Bioconvection Peristaltic Transport of Nanofluid in a Channel containing Gyrotactic microorganism

Asha. S. K1 and Sunitha G2

1Assistant Professor, Department of Mathematics, Karnatak University, Dharwad-580003, Karnataka, as.kotnur2008@gmail.com
2 Research Scholars, Department of Mathematics, Karnatak University, Dharwad-580003, Karnataka, India sunithag643@gmail.com

(Received March 03, 2019, accepted April 11, 2019)

Abstract: This research paper is deals with the behavior of gyrotactic in peristaltic transport of nano Eyring-Powell fluid in non-uniform channel. The advantages of adding motile micro-organism to the nanofluid suspension enhanced the heat transfer, mass transfer and improve the nanofluids stability. The governing equations have been fabricated for long wavelength and low Reynolds number assumptions. The solutions have been described for pressure gradient, temperature, nanoparticle concentration and density of motile microorganism equations and solved by using powerful technique known as Homotopy Analysis Method (HAM). Results are reported for different values of the some significant parameters on peristaltic transport through a non-uniform channel and obtained results are displayed in graphs.

Keywords: Biconvection, gyrotactic microorganism, Peristaltic flow, Eyring-Powell fluid model.

1. Introduction

In rheology, the fluids can easily be transport from one region to another region with help of pumping. This type of pumping is known as peristalsis. The peristalsis is a form of fluid flow produced by a continuous wave of area clasping and also compressing propagates of tube or channel. Peristalsis helps in transporting physiological fluids in the human body such as swallowing of food through oesophagus, movement of chime in the gastrointestinal tracts and the vasomotion of small blood vessels. Latham [1] was first initiated the concept of peristaltic mechanism in 1966. After the work of Latham, Jaffrin et al. [2] explore the peristaltic pumping system. They studied the peristaltic flow for the long wavelength and low Reynolds number assumptions. Many researchers and scientist diverted their research interest towards study the peristaltic transport by considering viscous and non-viscous fluids with different models and with different geometries, few references are given in [3-7]. As we know many physiological flows are not uniform. Hence, many of the researchers studied peristaltic flow problems through uniform and non-uniform channels for different fluid models. Some of these investigations have been reported in the references [8-12].

The word “nanofluid” was first formulated by Choi in 1995 [13]. Nanofluid is a liquid that containing nanoparticles with representative length of 1-100nm [14]. The study of nanotechnology based on nanofluids has received general attention due to its applications in engineering and biomedical. Nanofluids are new kind of fluids conceived by destruction of nanometer-sized materials in base fluids such as ethylene-glycol or lubricants, water and silk fibroin etc. Dissimilar nanoparticles have many importances in different fields, like Copper nanoparticles have diverse range of applications in heat transfer systems, sensors and catalysts. In biomedical, magnetite nanoparticles are targeted for magnetic resonance imaging (MRI) and during in drug delivery. In present days, the flow of non-Newtonian fluids has received much awareness due to its applications in medical, industries and technology. To study the non-Newtonian fluids several models have been developed. Among them Eyring-Powell model has certain advantage over other fluid model. Firstly, kinetic theory of liquid is used to obtained the concentrate of fluid model, secondly, at low and high shear rates the concentrate of the model helps to recover the error-free results of viscous nanofluid. Eyring-Powell fluid model was first initiated by Eyring and Powell in 1994 [15]. Many researchers are study the peristaltic flow in different geometries by considering Eyring-Powell model as cited in references [16-22].

Bioconvection has large amount of applications in biomedical and biotechnology. The bioconvection is defined as flow induced by collective swimming of motile microorganisms which are little denser than water is studied by John [23]. The self- propelled motile microorganisms intensify the base fluid density in a
particular direction. Collection of microorganisms at the top of the layer makes suspension more impenetrable than the lower layer due to unstable density distributions. Under such circumstance, convection instability and generation of convection patterns take place. Such a quick and random movement pattern of microorganisms causes bioconvection procedure within the system. Bioconvection instability is developed from an initially uniform suspension without an unstable density disturbance was given by Pedley et al. [24]. Many researchers worked on the bioconvection flow with different geometries are given in the ref. [25-27]. In biological fluid mechanics, recent significant growing are nano bioconvection flows. Application of microorganisms is one of the most detectable methods of various bio-small blood vessel. Here we consider blood as Erying methods are obtained by using the Homotopy Analysis Method [40, 41]. The effect of various physical parameters on velocity, pressure gradient, temperature and motile microorganism’s density along with boundary conditions are obtained by using the Homotopy Analysis Method [40, 41]. The effect of various physical parameters on velocity, pressure gradient, temperature and motile-microorganisms density are analysed through graphs.

Mathematical Analysis

Let us consider a peristaltic transport of nano Eyring-Powell fluid in a two dimensional channel. The physical model of the wall surface can be written as

\[h(X, t) = a(X) + d \sin \left(\frac{2\pi}{\lambda}(X - c t) \right), \]

(1)

where \(a(X) = a_0 + kX \) is the half width of the channel, wavelength of the wall surface is \(\lambda \), \(\tilde{t} \) is the time and \(d \) represents the wave amplitude. Let \(U \) and \(V \) are velocity components along \(X \) and \(Y \) directions respectively, the velocity field \(\nabla \) can be written as

\[\nabla = (U(X, Y, t), V(X, Y, t), 0). \]

(2)

The Eyring-Powell fluid model of the shear stress tensor is given by

\[S = \mu \nabla + \frac{1}{\beta} \sin h^{-1} \left(\frac{1}{c^*} \nabla \right), \]

(3)

where the coefficient of shear viscosity is \(\mu, \beta \) and \(c^* \) are the fluid parameters.

\[\sin h^{-1} \left(\frac{1}{c^*} \nabla \right) \approx \frac{1}{c^*} - \frac{1}{6} \left(\frac{1}{c^*} \nabla \right)^2 + \frac{1}{6} \left(\frac{1}{c^*} \nabla \right)^3 \]

(4)

The governing equations for the nano Eyring-Powell fluid can be formulated as follows

The continuity equation:

\[\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} = 0. \]

(5)

The momentum equation:

\[\rho_f \left(\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial X} + V \frac{\partial U}{\partial Y} \right) = -\frac{\partial P}{\partial X} + \left(\mu + \frac{1}{\beta c^*} \right) \left(\frac{\partial^2 U}{\partial X^2} + \frac{\partial^2 U}{\partial Y^2} \right) - \frac{1}{2\beta c^*} \left(\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} \right)^2 \left(\frac{\partial^2 U}{\partial X^2} + \frac{\partial^2 U}{\partial Y^2} \right) + (1 - \phi_t) \rho_f g \beta \left(\frac{\partial}\partial X - \frac{\partial}\partial Y \right) \left[\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} \right] + (\rho_T - \rho_f) g \left(\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} \right) \left(\frac{\partial U}{\partial Y} + \frac{\partial V}{\partial X} \right) - \frac{1}{\beta c^*} \left(\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} \right)^2 \left(\frac{\partial^2 U}{\partial X^2} + \frac{\partial^2 U}{\partial Y^2} \right) + (1 - \phi_t) \rho_f g \beta (\Tilde{U} - \Tilde{V}) \left(\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} \right) + \rho_T \left(\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} \right) + \rho_f \left(\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} \right) \left(\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} \right) - \frac{1}{\beta c^*} \left(\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} \right)^2 \left(\frac{\partial^2 U}{\partial X^2} + \frac{\partial^2 U}{\partial Y^2} \right) \]

(6)

\[\rho_f \left(\frac{\partial V}{\partial t} + U \frac{\partial V}{\partial X} + V \frac{\partial V}{\partial Y} \right) = -\frac{\partial P}{\partial Y} + \left(\mu + \frac{1}{\beta c^*} \right) \left(\frac{\partial^2 V}{\partial X^2} + \frac{\partial^2 V}{\partial Y^2} \right) - \frac{1}{2\beta c^*} \left(\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} \right)^2 \left(\frac{\partial^2 V}{\partial X^2} + \frac{\partial^2 V}{\partial Y^2} \right) + (1 - \phi_t) \rho_f g \beta \left(\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} \right) \left[\frac{\partial V}{\partial X} + \frac{\partial V}{\partial Y} \right] + (\rho_T - \rho_f) g \left(\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} \right) \left(\frac{\partial U}{\partial Y} + \frac{\partial V}{\partial X} \right) - \frac{1}{\beta c^*} \left(\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} \right)^2 \left(\frac{\partial^2 V}{\partial X^2} + \frac{\partial^2 V}{\partial Y^2} \right) + (1 - \phi_t) \rho_f g \beta (\Tilde{U} - \Tilde{V}) \left(\frac{\partial V}{\partial X} + \frac{\partial V}{\partial Y} \right) + \rho_T \left(\frac{\partial V}{\partial X} + \frac{\partial V}{\partial Y} \right) + \rho_f \left(\frac{\partial V}{\partial X} + \frac{\partial V}{\partial Y} \right) \left(\frac{\partial V}{\partial X} + \frac{\partial V}{\partial Y} \right) - \frac{1}{\beta c^*} \left(\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} \right)^2 \left(\frac{\partial^2 V}{\partial X^2} + \frac{\partial^2 V}{\partial Y^2} \right) \]

(7)
Using the above non-dimensional variables, the following non-dimensional fluid parameters, Pr is the Prandtl number, Gr is the Grashof number of the local number, Nr is the buoyancy ratio respectively, Pe and Rb are the Bioconvection Peclet number and Bioconvection Rayleigh number respectively. Nb is Brownian motion, Nt is thermophoresis parameters and α is the amplitude ratio. The Ψ is the stream function given as

$$u = \frac{\partial \psi}{\partial y} \quad \text{and} \quad v = -\delta \frac{\partial \psi}{\partial x}.$$

Using the above non-dimensional terms and the basic equations (5)-(10) can be reduce to

$$\frac{\partial p}{\partial x} = \frac{1}{0} + \frac{\partial^2 p}{\partial y^2} - \Delta \left(\frac{\partial^3 p}{\partial y^3} \right)^2 + G r (\theta - N r \Omega - R b \chi),$$

$$\frac{\partial \theta}{\partial y} = 0,$$

$$\frac{\partial^2 \theta}{\partial y^2} + P r N b \frac{\partial \theta}{\partial y} + \frac{\partial^2 \chi}{\partial y^2} = 0,$$

$$\frac{\partial^2 \chi}{\partial y^2} - P e \frac{\partial \chi}{\partial y} - P e \frac{\partial^2 \chi}{\partial y^2} = 0.$$
The non-dimensional F is the time mean flow rate in wave frame related to the non-dimensional Θ in the laboratory frame as given in the following form

$$F = \int_{0}^{h} \frac{\partial \psi}{\partial y} \, dy, \Theta = F + 1,$$

(20)

where $F = \frac{Q}{ca}$ and $\Theta = \frac{Q}{ca}$.

2. Solution of the problem

The solutions equations (14)-(18) are obtained by using Homotopy Analysis Method (HAM), the initial guesses and auxiliary linear operators are obtained as

$$\psi_0(y) = \frac{y^2(3Fh-2Fy+h^4-h^2)}{h^4},$$

(21)

$$\theta_0(y) = \frac{\psi}{\psi'},$$

(22)

$$\Omega_0(y) = \frac{\psi}{\psi''},$$

(23)

$$\chi_0(y) = \frac{\psi}{\psi''}.$$

(24)

The relevant auxiliary linear operators are consider as

$$L_\psi = \frac{\partial^3}{\partial y^3}, L_\theta = \frac{\partial^2}{\partial y^2}, L_\Omega = \frac{\partial^2}{\partial y^2}, L_\chi = \frac{\partial^2}{\partial y^2}$$

(25)

which satisfies the properties

$$L_\psi \left[c_1 + c_2 y + c_3 \frac{\psi}{2} \right] = 0, L_\theta \left[c_4 + c_5 y \right] = 0, L_\Omega \left[c_6 + c_7 y \right] = 0, L_\chi \left[c_8 + c_9 y \right] = 0,$$

(26)

The solutions are easily found coupled equations together with boundary conditions. Using the methodology of the given method, solutions are written as follows

$$\psi(y, q) = \left(\frac{3F}{h^2} - \frac{1}{h^2} \right) y^2 - \left(\frac{2F}{h^3} + \frac{1}{h^2} \right) y^3 + h_\psi^2 a_{11} + h_\psi^3 a_{12} + h_\psi^4 a_{13} + h_\psi^5 a_{14}$$

$$+ h_\psi^5 \left[\left(\frac{h_\psi}{24h} - N_r \frac{h_\psi}{24h} \left(1 + \frac{N_t}{N_b} \right) - Rb \frac{h_\psi}{24h} (1 - Pe\sigma) \right) \right] \frac{y^4}{h^4} + \left(\frac{Pr N_t}{120h^2} + \frac{Pr N_t}{120h^2} + \frac{Pr N_e}{120h^2} \right) \frac{y^5}{h^5},$$

(27)

$$\theta(y, q) = \frac{\psi}{h} + h_\theta^2 \left(\frac{\psi}{h} + Pr N_b \left(1 + \frac{N_t}{N_b} \right) \frac{y^2}{h^2} + h_\theta^2 \frac{\psi}{h} + h_\theta^3 \frac{\psi}{h} + h_\theta^4 \frac{\psi}{h} \right)$$

$$+ h_\theta^4 Pr \left(1 + \frac{N_t}{N_b} \right) \frac{y^2}{h^2} + h_\theta^4 Pr N_t \left(1 + \frac{N_t}{N_b} \right) \frac{y^2}{h^2},$$

(28)

$$\Omega(y, q) = \frac{\psi}{h} + h_\Omega^2 \left(1 + \frac{N_t}{N_b} \right) \frac{y}{h} + h_\Omega^2 \left(1 + \frac{N_t}{N_b} \right) \frac{y}{h} + h_\Omega^4 \left(1 + \frac{N_t}{N_b} \right) \frac{y}{h}$$

$$+ h_\Omega \left(1 + \frac{N_t}{N_b} \right) \frac{y}{h} + h_\Omega \left(1 + \frac{N_t}{N_b} \right) \frac{y}{h} + h_\Omega \left(1 + \frac{N_t}{N_b} \right) \frac{y}{h}$$

(29)

$$\chi(y, q) = \frac{\psi}{h} + h_\chi^2 \left(\frac{\psi}{h} - Pe \frac{y^2}{h^2} - Pe \sigma \frac{y}{h} \right) + h_\chi^3 \left(1 - Pe \sigma \right) \frac{y}{h} - Pe \frac{y^2}{h^2},$$

(30)

$$h_\chi \left(1 - Pe \sigma \right) \frac{y}{h} - \left(1 + h_\Omega \right) \frac{N_t}{N_b} \frac{Pe}{h_\Omega} \left(1 + \frac{N_t}{N_b} \right) \frac{y^2}{h^2} - h_\Omega Pe \left(1 + \frac{N_t}{N_b} \right) \frac{y^3}{h^3},$$

(31)

The wave frame of volumetric flow rate is defined as

$$Q(x, t) = \int_{0}^{h} u(y, q, dy).$$

(32)

The pressure gradient expression can be written in the form as below

$$\frac{\partial p}{\partial x} = \left(\frac{Q}{\psi} \left(\frac{4F}{3h^2} \right) (x+\frac{1}{x}) \right) \frac{y^2 - h_\psi^2 c_{11} - h_\psi^5 c_{15}}{-h_\psi^5 c_{15} + h_\psi^5 c_{15}}.$$

(33)

Graphical Analysis

JIC email for subscription: publishing@WAU.org.uk
This section represents the detailed analysis of the various physical parameters of pressure gradient, temperature, nanoparticle concentration and motile microorganism density profile.

Pressure gradient profile

In Figures (1) describe the flow behavior of various physical parameters on pressure gradient profile. Figure 1(a) and figure 1(b) are described to show the flow behavior of fluid parameters A and B. It is observed that fluid parameter have opposite behavior on pressure gradient. Fluid parameter A increases with an increasing pressure gradient, which occurs the non-linear part of the momentum equation, in the considerable part of the channel is comparatively dwarf $x \in [0,0.2]$ and $x \in [0.5,0.6]$ the pressure gradient is relatively small and the flow can easily pass without forcing of large pressure gradient. However, the tapered part of channel is $x \in [0.3,0.5]$ as much immense pressure gradient is required to maintain the same flux to pass through it. Besides, we have observed that fluid parameter B increases on pressure gradient (>0) increased. Since $B = \frac{1}{\mu \beta c}$, by increasing B the viscosity of fluid μ decreases, which cause decreases in pressure. Figures 1(c) and 1(d) are plotted to show the effect of Grashof number and buoyancy ratio pressure gradient. Through this figures one can be observed that pressure decreases for both the parameters. In figure 1(e) depicted Biconvection Rayleigh parameter effect on pressure. When Biconvection Rayleigh parameter increases the pressure gradient is decreased. This is due convection instability take place and that cause convection pattern which decrease the pressure gradient.

Temperature profile

Figure 2 is plotted to show the behavior of physical parameters N_b, N_t and Pr on the temperature distribution θ by fixing other physical parameters. Figure 2(a) reveals that the temperature profile is decreasing, when the Brownian motion parameter N_b is increased. Thermophoresis parameter variationon on temperature profile is showed in figure 2(b). We observed that the temperature appears to be increases when thermophoresis parameter N_t is increased, since the collision between the particles enhances which produce plenty of heat, as a results in raises of temperature. The Figure 2(c) describes the Prandtl number effect. Observe that Prandtl number increases on temperature profile increased.

Concentration profile

In figure (3) shows about the various physical parameters N_t, N_b and Pr on nanoparticles concentration profile Ω. In figure 3(a), we have to observe that motion of nanoparticles increases with increase of Brownian motion parameter. The fact is due to transfer of nanoparticle from cold region to hot region which yield the increment of concentration distribution. Figure 3(b) shows the consequence of thermophoresis parameter. When the thermophoresis parameter increases the concentration decreases. The decrease in nanoparticles concentration is due to interference in fluid molecules. Since, in thermophoresis, where the particles are moved away from the hot region to cold region, which results the disturbance in nanoparticle and hence there is decrease in concentration of nanoparticles. The figure 3(c) describes the flow of nanoparticle concentration decreases when the Prandtl number is increased. As the Prandtl number Pr increases the thermal conductivity of the fluid decreases thus the concentration of nanoparticle decreases.

Density of Motile microorganism profile

Figure 4 is plotted for the various flow behavior of the motile microorganism profile for different physical parameters. From figure 4(a), one can observed that the density of motile microorganism profile increases with an increase of Brownian motion parameter N_b. It is obvious that motile microorganism transfer rate increases when N_b is increased. Figure 4(b) depicted the thermophoresis parameter effect on the motile microorganism density, it is noticed that density of motile microorganism profile decreased when the thermophoresis parameter N_t increases. Enhancement in N_t brings the nanoparticle at higher state heat region which enhance the fluid temperature. Hence the density of microorganism decreases. Figure 4(c) express the Biconvection Peclet number decreases with decrease of motile microorganism density. In Figure 4(d) shows the effect Biconvection constant σ on motile microorganism density. The motile microorganism density appears to be decreases when Biconvection constant is increased.
Fig. 1 $\frac{dp}{dx}$ to x, when $t = 0.1$, $x = 0.2$, $Pr = 6.9$, $\varphi = 0.6$, $Q = 0.25$, $\lambda = 10$, $\alpha_{20} = 2.0$, $\sigma = 0.5$, $Nt = 0.4$, $Nb = 0.4$; (a) $Gr=1.5$, $Nr=1.5$, $Rb=1.5$, $B=2.0$. (b) $A=0.001$, $Gr=1.5$, $Nr=1.5$, $Rb=1.5$. (c) $A=0.001$, $B=2.0$, $Nr=1.5$, $Rb=1.5$. (d) $A=0.001$, $B=2.0$, $Gr=1.5$, $Rb=1.5$. (e) $A=0.001$, $B=2.0$, $Gr=0.4$, $Nr=0.3$.
Fig. 2 Temperature θ versus y when $t = 0.1, x = 0.2, \varphi = 0.6, Q = 0.25, \lambda = 10, k = 0.1, \alpha_2 = 2.0.$
(a) $Nt = 0.4, Pr = 6.9.$
(b) $Pr = 6.9, Nb = 0.4.$
(c) $Nt = 0.4, Nb = 0.4.$
Fig. 3 Concentration Ω versus y when $t = 0.1$, $x = 0.2$, $\varphi = 0.6$, $Q=0.25$, $\lambda =10$, $k =0.1$, $a_20=2.0$; (a) $Nt=0.4$, $Pr=6.9$. (b) $Pr=6.9$, $Nb=0.4$. (c) $Nt=0.4$, $Nb=0.4$.
Fig. 4 Motile microorganism density versus y when $t = 0.1$, $x = 0.2$, $Pr = 6.9$, $\varphi = 0.6$, $Q = 0.25$, $\lambda = 10$, $k = 0.1$, $a_{20} = 2.0$; (a) $\sigma = 0.5$, $Nt = 0.4$, $Pe = 2.0$. (b) $\sigma = 0.5$, $Nb = 0.4$, $Pe = 2.0$. (c) $Nb = 0.4$, $\sigma = 0.5$, $Nt = 0.4$. (d) $Pe = 2.0$, $Nt = 0.4$, $Nb = 0.4$.

Concluding remarks

Here we analyzed the Biconvection peristaltic flow of a nano Eyring-Powell fluid through non-uniform channel containing gyrotactic microorganism is investigated under long wavelength and low Reynolds number approximations. The results are displayed in the form of graphs and following the important points are mentioned below.

- Pressure gradient gives opposite behavior with an increasing values of Eyring-Powell fluid parameters A and B.
• Opposite behavior of nanoparticle concentration and temperature profiles increases with an Brownian motion parameter (Nb), thermophoresis parameter (Nt), Prandtl number (Pr).
• Pressure gradient profile decreases with an increasing values of Grashof number(Gr), buoyancy ratio (Nr) and Bioconvection Rayleigh number(Rb).
• Densityof Motile microorganism gives the opposite outcomes an increasing values of Brownian motion parameter(Nb), thermophoresis parameter(Nt).
• Similar behavior for density of motile microorganism profile increases with an increasing values of Bioconvection Peclet number(Pe), Bioconvection constant (σ).

Acknowledgement

Author Asha S. K acknowledge the kind support of the UGC (F510/3/DRS-III/2016(SAP-I)) dated:29/02/2016. The author Sunitha G acknowledge to UGC for financial support under NFST scheme (201718-NFST-KAR-01215) dated: 01/04/2017.

Appendix: supplementary data.

The values of $a_{11}, a_{12}, a_{13}, a_{14}$ in Eq. (35) are written in the below:

$$a_{11} = - \frac{\partial p y^3}{\partial x} + (1 + B) \left(\frac{3F}{h^2} - \frac{1}{h} \right) y^2 - \left(\frac{2F}{h^2} - \frac{1}{h^2} \right) y^3 + Gr \left(\frac{y^4}{24h} - Nr \frac{y^4}{24h} - Rb \frac{y^4}{24h} \right)$$

$$- \frac{A(12F - 6h)}{h^9} \left((6Fh + 2h^2)^2 \frac{y^3}{6} + (12F + 6h)^2 \frac{y^5}{60} - 2(6Fh + 2h^2)(12F + 6h) \frac{y^4}{24} \right)$$

$$a_{12} = - \frac{\partial p y^3}{\partial x} + (1 + B) \left(\frac{3F}{h^2} - \frac{1}{h} \right) y^2 - \left(\frac{2F}{h^2} - \frac{1}{h^2} \right) y^3 + Gr \left(\frac{y^4}{24h} - Nr \frac{y^4}{24h} - Rb \frac{y^4}{24h} \right)$$

$$- \frac{A(12F - 6h)}{h^9} \left((6Fh + 2h^2)^2 \frac{y^3}{6} + (12F + 6h)^2 \frac{y^5}{60} - 2(6Fh + 2h^2)(12F + 6h) \frac{y^4}{24} \right)$$

$$\frac{a_{13}}{h^9} = (1 + B) \frac{\partial p y^3}{\partial x} + (1 + B) \left(\frac{3F}{h^2} - \frac{1}{h} \right) y^2 - \left(\frac{2F}{h^2} - \frac{1}{h^2} \right) y^3 + (1 + B)Gr \left(\frac{y^4}{24h} - Nr \frac{y^4}{24h} - Rb \frac{y^4}{24h} \right)$$

$$- \frac{A(1 + B)(12F - 6h)}{h^9} \left((6Fh + 2h^2)^2 \frac{y^3}{6} + (12F + 6h)^2 \frac{y^5}{60} - 2(6Fh + 2h^2)(12F + 6h) \frac{y^4}{24} \right)$$

$$a_{14} = \frac{\partial p}{\partial x} + 6(1 + B) \left(\frac{2F}{h^2} - \frac{1}{h^2} \right) y^2 + \frac{A(12F - 6h)}{h^9} \left(6Fh + 2h^2 \right)^2$$

$$\left(\frac{\partial p}{\partial x} + 6(1 + B) \left(\frac{2F}{h^2} - \frac{1}{h^2} \right) y^2 - \frac{A(12F - 6h)}{h^9} \left(6Fh + 2h^2 \right)^2 \right) \frac{y^5}{60}$$

$$- 4(1 + B) \left(\frac{3F}{h^2} - \frac{1}{h} \right) \frac{A(12F - 6h)}{h^9} \left(6Fh + 2h^2 \right)^2 (12F + 6h) + Gr \left(\frac{1}{2h} \frac{Gr}{2h} - Rb \frac{y^4}{24h} \right)$$

$$- \frac{4(1 + B) \left(\frac{3F}{h^2} - \frac{1}{h} \right) \frac{A(12F - 6h)}{h^9} (12F + 6h)^2 + 2 \left(\frac{\partial p}{\partial x} + 6(1 + B) \left(\frac{2F}{h^2} + \frac{1}{h^2} \right) \frac{A(12F - 6h)}{h^9} (6Fh + 2h^2)^2 \right) \frac{y^6}{5!}$$

$$\frac{A(12F - 6h)}{3h^9} (12F + 6h)^2$$

$$\frac{A(12F - 6h)}{h^9} (6Fh + 2h^2)(12F + 6h) + 2 \left(\frac{\partial p}{\partial x} + 6(1 + B) \left(\frac{2F}{h^2} + \frac{1}{h^2} \right) \frac{A(12F - 6h)}{h^9} (6Fh + 2h^2)^2 \right) \frac{y^7}{210}$$

\[JIC email for contribution: editor@jic.org.uk\]
\[-2 \left(\frac{A(12F - 6h)}{h^9} (6Fh + 2h^2)(12F + 6h) + Gr \left(\frac{1}{2h} - \frac{Nr}{2h} - \frac{Rb}{2h} \right) \right) \left[\frac{A(12F - 6h)}{3h^9} (12F + 6h)^2 \right] \frac{y^8}{336} \]

The values of \(b_{11}, b_{12}, b_{13}, b_{14} \) in Eq. (39) are written in the below:

\[
b_{11} = - \frac{\partial p}{\partial x} \frac{y^2}{2} + (1 + B) \left[2 \left(\frac{3F}{h^3} - \frac{1}{h} \right) y - 3 \left(\frac{2F}{h^3} + \frac{1}{h^2} \right) y^2 \right] + Gr \left(\frac{y^3}{6h} - \frac{Nr y^3}{6h} - \frac{Rb y^3}{6h} \right) - \frac{A(12F - 6h)}{h^9} \left[(6Fh + 2h^2) \frac{y^2}{2} + (12F + 6h)^2 \frac{y^3}{12} - 2(6Fh + 2h^2)(12F + 6h) \frac{y^3}{6} \right]
\]

\[
b_{12} = - \frac{\partial p}{\partial x} \frac{y^2}{2} + (1 + B) \left[2 \left(\frac{3F}{h^3} - \frac{1}{h} \right) y - 3 \left(\frac{2F}{h^3} + \frac{1}{h^2} \right) y^2 \right] + Gr \left(\frac{y^3}{6h} - \frac{Nr y^3}{6h} - \frac{Rb y^3}{6h} \right) - \frac{A(12F - 6h)}{h^9} \left[(6Fh + 2h^2) \frac{y^2}{2} + (12F + 6h)^2 \frac{y^3}{12} - 2(6Fh + 2h^2)(12F + 6h) \frac{y^3}{6} \right]
\]

\[
b_{13} = (1 + B) \frac{\partial p}{\partial x} \frac{y^2}{2} + 2(1 + B)^2 \left(\frac{2F}{h^3} + \frac{1}{h^2} \right) y - 3(1 + B)^2 \left(\frac{2F}{h^3} + \frac{1}{h^2} \right) y^2 + (1 + B) Gr \left(\frac{y^3}{6h} - \frac{Nr y^3}{6h} - \frac{Rb y^3}{6h} \right) - \frac{A(1 + B)(12F - 6h)}{h^9} \left[(6Fh + 2h^2) \frac{y^2}{2} + (12F + 6h)^2 \frac{y^3}{6} - 2(6Fh + 2h^2)(12F + 6h) \frac{y^3}{6} \right]
\]

\[
b_{14} = \left(\frac{\partial p}{\partial x} + 6(1 + B) \left(\frac{2F}{h^3} - \frac{1}{h^2} \right) \right) + \frac{A(12F - 6h)}{h^9} \left(6Fh + 2h^2 \right)^2
\]

\[
\left(4(1 + B)^2 \left(\frac{3F}{h^3} - \frac{1}{h^2} \right) \frac{y^2}{2} - 4(1 + B) \left(\frac{3F}{h^3} - \frac{1}{h^2} \right) \frac{\partial p}{\partial x} + 6(1 + B) \left(\frac{2F}{h^3} + \frac{1}{h^2} \right) \frac{A(12F - 6h)}{h^9} \right) \frac{y^3}{2!}
\]

\[
- \left(\frac{\partial p}{\partial x} + 6(1 + B) \left(\frac{2F}{h^3} + \frac{1}{h^2} \right) + \frac{A(12F - 6h)}{h^9} \left(6Fh + 2h^2 \right)^2 \right)^2 - 4(1 + B) \left(\frac{3F}{h^3} - \frac{1}{h^2} \right)
\]

\[
\left\{ \begin{align*}
&\frac{A(12F - 6h)}{h^9} \left(6Fh + 2h^2 \right)^2 (12F - 6h) + Gr \left(\frac{1}{2h} - \frac{Nr}{2h} - \frac{Rb}{2h} \right) \frac{y^4}{12} \\
&\left[A(12F - 6h)(12F + 6h)^2 \right] (12F + 6h) + Gr \left(\frac{1}{2h} - \frac{Nr}{2h} - \frac{Rb}{2h} \right) \frac{y^5}{20} \\
&+ \frac{A(12F - 6h)}{h^9} \left(6Fh + 2h^2 \right)^2 (12F + 6h) + 2 \left(6(1 + B) \left(\frac{2F}{h^3} + \frac{1}{h^2} \right) + \frac{\partial p}{\partial x} + 6(1 + B) \left(\frac{2F}{h^3} + \frac{1}{h^2} \right) \frac{A(12F - 6h)}{h^9} \right) \frac{y^6}{30} \\
&\left\{ \begin{align*}
&\frac{[A(12F - 6h)(12F + 6h)^2]}{h^9} (12F + 6h) + Gr \left(\frac{1}{2h} - \frac{Nr}{2h} - \frac{Rb}{2h} \right) \frac{y^7}{41} \\
&-2 \left(\frac{A(12F - 6h)}{h^9} (6Fh + 2h^2)(12F + 6h) + Gr \left(\frac{1}{2h} - \frac{Nr}{2h} - \frac{Rb}{2h} \right) \frac{[A(12F - 6h)(12F + 6h)^2]}{2h^9} \right) \frac{y^8}{336} \\
&+ \frac{[A(12F - 6h)(12F + 6h)^2]}{3h^9} (12F + 6h)^2 \\
&-2 \left(\frac{A(12F - 6h)}{h^9} (6Fh + 2h^2)(12F + 6h) + Gr \left(\frac{1}{2h} - \frac{Nr}{2h} - \frac{Rb}{2h} \right) \frac{[A(12F - 6h)(12F + 6h)^2]}{2h^9} \right) \frac{y^7}{41}
\end{align*} \right.
\end{align*}
\right.
\]

The values of \(c_{11}, c_{12}, c_{13}, c_{14}, c_{15} \) in Eq. (41) are written in the below:

\[
c_{11} = (1 + B) \left[\left(\frac{3F}{h^3} - \frac{1}{h^2} \right) h^2 - \left(\frac{2F}{h^3} + \frac{1}{h^2} \right) h^3 \right] + Gr \left(\frac{h^3}{24} - \frac{Nr h^3}{24} - \frac{Rb h^3}{24} \right)
\]
$$
\begin{align*}
&- \frac{A(12F - 6h)}{h^9} \left(6Fh + 2h^2 + (12F + 6h)^2 - 2(6Fh + 2h^2)(12F + 6h)\frac{h^4}{24}\right) c_{12} \\
&= (1 + B) \left(\frac{3F}{h^2} - \frac{1}{h}\right) h^2 - \left(\frac{2F}{h^2} + \frac{1}{h}\right) h^3 + Gr \left(\frac{h^3}{24} - \frac{Nr}{24} - \frac{Rb}{24}\right) \\
&- \frac{A(12F - 6h)}{h^9} \left(6Fh + 2h^2 + (12F + 6h)^2 - 2(6Fh + 2h^2)(12F + 6h)\frac{h^4}{24}\right) c_{14} = \left(6(1 + B) \left(\frac{2F}{h^3} + \frac{1}{h}\right) + \frac{A(12F - 6h)}{h^9} (6Fh + 2h^2)\right) \frac{h^4}{4!} \\
&\left(4(1 + B)^2 \left(\frac{3F}{h^2} - \frac{1}{h}\right)^2 \frac{h^3}{3!} - 4(1 + B) \left(\frac{3F}{h^2} - \frac{1}{h}\right) \left(\frac{6(1 + B) \left(\frac{2F}{h^3} + \frac{1}{h}\right) + \frac{A(12F - 6h)}{h^9} (6Fh + 2h^2)}{2} \left(\frac{A(12F - 6h)}{h^9} (6Fh + 2h^2)^2\right) \right) h^5 \frac{1}{60} \\
&= \left(\frac{A(12F - 6h)}{h^9} (6Fh + 2h^2)^2(12F - 6h) + Gr \left(\frac{1}{2h} - \frac{Nr}{2h} - \frac{Rb}{2h}\right)\right) h^5 \frac{1}{120} \\
&\left(\frac{A(12F - 6h)}{h^9} (6Fh + 2h^2)^2(12F + 6h) + Gr \left(\frac{1}{2h} - \frac{Nr}{2h} - \frac{Rb}{2h}\right)\right) h^5 \frac{1}{210} \\
&- \left(\frac{A(12F - 6h)}{h^9} (12F - 6h)^2\right) \left(\frac{A(12F - 6h)}{h^9} (6Fh + 2h^2)(12F + 6h) + Gr \left(\frac{1}{2h} - \frac{Nr}{2h} - \frac{Rb}{2h}\right)\right) h^7 \frac{8}{336} c_{13} \\
&= (1 + B)^2 \left(\frac{3F}{h^2} - \frac{1}{h}\right) h^2 - (1 + B)^2 \left(\frac{2F}{h^2} + \frac{1}{h}\right) h^3 + (1 + B)Gr \left(\frac{h^3}{24} - \frac{Nr}{24} - \frac{Rb}{24}\right) \\
&- \frac{A(1+B)(12F - 6h)}{h^9} \left(6Fh + 2h^2 + (12F + 6h)^2 - 2(6Fh + 2h^2)(12F + 6h)\frac{h^4}{24}\right) \frac{h^8}{24} c_{15} = \frac{h^3}{24h} - \frac{h^3}{24h} \left(1 + \frac{Pr N b}{120h^2} + \frac{Pr N}{120h^2} + \frac{Rb Pe}{120h^2}\right) \frac{h^5}{24} \\
\end{align*}
$$

References

