The Nehari manifold for quasilinear equation with Robin boundary condition

Somaye Khademloo1∗, Mobina Kardoost2

1 Faculty of Basic Sciences, Babol University of Technology, 47148-71167, Babol, Iran
2 Young Researchers Club, Islamic Azad University, Ghaemshahr Branch, Ghaemshahr, Iran

(Received July 04 2012, Revised March 22 2013, Accepted September 21 2013)

Abstract. Using the Nehari manifold, We prove the existence of positive solutions of the problem

\[\begin{align*}
-\Delta_p u &= \lambda a(x)u|u|^{\alpha-2} + b(x)u|u|^{\gamma-2}, & x \in \Omega, \\
\alpha u|u|^{p-2} + (1-\alpha)|\nabla u|^{p-2}\frac{\partial u}{\partial n} &= 0, & x \in \partial\Omega,
\end{align*} \]

for \(x \in \Omega \), together with the boundary condition \(\alpha u|u|^{p-2} + (1-\alpha)|\nabla u|^{p-2}\frac{\partial u}{\partial n} = 0 \). Exploiting the relationship between the Nehari manifold and Fibering maps (i.e., maps of the form \(t \to J_\lambda(u) \)), where \(J_\lambda(u) \) is the Euler functional associated with the equation), and a condition on \(b(x) \), we show how existence results for positive solutions of the equations are linked to properties of the Nehari manifold.

Keywords: variational method, nehari manifold, minimizing sequence, critical sobolev exponent

1 Introduction

In this paper we study the existence of positive solutions for the problem:

\[\begin{align*}
-\Delta_p u &= \lambda a(x)u|u|^{\alpha-2} + b(x)u|u|^{\gamma-2}, & x \in \Omega, \\
\alpha u|u|^{p-2} + (1-\alpha)|\nabla u|^{p-2}\frac{\partial u}{\partial n} &= 0, & x \in \partial\Omega,
\end{align*} \]

where \(\Delta_p \) is the p-Laplacian operator, i.e., \(\Delta_p z = (\text{div}(|\nabla z|^{p-2}\nabla z)) \), \(\Omega \) is a smooth bounded domain in \(\mathbb{R}^n \),

\[0 < \alpha < 1 < p - 1 < \gamma - 1 < p^* - 1, \]

\[\left(p^* = \frac{np}{n-p} \text{ if } p < n, \; p^* = \infty \text{ if } p \geq n \right), \lambda > 0 \]

is a real parameter and \(a, b : \Omega \to \mathbb{R} \) are smooth functions which change sign on \(\Omega \).

Similar problems have been studied in [2] by using variational methods and in [1], [4] and [7] by using the Nehari manifold. Furthermore this problem in the case \(p = 2 \) and Dirichlet boundary condition has been studied by Brown and Wu [3]. In this paper we show how a fairly complete knowledge of all possible forms of the fibering maps provides a very simple and comparatively elementary means of establishing results similar to those proved in [7] and [10] on the existence of multiple solutions for the problem Eq. (1).

The plane of the paper is as follows. In Section 2 we first recall the facts that we shall require about the Nehari manifold and examine carefully the connection between the Nehari manifold and the Fibering maps. In Section 3 we use this information to give a very simple variational proof of the existence of solutions of Eq. (1) for sufficiently small \(\lambda \).

∗ Corresponding author.
E-mail address: s.khademloo@nit.ac.ir.
2 Notation and preliminaries

Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary $\partial \Omega$. We will work in a Sobolev space $W := W^{1,p}(\Omega)$ equipped with the norm

$$\|u\| = \left(\int (|\nabla u(x)|^p + u(x)^p)dx\right)^{\frac{1}{p}}.$$

First we introduce the structure of the Nehari manifold. It is well known that the steady state solutions of Eq. (1) correspond to critical points of the functional

$$J_\lambda(u) = \frac{1}{p} M(u) - \frac{\lambda}{\alpha + 1} A(u) - \frac{1}{\gamma + 1} B(u),$$

where

$$M(u) = \int_\Omega |\nabla u|^p dx - \frac{\alpha}{\alpha - 1} \int_{\partial \Omega} |u|^p ds,$$

$$A(u) = \int_\Omega a(x)|u|^\alpha dx,$$

$$B(u) = \int_\Omega b(x)|u|^\gamma dx.$$

This functional is bounded neither above nor below. In order to obtain existence results in this case we introduce the Nehari manifold $S = \{u \in W; (J'_\lambda(u), u) = 0\}$, where (\cdot, \cdot) denotes the usual duality. Thus $u \in S$ if and only if $M(u) - \lambda A(u) - B(u) = 0$.

Clearly S is a smaller set than W and so it is easier to study J_λ on S.

For $u \in S$ we have that

$$J_\lambda(u) = \lambda \left(\frac{1}{p} - \frac{1}{\alpha + 1}\right) A(u) + \left(\frac{1}{p} - \frac{1}{\gamma + 1}\right) B(u)$$

$$= \left(\frac{1}{p} - \frac{1}{\alpha + 1}\right) M(u) + \lambda \left(\frac{1}{\alpha + 1} - \frac{1}{\gamma + 1}\right) A(u).$$

The Nehari manifold is closely linked to the behaviour of the functions of the from $\phi_u : t \mapsto J_\lambda(tu)(t > 0)$. Such maps are known as fibering maps and were introduced by Drabek and Pohozaev in [6] and are also discussed in Brown and Zhang[4]. If $u \in W$, we have

$$\phi_u(t) = \frac{1}{p} t^p M(u) - \lambda \frac{t^{\alpha + 1}}{\alpha + 1} A(u) - \frac{t^{\gamma + 1}}{\gamma + 1} B(u),$$

$$\phi'_u(t) = p t^{p - 1} M(u) - \lambda t^\alpha A(u) - t^\gamma B(u),$$

$$\phi''_u(t) = (p - 1) t^{p - 2} M(u) - \lambda t^{\alpha - 1} A(u) - \gamma t^{\gamma - 1} B(u).$$

It is easy to see that $u \in S$ if and only if $\phi'(1) = 0$ and more generally, that $tu \in S$ if and only if $\phi'(t) = 0$, i.e., elements in S correspond to stationary points of the fibering maps.

Now, we split S into three parts:

$$S^+ = \{u \in S; \phi''_u(1) > 0\}, \quad S^- = \{u \in S; \phi''_u(1) < 0\}, \quad S^0 = \{u \in S; \phi''_u(1) = 0\},$$

where corresponding to local minima, local maxima and points of inflexion of fibering maps, respectively. Also, if $u \in S$, we have
\[
\phi''_u(1) = \lambda(p - \alpha - 1)A(u) + (p - \gamma - 1)B(u) \\
= (p - \alpha - 1)M(u) + (\alpha - \gamma)B(u) \\
= (p - \gamma - 1)M(u) + \lambda(\gamma - \alpha)A(u). \tag{7}
\]

Define
\[m_u(t) = t^{\gamma - \alpha - 1} M(u) - t^{\gamma - \alpha} B(u).\]

Hence
\[m'_u(t) = (p - \alpha - 1)t^{\gamma - \alpha - 2} M(u) - (\gamma - \alpha)t^{\gamma - \alpha - 1} B(u). \tag{8}\]

So we have

Lemma 1. \(tu \in S\) if and only if \(t\) is a solution of \(m_u(t) = \lambda A(u)\), for \(t > 0\).

Theorem 1.
1. if \(B(u) \leq 0\), then \(m_u\) is a strictly increasing function.
2. if \(B(u) \geq 0\), then \(m_u(t) > 0\) for \(t\) small and positive but \(m_u(t) \rightarrow -\infty\) as \(t \rightarrow \infty\), also \(m_u(t)\) has a unique maximum stationary point.

Now suppose that \(tu \in S\). It follows from Eq. (7) and Eq. (8) that \(\phi''_{tu}(1) = t^{\alpha + 2}m'_u(t)\) and so \(tu \in S^+(S^-)\) provided \(m'_u(t) > 0(<0)\). We define \(L^+ = \{u \in W; A(u) > 0\}\), and \(L^-\) similarly by replacing \(>\) by \(\leq\). We also define \(B^+ = \{u \in W; B(u) > 0\}\), and \(B^-\) analogously. So
1. if \(u \in L^- \cap B^-\), then \(t \rightarrow \phi_u(t)\) is an increasing function of \(t\) and no multiple of \(u\) lies in \(S\),
2. if \(u \in L^+ \cap B^-,\) then \(t \rightarrow \phi_u(t)\) has a local minimum at \(t = t(u)\) and \(t(u)u \in S^+\),
3. if \(u \in L^- \cap B^+\), then \(t \rightarrow \phi_u(t)\) has a local maximum at \(t = t(u)\) and \(t(u)u \in S^-\),
4. if \(u \in L^+ \cap B^+\), then
 a) if \(\lambda > 0\) is sufficiently large, \(t \rightarrow \phi_u(t)\) is a decreasing function and no multiple of \(u\) lies in \(S\),
 b) If \(\lambda > 0\) is sufficiently small, \(t \rightarrow \phi_u(t)\) has exactly two points- a local minimum at \(t = t_1(u)\) and local maximum at \(t = t_2(u)\), such that \(t_1(u)u \in S^+\) and \(t_2(u)u \in S^-\).

Theorem 2. [8] suppose \(\alpha \in (0, 1)\) or that \(\int_{\Omega} adx \neq 0\) and \(\alpha \in (\alpha_0, 0)\) so that Eq. (1) has principal eigenvalues \(\lambda^-(\alpha)\) and \(\lambda^+(\alpha)\). For any \(\lambda \in (\lambda^-(\alpha), \lambda^+(\alpha))\)
\[\|u\|_\lambda = \left\{ \int_{\Omega} \left[|\nabla u|^p - \lambda |u|^p \right] dx + \frac{\alpha}{1 - \alpha} \int_{\partial \Omega} |u|^p ds \right\}^{\frac{1}{p}},\]
defines a norm in \(W\) which is equivalent to the usual norm for \(W\). So for \(\lambda = 0\), \(\|u\|_\lambda^p = M(u)\).

Lemma 2. There exists \(\lambda_1 > 0\) such that \(\phi_u\) takes positive values for all non-zero \(u \in W\), when \(\lambda < \lambda_1\).

Proof. If \(u \in B^-\), then \(\phi_u(t) > 0\) for \(t\) sufficiently large. Suppose that \(u \in B^+\). Let
\[h_u(t) = \frac{1}{p} t^p M(u) - \frac{t^{\gamma + 1}}{\gamma + 1} B(u).\]
Then elementary calculus shows that \(h_u\) takes a maximum value
\[\gamma - p + 1 \left[\frac{M(u)^{\gamma + 1}}{B(u)^p} \right]^{\frac{1}{p-\gamma+1}},\]
when
\[t = t_{\text{max}} = \left[\frac{M(u)}{B(u)} \right]^{\frac{1}{p-\gamma+1}}.\]

However
Consider suppose that it follows from Eq. \[\lambda \] we shall now show that there exists \(S \), submit@wjms.org.uk WJMS email for contribution 258 S. Khademloo & M. Kardoost J c and the left hand side is uniformly bounded away from 0 where \(\delta \) is independent of \(u \).

We shall now show that there exists \(\lambda_1 > 0 \) such that \(\phi_u(t_{\text{max}}) > 0 \), i.e., \(h_u(t_{\text{max}}) - \lambda(t_{\text{max}})^\alpha + 1 A(u) > 0 \), for all \(u \in W - \{0\} \) provided that \(\lambda < \lambda_1 \). We have

\[
\frac{(t_{\text{max}})^{\alpha + 1}}{\alpha + 1} A(u) \leq \frac{1}{\alpha + 1} \left[\frac{M(u)}{B(u)} \right]^{\frac{\alpha + 1}{\gamma - p} + 1} C^{-\gamma + 1} (a) \| \infty \| Sp_{\gamma + 1} (M(u))^{\frac{\alpha + 1}{\gamma - p}} \leq \frac{1}{\alpha + 1} C^{-\gamma + 1} (a) \| \infty \| Sp_{\gamma + 1} \left[\frac{M(u)^{\gamma - 1}}{B(u)^p} \right]^{\frac{\alpha + 1}{\gamma - p}} \leq \frac{1}{\alpha + 1} C^{-\gamma + 1} (a) \| \infty \| Sp_{\gamma + 1} \left[\frac{p(\gamma + 1)}{\gamma - p + 1} \right]^{\frac{\alpha + 1}{\gamma - p}} h_u(t_{\text{max}})^{\frac{\alpha + 1}{p}} \leq k h_u(t_{\text{max}})^{\frac{\alpha + 1}{p}},
\]

where \(k \) is independent of \(u \). Hence

\[
\phi_u(t_{\text{max}}) \geq h_u(t_{\text{max}}) - \lambda k h_u(t_{\text{max}})^{\frac{\alpha + 1}{p}} = h_u(t_{\text{max}})^{\frac{\alpha + 1}{p}} \left[h_u(t_{\text{max}})^{\frac{1 - \alpha}{p}} - \lambda k \right]
\]

and so, since \(h_u(t_{\text{max}}) \geq \delta \) for all \(u \in W - \{0\} \), it follows that

\[
\phi_u(t_{\text{max}}) \geq \delta \left[\delta^{\frac{\alpha + 1}{p}} - \lambda k \right].
\]

Thus \(\phi_u(t_{\text{max}}) > 0 \) for all nonzero \(u \) provided that \(\lambda < \frac{\delta^{\frac{\alpha + 1}{p}}}{k} = \lambda_1 \). This completes the proof.

Corollary 1. \(S^0 = \emptyset \) when \(0 < \lambda < \lambda_1 \).

Corollary 2. If \(\lambda < \lambda_1 \), then there exists \(\delta_1 > 0 \) such that \(J_\lambda(u) \geq \delta_1 \) for all \(u \in S^- \).

Proof. Consider \(u \in S^- \). Then \(\phi_u \) has a positive global maximum at \(t = 1 \) and \(u \in B^+ \). Thus

\[
J_\lambda(u) = \phi_u(1) \geq \phi_u(t_{\text{max}}) \geq h_u(t_{\text{max}})^{\frac{\alpha + 1}{p}} \left(h_u(t_{\text{max}})^{\frac{1 - \alpha}{p}} - \lambda k \right) \geq \delta \left[\delta^{\frac{\alpha + 1}{p}} - \lambda k \right]
\]

and the left hand side is uniformly bounded away from 0 provided that \(\lambda < \lambda_1 \).

Lemma 3. \(J_\lambda \) is coercive and bounded below on \(S \).

Proof. It follows from Eq. 3 and the sobolev embedding theorems that there exist positive constants \(c_1, c_2 \) and \(c_3 \) such that

\[
J_\lambda(u) \geq c_1 \| u \|^p - c_2 \int_\Omega |u|^{\alpha + 1} dx \geq c_1 \| u \|^p - c_3 \| u \|^{\alpha + 1}
\]

and so \(J_\lambda \) is coercive and bounded below on \(S \).

Also as, proved in Binding, Drabek and Huang[2] or in Brown and Zhang[4], we have the following Lemma.

Lemma 4. Suppose that \(u_0 \) is a local maximum or minimum for \(J_\lambda \) on \(S \).

Then, if \(u_0 \notin S^0 \), \(u_0 \) is a critical point of \(J_\lambda \).

WJMS email for contribution: submit@wjms.org.uk
3 Existence results

Now we can state our main results.

Theorem 3. If $\lambda < \lambda_1$, there exists a minimizer of J_λ on S^+.

Proof. Since J_λ is bounded below on S and so on S^+, there exists a minimizing sequence $\{u_n\} \subseteq S^+$ such that $\lim_{n \to \infty} J_\lambda(u_n) = \inf_{u \in S^+} J_\lambda(u)$. Then by Lemma 3 and Rellich-Kondrachov Theorem, we may assume that there exist a subsequence $\{u_n\}$ and $u_0 \in W$ such that $u_n \to u_0$ in W and $u_n \to u_0$ in $L^r(\Omega)$ for $1 < r < \frac{np}{n-p}$.

If we choose $u \in L^+$, then there exists $t_1(u)$ such that $t_1(u) \in S^+$ and $J_\lambda(t_1(u)) < 0$. Hence, $\inf_{u \in S^+} J_\lambda(u) < 0$. By Eq. (3),

$$J_\lambda(u_n) = \left(\frac{1}{p} - \frac{1}{\gamma + 1}\right) M(u) + \lambda \left(\frac{1}{\gamma + 1} - \frac{1}{\alpha + 1}\right) A(u)$$

and so

$$-\lambda \left(\frac{1}{\gamma + 1} - \frac{1}{\alpha + 1}\right) A(u) = \left(\frac{1}{p} - \frac{1}{\gamma + 1}\right) M(u) - J_\lambda(u_n).$$

Letting $n \to \infty$, then $A(u_0) > 0$.

Suppose $u_n \not\to u_0$ in W. In this case we shall obtain a contradiction by discussing the fibering map. Since $A(u_n) > 0$, there exists $t_0 > 0$ such that $t_0u_0 \in S^+$ and $\phi_{u_0}(t_0) = 0$.

Since $u_n \not\to u_0$ in W, then $\|u_0\| < \lim_{n \to \infty} \inf \|u_n\|$. Thus, as

$$\phi'_{u_0}(t) = t^{p-1}M(u_0) - \lambda t^\alpha A(u_0) - t^\gamma B(u_0)$$

and

$$\phi'_{u_0}(t) = t^{p-1}M(u_0) - \lambda t^\alpha A(u_0) - t^\gamma B(u_0),$$

and since $\{u_n\}$ tends to u_0 strongly in L^r, we have

$$0 = \phi'_{u_0}(t_0) = t_0^{p-1}M(u_0) - \lambda t_0^\alpha A(u_0) - t_0^\gamma B(u_0)$$

$$< \lim_{n \to \infty} \inf \left(t_0^{p-1}M(u_n) - \lambda t_0^\alpha A(u_n) - t_0^\gamma B(u_n)\right)$$

$$= \phi'_{u_n}(t_0).$$

it follows that $\phi'_{u_n}(t_0) > 0$ for n sufficiently large. Since $\{u_n\} \subseteq S^+$, by considering the possible fibering maps it is easy to see that $\phi'_{u_n}(t) < 0$ for $0 < t < 1$ and $\phi'_{u_n}(1) = 0$ for all n. Hence we must have $t_0 > 1$. But $t_0u_0 \in M_+^\lambda(\Omega)$ and so

$$J_\lambda(t_0u_0) = \phi_{u_0}(t_0) < \phi_{u_0}(1) = J_\lambda(u_0) < \lim_{n \to \infty} J_\lambda(u_n) = \inf_{u \in S^+} J_\lambda(u)$$

and this is a contradiction. Hence $u_n \to u_0$ in W and so

$$J_\lambda(u_0) = \lim_{n \to \infty} J_\lambda(u_n) = \inf_{u \in S^+} J_\lambda(u).$$

Thus u_0 is a minimizer for J_λ on S^+.

Theorem 4. If $\lambda < \lambda_1$, there exists a minimizer of J_λ on S^{-}.
Proof. By Corollary 2 we have $J_{\lambda}(u) \geq \delta_1 > 0$ for all $u \in S^-$ and so $\inf_{u \in S^-} J_{\lambda}(u) > \delta_1$. Hence there exists a minimizing sequence $\{u_n\} \subseteq S^-$ such that

$$
\lim_{n \to \infty} J_{\lambda}(u_n) = \inf_{u \in S^-} J_{\lambda}(u) > 0.
$$

As in the previous proof, since J_{λ} is coercive, $\{u_n\}$ is bounded in W and we may assume, without loss of generality, that $u_n \to u_0$ in W and $u_n \to u_0$ in $L^r(\Omega)$ for

$$
1 < r < \frac{np}{n-p}.
$$

By Eq. (3), we have

$$
J_{\lambda}(u_n) = \left(\frac{1}{p} - \frac{1}{\alpha + 1}\right) M(u) + \left(\frac{1}{\alpha + 1} - \frac{1}{\gamma + 1}\right) B(u)
$$

and, since $\lim_{n \to \infty} J_{\lambda}(u_n) > 0$ and $\lim_{n \to \infty} B(u_n) = B(u_0)$, we must have that $B(u_0) > 0$. Hence there exists $\hat{t} > 0$ such that $tu_0 \in S^-$. Suppose $u_n \not\to u_0$ in W. Since $u_n \subseteq S^-$ we have $\phi_{u_n}(1) = J_{\lambda}(u_n) \geq J_{\lambda}(su_n) = \phi_{u_n}(s)$, for all $s \geq 0$. So

$$
J_{\lambda}(\hat{t}u_0) = \frac{1}{p} \hat{t}^p M(u_0) - \frac{\lambda \hat{t}^{\alpha+1}}{\alpha + 1} A(u_0) - \frac{\hat{t}^{\gamma+1}}{\gamma + 1} B(u_0)
\leq \lim_{n \to \infty} \left[\frac{1}{p} \hat{t}^p M(u_n) - \frac{\lambda \hat{t}^{\alpha+1}}{\alpha + 1} A(u_n) - \frac{\hat{t}^{\gamma+1}}{\gamma + 1} B(u_n)\right]
\leq \lim_{n \to \infty} J_{\lambda}(\hat{t}u_n)
\leq \lim_{n \to \infty} J_{\lambda}(u_n) = \inf_{u \in S^-} J_{\lambda}(u),
$$

which is a contradiction. (In the first inequality we use this facts that $\|u_0\| < \lim_{n \to \infty} \inf \|u_n\|$.) Hence $u_n \to u_0$ in W and the proof can be completed as in the previous Theorem.

Corollary 3. Eq. (1) has at least two positive solutions whenever $0 < \lambda < \lambda_1$.

Proof. By Theorems 3 and 4, there exist $u^+ \in S^+$ and $u^- \in S^-$ such that $J_{\lambda}(u^+) = \inf_{u \in S^+} J_{\lambda}(u)$ and $J_{\lambda}(u^-) = \inf_{u \in S^-} J_{\lambda}(u)$. Moreover $J_{\lambda}(|u^+|) = J_{\lambda}(|u^+|)$ and $|u^+| \in S^+$ and so we may assume $u^+ \geq 0$. By Lemma 4, u^\pm are critical points of J_{λ} on W and hence are weak solutions of Eq. (1). Finally, by the Harnack inequality due to Trudinger[39], we obtain that u^\pm are positive solutions of Eq. (1).

References

WJMS email for contribution: submit@wjms.org.uk
