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Abstract. The COVID-19 pandemic caused by the novel corona virus (SARS-CoV-2) has been one of the
major public health concerns across the globe, currently more than 20 million individuals have been infected,
and the number of deaths has passed 750,000. The world wide burden of the disease has been massive, and
the governments are in dilemma to protect the health system of the country while safeguarding the economy.
There is no vaccine or antivirus drug found against this virus while multiple research groups are actively
working on a suitable candidate. The only available mode of minimizing the disease burden has been to control
its transmission among the population. Since the occurrence of first COVID-19 local case on 11 March 2020,
the government of Sri Lanka introduced serious social distancing and public health interventions in its fullest
capacity as a developing nation to effectively combat with the disease spread. This study focuses to develop
a mathematical model to investigate the dynamic of this novel disease using an extended version of an SEIR
compartmental structure considering the heterogeneity of cases such as asymptomatic, symptomatic with mild
indications and the cases required intensive care treatment. All the measures and interventions are in progress
with a significantly large social and economic costs, thus, optimal control techniques are used to identify the
most appropriate strategies to minimize these costs. The results of the simulations prove that optimal control
measures can be worked out as the epidemic curves are flattened while delaying the outbreak so that the health
system might not be under pressure to treat and care the patients.
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1 Introduction

The COVID-19 outbreak occurred in the city of Wuhan, Hubei province, China during late December
2019 from a cluster of pneumonia cases. The Chinese health authorities identified and informed World Health
Organization (WHO) that the pneumonia condition was due to novel beta corona virus, the 2019 novel virus
(2019-nCoV, recently renamed as SARS-CoV-2, the cause of corona virus disease COVID-19) [1]. It is claimed
that the novel corona virus likely to have originated from a zoonetic type of transmission, occurred in a wet
sea food market where wild animals are sold openly. Soon after few days, Chinese researchers found out that
the corona virus effectively show the human-to human transmission, and this new virus was identified to be
extremely contagious among people [2].

The novel corona virus transmitted to human through respiratory droplets of another. It had also been
revealed later that these droplets can survive in variety of surfaces for multiple hours or even for days. Common
symptoms of COVID-19 disease have been fever, cough and fatigue. There are some less common symptoms
including sputum production, headache, hemophiliacs, and diarrhea [3]. According to WHO, COVID-19 has
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spread for more than 210 countries and independent territories while Italy, Spain, United States and Iran are
the hardest hit apart from China where the disease is known to be emerged but now significantly controlled and
stable. In numbers, currently more than 20 million people have been infected while there are 750 000 reported
deaths worldwide [4].

Since this is a new virus, there is no vaccination found yet, however, there are number of scientific in-
vestigations are in progress including animal and human trials, across the globe to find a successful vaccine
candidate to fight with the corona virus [5]. Researchers claim that, though they are able to find a suitable
vaccine, it would take reasonable number of months to make them available to people. The only effective s-
trategy to fight against COVID-19 is to control its transmission through social distancing measures and public
health interventions. Contact tracing and isolation of cases is a common intervention for controlling infectious
disease outbreaks which most of the countries have been following, however, it might need intensive public
health efforts and community mobilization due to the requirement of figuring out all possible contacts. Current
modeling outcomes suggest that at a minimum of 80% of symptomatic contacts must be traced, isolated and
treat to maintain the efficacy of control and the stability of the disease spread [6].

In Sri Lanka, the first COVID-19 case was found on 26 January 2020, was a Chinese national and she
recovered after few weeks. The first local patient was found on 11 March 2020 and the government of Sri
Lanka took strong decisions to control the transmission of the disease over the community including shutting
down all the places of public gatherings such as schools, universities and non essential services, imposing travel
ban to high risk countries, introducing mandatory quarantine for all arrivals to the country, shutting down the air
port and finally imposing island wide curfew [7]. The time line of COVID-19 related events and responses by
the government is illustrated in Fig. 1. As of 15 August 2020, there are 2886 confirmed cases, 2666 recoveries
and 11 deaths reported in the island while there are many suspected exposed cases are closely monitored [7].
Few of the high risk areas and villages have been locked down restricting any type of mobility. Even though the
public health sector including the military forces are acting effectively, one of the major challenges to combat
with the virus in Sri Lanka has been the significant rise in the asymptomatic infections who are not showing
any COVID-19 symptoms but they are carries of the virus in the population [8].

Fig. 1: COVID-19 events (red) and control measures (blue) in Sri Lanka from the first reported case.

Since COVID-19 is a new disease emerged in the world, lack of data are available related to the dynamic
of the virus so that they fit to existing mathematical models to predict the outbreak. However, these models
may be used to demonstrate the possible different scenarios of the disease transmission with respect to social
distancing and public health intervention measures introduced by authorities [9].

In this study, we adopt the SEIR (Susceptible, Exposed, Infected, Recovered) compartmental approach to
model the dynamic of COVID-19 in Sri Lanka. As it it critical to test, trace and isolate not only the symp-
tomatic cases but also the asymptomatic, the infected population then is divided into asymptomatic (IA) and
the symptomatic with mild symptoms (IM ). In the context of Sri Lanka, all cases who are tested positive for
the virus are isolated in designated hospitals and treated. The patients whose condition is not developed for the
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severe level (IH ) are treated in isolated general wards however, the patients whose condition is worsen due to
their demography and various other health related issues (IC) are transferred to Intensive Care Units (ICUs)
[10]. In order to deal with this COVID-19 outbreak, the government has decided to implement tough measures
such as social distancing, personal protection, aggressive testing for the virus of all contacts and etc. In this
context, the optimal control problem is considered to study the effect of said control measures to minimize the
spread COVID-19 disease [11, 12].

This manuscript is organized as follows: In section 2, the deterministic mathematical model without con-
trol is discussed. Furthermore, basic analysis and the disease free equilibrium are presented by defining the
basic reproduction number (R0). In section 3, we present the optimal control problem with essential mathemat-
ical analysis. Numerical results and discussion are given in section 4 and finally the conclusion is presented in
section 5.

2 Methods

2.1 Mathematical model with out control

First, we introduce the mathematical model of COVID-19 transmission with out any control measures. A
more extended version of the SEIR (Susceptible-Exposed-Infected-Recovered) compartment model structure
is used to formulate this dynamic [10, 13–15]. In Sri Lanka, the health authorities treated all the symptomatic
COVID-19 cases in government hospitals, rather than advising them to be self-isolated. However, recent inter-
national travelers and close contacts of the identified COVID-19 patients are isolated in government managed
quarantine centers in the different parts of the island [7]. If patients are identified from those groups then they
are immediately taken to the hospitals and treated. However, it is also found that a reasonable number of in-
dividuals who are tested positive while they were asymptomatic [5, 7]. Based on this policy structure in Sri
Lankan context, seven population compartments are considered for the model; Susceptible (S), Exposed (E),
Infected with asymptomatic (IA), Infected with mild symptoms (IM ), Isolated in designated hospitals (IH ), Pa-
tients with critical conditions treated in Intensive Care Units (IC) and the patients who clinically determined as
Recovered (R) [10]. Following the compartmental transition schematic diagram illustrated in Fig. 2, the seven
dimensional differential system describing the COVID-19 transmission is given by

dS

dt
= −(β1E + β2IA + β3IM )S − qS

dE

dt
= k + (β1E + β2IA + β3IM )S − σE

dIA
dt

= φσE − δ1IA − γ1IA

dIM
dt

= (1− φ)σE − δ2IM

dIH
dt

= δ1IA + δ2IM − ηIH − γ2IH

dIC
dt

= ηIH − γ3IC − µIC
dR

dt
= γ1IA + γ2IH + γ3IC

(1)

where β1, β2 and β3 represent the transmission rates from the exposed, infected and asymptomatic, and infected
and symptomatic respectively while q is the rate of isolation of the susceptible individuals due to lock down,
k is the rate of imported exposed cases, σ is the rate at which the exposed cases become infected, φ is the
percentage of exposed individuals who become asymptomatic, δ1 is the rate at which the asymptomatic cases
are tested and hospitalized, δ2 is the rate at which the symptomatic cases are tested and admitted to hospitals,
η is the rate of patients condition becomes severe and require intensive care treatments, γ1 is the recovery rate
of asymptomatic cases who are not in hospitals, γ2 is the recovery rate of mild symptomatic cases who are in
general wards in hospitals, γ3 is the recovery rate of critically sick patients and µ is the death rate of the disease.
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The initial conditions for the model (1) is as S(0) = S0, E(0) = E0, IA(0) = I0
A, IM (0) = I0

M ,
IH(0) = I0

H , IC(0) = I0
C and R(0) = R0. We let the set of solutions denoted by Ω to the system of nonlinear

differential equations in (1) as
Ω = {(S,E, IA, IM , IH , IC , R) ∈ R7

+ : S + E + IA + IM + IH + IC +R
≤ 1, S, E, IA, IM , IH , IC , R ≥ 0}.

Fig. 2: Schematic diagram of COVID-19 transmission

2.2 Analysis of the model

2.2.1 Basic reproduction number

Basic reproduction number R0 stands for the number of secondary infections those can be produced by
a single infected patient on average [18]. It is very critical to distinguish new infections in the dynamic of the
population to compute R0. In general, we let x = (x1, . . . , xn)T , xi ≥ 0, be the number of individuals in each
population class. For simplicity, we arrange the compartments in such a way that first m stand for the infected
individuals. We also define the set
X0 = {x ≥|xi = 0, i = 1, . . . ,m}.

Let Fi(x) be the rate of arrival of new infections in compartment i, V+
i (x) be the rate of transfer of

individuals into compartment i in various other routes, and V−i (x) be the rate of transfer of individuals out of
compartment i. The functions Fi(x), V+

i (x) and V−i (x) are assumed to be continuous and at a minimum of
twice differentiable on x. Now in general terms, the system of differential equations can be represented in the
form

ẋi = fi(x) = Fi(x)− Vi(x), i = 1, . . . , n, (2)

where Vi(x) = V−i (x)− V+
i (x) and the above functions must meet the assumptions A(1)-A(5) listed below.

A(1) Since each function represents a directed transfer of individuals in the population, they are all non-negative.
That is, if x ≥ 0, then Fi(x),V+

i (x),V−i (x) ≥ 0 for i = 1, . . . , n.
A(2) If a compartment is empty, then there can be no transfer of individuals out of the compartment by death,

migration, infection, nor any other means. That is, if xi = 0 then V−i (x) = 0.
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A(3) The incidence of infection for uninfected compartments is zero. That is, Fi(x) = 0 if i > m.
A(4) If the population is free of disease then the population will remain free of disease. Thus, if x ∈ X0 then

Fi(x) = 0 and V+
i (x) = 0 for i, . . . ,m.

A(5) If the population is held closed to the Disease Free Equilibrium (DFE) then the population will get back to
the DFE as ruled by the linearized system

ẋ = Df(x0)(x− x0) (3)

where Df(x0) =
[∂fi
∂xi

]
assessed at the DFE, x0. This can be written as if F(x) = 0 then all eigenvalues

of Df(x0) have negative real parts.

Using th assumptions A(1)-A(5) enable us to partition the matrix Df(x0). This is given by the following
lemma.

Lemma 1. If x0 is a DFE of the system (2) and fi(x) satisfies A(1)-A(5) then the derivatives DF(x0) and
DV(x0) are partitioned as

DF(x0) =

(
F 0
0 0

)
, DV(x0) =

(
V 0
J3 J4

)
,

where F and V are the m×m matrices defined by F =
[∂Fi
∂xj

(x0)
]

and

V =
[∂Vi
∂xj

(x0)
]

with 1 ≤ i, j ≤ m. Further, F is non-negative, V is a non-singular M-matrix and all

eigenvalues of J4 have positive real part.

Proof. Let x0 ∈ X0 be a DFE. By A(3) and A(4),
∂Fi
∂xi

(x0) = 0 if either i > m or j > m. Similarly, A(2) and

A(4) gives that if x ∈ X0 then Vi(x) = 0 for i ≤ m. This provides
∂Vi
∂xi

(x0) = 0 for i ≤ m and j > m. This

shows the stated partition and zero blocks. The non-negativity of F follows from A(1) and A(4).
Let ej be the Euclidean basis vectors. That is, ej is the jth column of the n × n identity matrix. Then, for
i = 1, . . . ,m

(∂Vi
∂xi

)
(x0) = limh→0+

(Vi(x0 + hej)− Vi(x0)

h

)
.

To show that V is a non-singular M-matrix, note that if x0 is a DFE, then using A(2) and A(4), Vi(x0) = 0
for i = 1, . . . ,m and if i 6= j, the the jth component of x0 + hej = 0 and Vi(x0 + hej) ≤ 0, by A(1) and

A(2). Therefore,
∂Vi
∂xj

≤ 0 for i ≤ mand j 6= i and V has the Z sign pattern [16]. Furthermore, by A(5), all

eigenvalues of V have positive real parts. These two conditions provide that V is a non-singular M-matrix [16].
Finally, A(5) also implies that the eigenvalues of J4 have positive real part. This completes the proof.

Now we aim to compute the basic reproduction number for the system (1). The method of next generation
matrix is used to derive R0. For this purpose we now define the new vector of only infected variables X =
(E, IA, IM ) containing the classes which are responsible to transmit the virus in the population. It is assumed
that the classes of IH and IC are fully isolated and it is unlikely that the virus is transmitted to the society
anymore. Hence, we establish the following system of differential equations [16–18]:

dE

dt
= k + (β1E + β2IA + β3IM )S − σE

dIA
dt

= φσE − δ1IA − γ1IA

dIM
dt

= (1− φ)σE − δ2IM

(4)
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To apply the next generation matrix method, the necessary matrices F and V are obtained as follows
[16, 17]:

F =

 β1S
0 β2S

0 β2S
0

0 0 0
0 0 0

 , (5)

and

V =

 σ 0 0
−φσ (δ1 + γ1) 0

−(1− φ)σ 0 δ2

 . (6)

Now the next generation matrix system is

FV −1 =


S0β1

σ
− S0β3(φ− 1)

δ2
+
S0φβ2

δ1 + γ1

S0β2

δ1 + γ1

S0β3

δ2

0 0 0
0 0 0

 . (7)

So, the basic reproduction number is the spectral radius ρ of the matrix FV −1. Thus, we obtain

R0 = S0
[β1

σ
+

(1− φ)β3

δ2
+

φβ2

δ1 + γ1

]
(8)

The expression for R0 reveals very useful information about the dynamic of COVID-19 transmission such that
the expected number of secondary infection is the addition of infections due to the exposed, asymptomatic,
symptomatic cases respectively. As φ goes to 1, the secondary infections are not produced by the cases with
mild symptoms as they have been tested and isolated early. Mathematically, it can be very easily shown that

limφ→1R0 = S0
[β1

σ
+

β2

δ1 + γ1

]
.

2.2.2 Stability analysis of the disease free equilibrium

Let us first obtain matrix M such that

M = F − V =

 S0β1 − σ S0β2 S0β3

−φσ (δ1 + γ1) 0
−(1− φ)σ 0 δ2

 . (9)

Now define s(M) = max{Re(α) : α is an eigenvalue of M}. Note that s(M) is a simple eigenvalue of M
with a positive eigenvector. In relation to R0 we can establish the following equivalences: R0 > 1 if and only
if s(M) > 0 and R0 < 1 if and only if s(M) < 0.

Let us now define the set of solution to system (4) by

Ω1 = {(E, IA, IM ) ∈ R3
+ : E + IA + IM ≤ 1, E, IA, IM ≥ 0}.

Theorem 1. If R0 < 1 then the DFE, E0 is locally asymptotically stable on Ω1.

Proof. To prove this we need to apply the assumptions A(1)-A(5) and A(1)-A(4) are easily verified. For A(5)
we need to show that the matrix

JE0 =

(
M 0
−J3 J4

)
.

have negative real parts with J3 = −F ,

J4 =

 −σ 0 0
φσ −(δ1 + γ1) 0

(1− φ)σ 0 −δ2

 .

We then compute the eigenvalues of J4 and yield,
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s(J4) = max{−δ2,−σ,−(δ1 + γ1)} < 0

Thus, if R0 < 1 then the DFE, E0 is locally asymptotically stable.

3 Optimal control

It is very clear that the only possible strategy to combat the novel corona virus is to control its spread
over the population as per the current development. Controlling can be achieved by reducing the transmission
rates [19]. In our model in system (1), the spread of the virus is mainly due to three population compartments,
exposed, infected with asymptomatic and infected with mild symptoms, and non of the three groups are isolated
until the individuals are being clinically tested. The asymptomatic cases have been a very serious concern for the
public health system across the globe including Sri Lanka. It has been estimated that around 20% of the cases
may be asymptomatic hence they are undetected, however, with the potential of spreading the virus over the
population. In this section, we introduce control measures to the system (1). The model is modified addressing
the dynamic of transmission and necessary mathematical derivations, and analysis will be carried out.

3.1 Mathematical model with control

In the model with control, we introduce the combined factor (1− u1) to reduce the transmission rates β1,
β2 and β3 respectively from exposed, infected with asymptomatic and infected with mild symptoms population
classes. Thus, this u1 measures the effort of personal protection such as wearing face marks, personal hygiene
practices, social distancing methods and etc. The control variable u2 measures the rate of identifying asymp-
tomatic cases through contact tracing, testing and isolating them to treat in designated hospitals. The control
variable u3 measures the rate of tracing, testing and isolating of patients with mild symptoms. In this model,
we assume that u2IA and u3IM are removed from IA and IM compartments and they are added to the com-
partment IH . In addition, the critically sick patients who are currently at IH compartment will be transferred
to the class of patients in intensive care units with a rate of η. It is further assumed that asymptomatic cases
who are undetected and could be recovered themselves with a rate of γ1, patients who are in general wards with
mild symptoms are recovered with a rate of γ2 and the patients in ICUs are recovered with a rate of γ3, and all
are added to the recovery compartment. The modified version of the system (1) can now be established as in
system (10).

dS

dt
= −(1− u1)(β1E + β2IA + β3IM )S − qS

dE

dt
= k + (β1E + β2IA + β3IM )S − σE

dIA
dt

= φσE − u2IA − γ1IA

dIM
dt

= (1− φ)σE − u3IM

dIH
dt

= u2IA + u3IM − ηIH − γ2IH

dIC
dt

= ηIH − γ3IC − µIC
dR

dt
= γ1IA + γ2IH + γ3IC

(10)

3.2 Mathematical analysis of the model with control

It is clear that we have introduced three time invariant control variables
u(t) = (u1, u2, u3) ∈ U into system (1) and these variables are associated with the population compartments
S, E, IA, IM and IH . Further, the control variables are bounded and measurable such that
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U = {(u1, u2, u3)|ukis Lebsegue measurable on[0, 1], 0 ≤ uk(t) ≤ 1, t ∈ [0, T ],

k = 1, 2, 3}
(11)

The objective functional for the control problem in (10) is now defined as

J(u1, u2, u3) =

∫ T

0

[
A1E +A2IA +A3IM +

1

2

3∑
k=1

Cku
2
k

]
dt (12)

subject to (10).
It is aimed to minimize the cost functional in (12) which consists of populations exposed (E), asymp-

tomatic infected (IA) and mildly infected (IM ) as well as the socio-economic cost related to wearing masks,
sanitizing methods, cost of social distancing measures, and etc given by C1u

2
1, public health cost on contact

tracing, testing and isolation of asymptomatic cases given by C2u
2
2, and the same cost that is for cases with

mild symptoms represented by C3u
2
3. The constants A1, A2, A3, C1, C2 and C3 are the weights and balancing

parameters and they measure the associated relative cost of the interventions over the interval [0, T ]. We find
the optimal control measures u∗ = (u∗1, u

∗
2, u
∗
3) such that

J(u∗1, u
∗
2, u
∗
3) = min

U
J(u1, u2, u3) (13)

Now we derive necessary conditions to find the solution for the optimal control problem using Pontryagins
Maximum Principle [17, 19, 21, 22]. to show the existence of the control problem, we rewrite the system (10)
as in the following form [17, 20].

dX = BX + F (X ) (14)

where

X =



S(t)
E(t)
IA(t)
IM (t)
IH(t)
IC(t)
R(t)


,

B =



−q 0 0 0 0 0 0
0 σ 0 0 0 0 0
0 0 −(u2 + γ1) 0 0 0 0
0 0 0 −u3 0 0 0
0 0 0 0 −(η + γ2) 0 0
0 0 0 0 0 −(µ+ γ3) 0
0 0 0 0 0 0 0


,

and

F (X ) =



−(1− u1)(β1E + β2IA + β3IM )S
k + (β1E + β2IA + β3IM )S

φσE
(1− φ)σE
u2IA + u3IM

ηIH
γ1IA + γ2IH + γ3IC


,

and dX is the derivative of X with respect to time.
To show the uniform Lipschitz continuity, we let

G(X ) = BX + F (X ). (15)
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The function F (X ) in equation (15) satisfies
|F (X1)− F (X2)| ≤ Z1|S1 − S2|+ Z2|E1 − E2|+ Z3|IA1 − IA2|
+ Z4|IM1 − IM2|+ Z5|IH1 − IH2|+ Z6|IC1 − IC2|+ Z7|R1 −R2|.
Now choose Z > 0 such that Z = max(Z1, Z2, Z3, Z4, Z5, Z6, Z7). Thus, we have
|F (X1)− F (X2)| ≤ Z(|S1 − S2|+ |E1 − E2|+ |IA1 − IA2|
+ |IM1 − IM2|+ |IH1 − IH2|+ |IC1 − IC2|+ |R1 −R2|).
Further we have |G(X1)−G(X2)| ≤ Z|X1−X2| with Z = Z1 +Z2 +Z3 +Z4 +Z5 +Z6 +Z7 + ‖K‖ <∞.
Therefore, the function G(X ) is uniformly Lipschitz continuous. Hence we can state that the solution of the
control system in (10) exists.

Theorem 2. Given the objective functional J(u1, u2, u3) according to (12), where the control set U given by
(11) is measurable subject to (10) with initial condition for the problem at t = 0, then there exists an optimal
control
u∗ = (u∗1, u

∗
2, u
∗
3) such that J(u∗1, u

∗
2, u
∗
3) = min{J(u1, u2, u3), (u1, u2, u3) ∈ U}

Proof. It is noted that the state variables and the control variables in the problem (10) are nonempty and the set
U contains the control variables is closed and convex. The right hand side of system (10) is continuous, bounded
above and can be written as a linear function of u with time invariant coefficients and are depending on state.
There exist constants l1, l2 > 0 and m > 1 such that the intergrand L(y, u, t) of the objective functional J is
convex and it satisfies

L(y, u, t) ≥ l1(|u1|2 + |u2|2 + |u3|2)m/2 − l2.

The state variables and the set of control U is clearly bounded and nonempty. The solutions are bounded, and
convex. Thus, the system is bi-linear in control variables as the solutions are bounded. Now the following is
verified so that

A1E +A2IA +A3IM +
1

2
(C1u

2
1 + C2u

2
2 + C3u

2
3) ≥ l1(|u1|2 + |u2|2 + |u3|2)m/2 − l2

where A1, A2, A3, C1, C2, C3, l1, l2 > 0 and m > 1 [23, 24].
Now we discuss the method of obtaining the solution to the problem (10). For this, it is necessary to define

the Lagrangian and Hamiltonian for the optimal control problem (10). Thus, the Lagrangian L is stated as

L(E, IA, IM , u1, u2, u3) = A1E +A2IA +A3IM +
1

2
(C1u

2
1 + C2u

2
2 + C3u

2
3) (16)

and for the Hamiltonian H we let X = (S,E, IA, IM , IH , IC , R), U = (u1, u2, u3) and λ =
(λ1, λ2, λ3, λ4, λ5, λ6, λ7), and we write

H(X,U , λ) = L(E, IA, IM , u1, u2, u3)

+ λ1(−(1− u1)(β1E + β2IA + β3IM )S − qS)

+ λ2(k + (β1E + β2IA + β3IM )S − σE)

+ λ3(φσE − u2IA − γ1IA)

+ λ4((1− φ)σE − u3IM )

+ λ5(u2IA + u3IM − ηIH − γ2IH)

+ λ6(ηIH − γ3IC − µIC)

+ λ7(γ1IA + γ2IH + γ3IC)

(17)

where λj , j ∈ {1, 2, 3, 4, 5, 6, 7} are the adjoint variables. Next derivation is the necessary conditions for the
Hamiltonian H given in (17).

Theorem 3. Given an optimal control u∗ = (u∗1, u
∗
2, u
∗
3) and a solution

X∗ = (S∗, E∗, I∗A, I
∗
m, I

∗
H , I

∗
C , R

∗) with respect to the system (10), there exist adjoint variables λj , j ∈
{1, 2, 3, 4, 5, 6, 7} satisfying
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dλ1

dt
= (u1 − 1)(β1E + β2IA + β3IM )(λ2 − λ1) + qλ1

dλ2

dt
= −A1 + Sβ1(u1 − 1)(λ2 − λ1) + σ(λ2 − λ3φ+ λ4(φ− 1))

dλ3

dt
= −A2 + u2(λ3 − λ5) + (u1 − 1)Sβ2(λ2 − λ1) + γ1(λ3 − λ7)

dλ4

dt
= −A3 + Sβ3(u1 − 1)(λ2 − λ1) + u3(λ4 − λ5)

dλ5

dt
= γ2(λ5 − λ7) + η(λ5 − λ6)

dλ6

dt
= γ3(λ6 − λ7) + µλ6

dλ7

dt
= 0

(18)

with transversality conditions
λj(tf ) = 0, j ∈ {1, 2, 3, 4, 5, 6, 7}. (19)

In addition, the optimal control functions u∗1, u
∗
2, u
∗
3 are given by

u∗1 = min
{

1,max
{

0,
S∗(β1E

∗ + β2I
∗
A + β3I

∗
M )(λ2 − λ1)

C1

}}
u∗2 = min

{
1,max

{
0,
I∗A(λ3 − λ3)

C2

}}
u∗3 = min

{
1,max

{
0,
I∗M (λ4 − λ5)

C3

}} (20)

Proof. The control system (10) is obtained by taking the derivative

dX

dt
=
∂H(t, u∗1, u

∗
2, u
∗
3, λ1, λ2, λ3, λ4, λ5, λ6, λ7)

∂λ

and the adjoint system (18) is obtained taking

dλ

dt
=
−∂H(t, u∗1, u

∗
2, u
∗
3, λ1, λ2, λ3, λ4, λ5, λ6, λ7)

∂X∗

and the optimal control measures can be derived using

0 =
∂H(t, u∗1, u

∗
2, u
∗
3, λ1, λ2, λ3, λ4, λ5, λ6, λ7)

∂U
.

4 Numerical results and discussion

In this section, we obtain the numerical solutions for the problem with out control (1) and for the control
problem (10). The Runge-Kutta algorithm of order four is implemented in MATLAB to solve the problem with
out control and the numerical schemes presented in [25–27] are coupled with Runge-Kutta method of order
four to carry out the simulation for the problem with control.

4.1 Algorithm for the optimal control problem

STEP 0: Guess an initial estimation to control parameters u and tf .
STEP 1: Use initial conditions S(0), E(0), IA(0), IM (0), IH(0), IC(0) and R(0) and the stocked values by u and

tf .
Find the optimal states S∗, E∗, I∗A, I

∗
M , I

∗
H , I

∗
C and R∗ which iterate forward in the control problem (10)-

(20).
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STEP 2: Use the stocked values by u and the transversality conditions λj(tf ) for j = 1, 2, 3, 4, 5, 6, 7 while searching
the constant λ7(tf ) using the scant-method.
Find the adjoint variables λj(tf ) for j = 1, 2, 3, 4, 5, 6, 7 which iterate backward in the control problem
(10)-(20).

STEP 3: Update the control utilizing new state variables S,E, IA, IM , IH , IC , R and λj(tf ) for j = 1, 2, 3, 4, 5, 6, 7
in the characterization of optimal u∗ given in (20).

STEP 4: Test the convergence. If the values of the sought variables in this iteration and the final iteration are suf-
ficiently small, check out the recent values as solutions. If the values are not small, go back to STEP 1
[28–30].

4.2 Simulation of the covid 19 dynamic system with out control

Fig. 3 shows the simulation results of the problem with out control measures given in (1). It is found
recently that there are a significant number of asymptomatic cases with in the populations who are also car-
riers of the virus. In the public health perspectives, it is very critical to clinically identify these cases through
aggressive testing and isolate them if they are found to be positive for the virus. The outcome of this task
depends on how many cases are asymptomatic as a proportion. Therefore, we aim to assess the sensitivi-
ty of this proportion in the parameter level. Thus, we let φ to be varying and consider the vector of values
φ = (0.1, 0.25, 0.35, 0.4, 0.45, 0.5) for this simulation. The rest of the parameters are β1 = 0.5, β2 = 0.6, β3 =
0.45, γ1 = 0.5, γ2 = 0.2,
γ3 = 0.05, δ1 = 0.15, δ2 = 0.25, η = 0.005, µ = 0.04, σ = 1/5, φ = 0.25, k = 0.00405 and q = 0.0004. The
initial conditions for the dimensionless form of the problem are S(0) = 0.85, E(0) = 0, IA(0) = 0, IM (0) =
0, IH(0) = 0, IC(0) = 0 and R(0) = 0 [10, 13]. No control measures u1, u2 and u3 are inactive in this case.
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Fig. 3: The simulated solution curves for the Exposed (a), Asymptomatic (b), Symptomatic with mild (c),
Isolated in hospitals (d), Treated in ICUs (e) and Recovered (f) as given in (1) with varying parameter φ =
(0.1, 0.25, 0.35, 0.4, 0.45, 0.5).

It is very clearly seen from Fig. 3 that as φ increases, the number of asymptomatic cases also increase
and this critical early diagnostic strategy has helped number of hospitalizations (IH ) and that of severely sick
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patients (IC) to reduce.

Solution trajectories of Exposed E population onto Asymptomatic IA, Symptomatic with mild IM , Iso-
lated in hospitals IH and Critically sick IC are presented respectively in Fig. 4 (a)-(d).
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Fig. 4: Solution trajectories (E, IA), (E, IM ), (E, IH ) and (E, IC) for the problem 1 with fixed parameter
φ = 0.25.

4.3 Simulation of the control problem

In this section, we evaluate the efficacy of our three control measures, personal protection and social
distancing, diagnostic and isolation of asymptomatic cases and diagnostic and isolation of mild symptomatic
cases (that is u1, u2 and u3 are all non-zero). First we simulate the problem in (10) considering non optimal
control measures. We consider three combinations (u1 = 0.75, u2 = 0.5, u3 = 0.5), (u1 = 0.5, u2 = 0.3, u3 =
0.3) and (u1 = 0.25, u2 = 0.2, u3 = 0.2). The simulated results are given in Fig. 5. According to Fig. 5, it is
clearly seen that when the control measures are increased the curves are flatten and the peak is occurred with a
delay so that the public health system and hospitals can be prepared to handle the outbreak.

The cost functional given in (12) is used to compute the associate cost for the government if non optimal
control measures are introduced. The cost incurred if u1 = 0.75, u2 = 0.5, u3 = 0.5 is 4.9214 × 106, if
u1 = 0.5, u2 = 0.3,
u3 = 0.3 is 4.0192× 106, and if u1 = 0.25, u2 = 0.2, u3 = 0.2 is 3.6519× 106.

The main goal of the optimal control problem presented in (10)-(20) is to minimize the number of exposed
(E), asymptomatic infected cases (IA) and mild symptomatic infected cases (IM ). In the public health point
of view, it is aimed to reduce the number of patients who are in the community and able to transmit the virus,
and make them isolated in designated hospitals. The simulation of the optimal control problem (10)-(20) is
performed over three scenarios based on the relative importance of the three control measures. The parameters
are β1 = 0.5, β2 = 0.6, β3 = 0.45, γ1 = 0.5, γ2 = 0.2, γ3 = 0.05, η = 0.005, µ = 0.04, σ = 1/5, φ = 0.25,
k = 0.00405 and q = 0.0004. The initial conditions for the problem are S(0) = 0.85, E(0) = 0, IA(0) =
0, IM (0) = 0, IH(0) = 0, IC(0) = 0 and R(0) = 0.
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Fig. 5: The simulated solution curves for the Exposed (a), Asymptomatic (b), Symptomatic with mild (c), Iso-
lated in hospitals (d), Treated in ICUs (e) and Recovered (f) as given in problem (10) considering combinations
of non optimal control measures (u1 = 0.75, u2 = 0.5, u3 = 0.5), (u1 = 0.5, u2 = 0.3, u3 = 0.3) and
(u1 = 0.25, u2 = 0.2, u3 = 0.2).

4.3.1 Scenario 1.

We assume the social distancing and personal protection measures are highly important while the costs on
two diagnostic and isolation are equal. The simulated outcomes for each populations E, IA, IM , IH , IC and R
are presented in Fig. 6 while the time invariant functions u1(t), u2(t) and u3(t) are illustrated in Fig. 7.

It is seen from the Fig. 6 that the control interventions are effective since the number of cases for each
E, IA and IM populations have reduced compared to they are for the problem with out control in (1). Further,
it is seen that the peak of each curve has been reduced and it is delayed. Thus, the optimal control measures
have helped to flatten the curve. The control functions in Fig. 7 suggest that tracing, testing and isolation of
both asymptomatic and symptomatic infections are required for the entire period of time considered for the
simulation.

4.3.2 Scenario 2.

We assume that tracing, testing and isolating asymptomatic cases are more critical. The simulated out-
comes for each populations E, IA, IM , IH , IC and R are presented in Fig. 8 while the time invariant functions
u1(t), u2(t) and u3(t) are illustrated in Fig. 9.

It is also seen from the Fig. 6 that the control interventions are effective since the number of cases for
each E, IM , IH , IC populations have reduced compared to they are for the problem with out control. All three
control interventions needed in their full capacity during the initial stage of the outbreak, according to Fig. 9.

4.3.3 Scenario 3.

We assume that social distancing with personal protection and tracing, testing and isolating mild asymp-
tomatic cases are equally more critical. The simulated outcomes for each populations E, IA, IM , IH , IC and R
are presented in Fig. 10 while the time invariant functions u1(t), u2(t) and u3(t) are illustrated in Fig. 11.
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Fig. 6: The simulated solution curves for the Exposed (a), Asymptomatic (b), Symptomatic with mild (c),
Isolated in hospitals (d), Treated in ICUs (e) and Recovered (f) for the optimal control problem given in (10)-
(20) with A1 = 50, A2 = 75, A3 = 60, C1 = 8, C2 = C3 = 2. It is assumed that the relative cost for social
distancing and personal protection is high.
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Fig. 7: The optimal control profiles u1(t), u2(t) and u3(t) with A1 = 50, A2 = 75, A3 = 60, C1 = 8,
C2 = C3 = 2.
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Fig. 8: The simulated solution curves for the Exposed (a), Asymptomatic (b), Symptomatic with mild (c),
Isolated in hospitals (d), Treated in ICUs (e) and Recovered (f) for the optimal control problem given in (10)-
(20) with A1 = 50, A2 = 75, A3 = 60, C1 = 5, C2 = 8,and C3 = 2. It is assumed that the relative cost for
tracing and testing asymptomatic cases is high.
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Fig. 9: The optimal control profiles u1(t), u2(t) and u3(t) with A1 = 50, A2 = 75, A3 = 60, C1 = 5, C2 = 8,
C3 = 2.
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Fig. 10: The simulated solution curves for the Exposed (a), Asymptomatic (b), Symptomatic with mild (c),
Isolated in hospitals (d), Treated in ICUs (e) and Recovered (f) for the optimal control problem given in (10)-
(20) with A1 = 50, A2 = 75, A3 = 60, C1 = 9, C2 = 9, and C3 = 3. It is assumed that the relative cost for
tracing and testing symptomatic cases is high while less importance is given for social distancing and personal
protection.
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Fig. 11: The optimal control profiles u1(t), u2(t) and u3(t) withA1 = 50,A2 = 75,A3 = 60,C1 = 9,C2 = 9,
C3 = 3.
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According to Fig. 10, if the health system focuses equally more on social distancing and personal pro-
tection, tracing of asymptomatic cases then the peak of the exposed, asymptomatic, symptomatic, hospitalized,
and ICU treated cases can be minimized on the other hand each peak can be delayed. Therefore, it can be stated,
this control strategy is successful as the government needs to encourage more on social distancing and personal
protection practices together with effective tracing, testing and isolation strategy for the patients who do not
show symptoms.

The algorithm for the optimal control problem was iterated 100 times until the optimal solutions are found.
The cost functional given in (12) is evaluated in each iteration and the behavior of execution is given in Fig. 12.
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Fig. 12: The behavior of cost functional given in (12) with respect to iterations.

It can be clearly seen the convergence of cost to its optimal value 9.035×105 units for the scenario 1 while
it is for scenario 2 obtained as 11.88× 105 units, however, for the scenario 3, the cost is as small as 1.95× 103.

5 Conclusion

Presently, COVID-19 disease caused by the novel corona virus has been a very serious public health
concern across the globe. This outbreak is more than five months old since it was first claimed to be originated
in the city of Wuhan, China in late December 2019. The development of suitable vaccine candidate is still in
progress thus, strong social control measures and public health interventions are critically needed to effectively
fight with the disease spread.
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COVID-19 is a novel disease, therefore researchers are learning about the dynamic of this virus everyday.
In an epidemiological state in this type, mathematical models are very useful to understand the dynamic of the
disease and to evaluate the efficacy of different control measures such as social distancing, personal protection,
and public health interventions such as contact tracing, isolation and treatments.

In this study, we develop an extended version of SIER conceptual model considering two main clinical,
epidemiological and public health facts; firstly, the occurrence of asymptomatic and symptomatic infections
of people and secondly, the individual demography such as age, life style and health condition found to have
determined the patient’s situation might turn into severe.

Since the government works hard utilizing most of its resources to control the spread over the population,
an optimal control model is also constructed. Essential mathematical analysis is carried out for the models
to check the stability of the equilibrium points, derive disease’s R0, investigate the existence of solutions to
the optimal control problem, and etc while numerical simulations are performed in MATLAB. It is clearly
seen from the simulations presented in Figures 7-11 that optimal control measures have reduced the exposed,
asymptomatic, symptomatic cases significantly. The control scenario 3 provides a considerable effect on the
epidemic curves, not only it minimizes the infections but also delaying the peak of the outbreak approximately
by 40 days in contrast to the outcomes with out control. This enables the health system to be more equipped
and prepared to combat with the epidemic. It should be noted that the simulations are carried out for a period
as short as for 120 days.
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