the parameters estimation update law  as follows 11 ,ba &&
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With this choice, the time derivative of )~,~,( baXV is given by 
222 4.0)~,~,( zyxbaXV −−−=&  

It is clear that  is positive definite and is negative definite in the neighborhood of 
the zero solution for the system (2). Therefore, the equilibrium solution 

)~,~,( baXV )~,~,( baXV&
)0,0,0(=O  of the controlled 

system is asymptotically stable. 

2.2. Stabilizing non-zero equilibria and  321 4
The equilibrium points of the controlled Newton-Leipnik system (2) are determined from the solution of 

the following system: 
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Where zyx ,, and 3,2,1, =iui , are the state variables and control functions at the equilibrium points of 
the controlled system (2). Now, we proceed to obtain the perturbed equations of the controlled system (2) 
about its equilibrium points zyx ,, and 3,2,1, =iui . For this purpose, we introduce the following variables: 

zzeyyexxe −=−=−= 321 ,,  And 3,2,1, =−= iuuv iii                                 (5) 
Substituting Eq.(5) into (2). We obtain the perturbed equations about the equilibrium points of the 

system (2)in the following form: 
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This system admits the special solution . This solution describes the equilibrium 
points of the system (2). Assume that some of equilibrium points are unstable, then the control can be made 
such that these states become asymptotically stable. 

3,2,1,0,0 === ive ii

Let the parameters  and b  are unknown constant parameters, we choose Lyapunov function for (6) as 
follows: 

a

)~~(
2
1)~,~,( 22 baeebaeV T ++=  

Where ,Teeee ),,( 321= 1
~ aaa −=  and ,  are estimate values of the unknown parameters 

respectively. The time derivative of V along trajectories (6) is 
1

~ bbb −= 11 ,ba
,,ba

                            ))(10()~,~,( 13232211 vyezeeeeaeebaeV +++++−=&  

                                                  ))(54.0( 21331212 vzexeeeeee ++++−−+  

                                          )(~)(~))(5( 113122133 bbaaveyexeebee && −+−++++−+  

We choose the controller  as follows: Tvvvv ],,[ 321=
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and the parameters estimation update law  as follows 11 ,ba &&
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With this choice, the time derivative of is given by )~,~,( baeV
2
3

2
2

2
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This translates to 
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Therefore, the equilibrium solution of the syste(6) is asymptotically stable. According to (5) 
and choosing

)0,0,0(=O
3,2,1,0 == iui , the equilibrium solutions zyx ,,  of system (2) are asymptotically stable if the 

controller u  is 
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and the parameters estimation update law is (8). Therefore, non-zero equilibria and of (2) are 
asymptotically stable if the controlleru  is (9) and the parameters estimation update law is (8). 

321 ,, EEE 4E

3. Numerical simulations 
In this section, numerical simulations are carried out . In addition, a time step size 0.01 is employed. We 

select the parameters of Newton-leipnik system as 175.0,4.0 == ba  so that Newton-leipnik system exhibits 
a chaotic behavior. The initial states of the controlled Newton-leipnik systems (2) are 

and the initial values of the parameters estimation update laws 

are . Fig.3 shows that the chaos in Newton-leipnik system is controlled to equilibrium 
point  in presence of system’s uncertain parameters , with the control law (3) and the 
parameters estimation update law (4).  Fig. 4  (a)~(d) shows that the chaos in Newton-leipnik system is 
controlled to equilibrium point and  in presence of system’s unknown uncertain parameters 

, with the control law (9) and the parameters estimation update law (8). 

10)0(,10)0(,10)0( 000 =−== zyx
5)0(,5)0( 11 == ba

)0,0,0(=O ba,

321 ,, EEE 4E
ba,
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 Fig. 3. The time response of states  for the controlled system (2) with control 
law (3) and the parameters estimation update law (4): stabilizing the equilibrium O. 
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Fig. 4. The time response of states ) for the controlled system (2) with control law (9) and the parameters 

estimation update law (8): stabilizing the equilibriums and , respectively. 

),,( zyx
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4. Adaptive synchronization of Newton-leipnik system 
In order to observe the synchronization behavior in Newton-leipnik system, we assume that we have two 

identical Newton-leipnik systems and that the drive system with the subscript 1 is to control the response 
system with subscript 2. The drive and response systems are defined as follows:  
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where the parameters andb are unknown or uncertain, and the response system is a
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where and  are parameters of the response system which need to be estimated, and  is 
the controller we introduced in Eq. (10). Suppose that 

1a 1b Tuuuu ],,[ 321=

      333222111 ,, ekuekueku ===                                                              (11) 

where and  are the error states which are defined as follows: 21 ,ee 3e

123122121 ,, zzeyyexxe −=−=−=                                                        (12) 
And 
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where  and 0,, 321 >kkk βα ,  are positive real constants. 

Theorem  The two systems (9) and (10) can be synchronized under the controller (11) and a parameter 
estimation update law (13), if the following conditions are satisfied: 
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where 11 zM > and 122 510 yyM −>  are positive real constants. 

Proof. It is easy to see from (9)-(11) that the error dynamical system can be obtained as follows: 
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Let bbeaae ba −=−= 11 , . Choose the following Lyapunov function as follows: 
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then differentiation of V along trajectories (15) is 
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choose, 2321 , zefxef ba βα −== , 11 zM >  and 122 510 yyM −> , then 
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Obviously, to ensure that the origin of error system (15) is asymptotically stable, the matrix P should be 
positive definite, which implies that V is negative definite. This case is satisfied if and only if the following 
inequalities hold:  
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Accordingly, the response system (10) is synchronizing with the drive system (9) under the controller 
(11) and a parameter estimation update law (13), if the conditions (14) are satisfied. The proof is completed. 

5. Numerical simulations 
In this section, numerical simulations are carried out. In addition, a time step size 0.01 is employed. We 

select the parameters of Newton-leipnik system as 175.0,4.0 == ba  so that Newton-leipnik system exhibits 
a chaotic behavior. The initial values of the parameters  are zero The initial states of the drive and 
response systems (9)and(10) are 

111 ,, cba
160.0)0(,0)0(,349.0)0( 111 −=== zyx  and 

. In order to choose the control  parameters  1)0(,1)0(,1)0( 222 =−== zyx 11 zM > ,  and 

122 510 yyM −>  need to be estimated. Through simulations, we obtain 10,1 21 == MM . The control 

parameters are chosen as follows 10,10,6 321 === kkk . Choose 1== βα . The state trajectories for the 
drive system (9) and the response system (10) with the control laws (11) and  parameters estimation update 
law (13) are shown in Fig.5(a)–(c). The dynamics of changing parameters is shown in Fig.6. 11 ,ba
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Fig. 5. The time response of states for drive system (9) and response system (10) with the control law (11) and 
parameters estimation update law (13); (a) signals and , (b) signals and , (c) signals and . 1x 2x 1y 2y 1z 2z
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Fig. 6. Changing parameters of system (10) with time t. 11 ,ba

6. Conclusion 
This work addresses adaptive chaos control and synchronization of Newton-leipnik system when the 

parameters of the drive system are fully uncertain and different with those of the response system. Based on 
Lyapunov stability theory, the sufficient conditions for the synchronization have been obtained analytically. 
Numerical simulations are shown to verify the proposed method. 
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