
ISSN 1 746-7233, England, UK
World Journal of Modelling and Simulation

Vol. 7 (2011) No. 1, pp. 3-15

Description and analysis of Markov chains based on recursive stochastic
equations and factor distributions

Michael Menth∗

University of Wurzburg, Institute of Computer Science, Wurzburg D-97074, Germany

(Received February 14 2009, Accepted January 1 2010)

Abstract. In this paper we propose a functional description of Markov chains (MCs) using recursive stochas-
tic equations and factor distributions instead of the state transition matrix P . This new modeling method is
very intuitive as it separates the functional behavior of the system under study from probabilistic factors. We
present the “forward algorithm” to calculate consecutive state distributions xn. It is numerically equivalent
to the well-known vector-matrix multiplication method xn+1 = xn · P , but it can be faster and require less
memory. We compare the operation and efficiency of the power method and MC simulation. Then, we pro-
pose several optimization techniques to speed up the computation of the stationary state distribution based on
consecutive state distributions, to accelerate the forward algorithm, and to save its memory requirements. The
presented concept has been implemented in a tool including all optimization methods. To make this paper
easily accessible to novices, a tutorial-like introduction to MCs is given.

Keywords: recursive stochastic equations, factor distributions, Markov chains

1 Introduction

Markov chains (MCs) are often used for modeling technical systems to evaluate their performance. Their
stationary state distribution x is often computed as it gives insight into the average system behavior. We
propose a new approach to compute x and several optimization methods. We briefly explain the contribution
of this paper, contrast it with related work, and explain the organization of the following sections.

1.1 Contribution

A MC is usually described by a state transition matrix P and consecutive state distributions xn can be
computed by the vector-matrix multiplication xn+1 = xn ·P . Applying this equation iteratively until the series
of
(
xn
)
, 0 ≤ n <∞ converges is known as the power method and the converged results is the stationary state

distribution x.
The contribution of this paper is a new functional description of MCs using recursive stochastic equations

and factor distributions. It is applicable to MCs with a finite state space. We propose the so-called “forward
algorithm” to compute consecutive state distributions xn without using the state transition matrix. Thus, it
offers an implementation alternative to the power method. We compare the operation and efficiency of the
power method and the MC simulation with regard to the calculation of the stationary state distribution. We
propose methods to speed up the convergence of the power method, to accelerate the computation of the
forward algorithm, and to reduce its memory requirements. We proved the feasibility of our approach by a
tool that turns the functional description into a numerical program to compute the stationary state distribution
x including all optimization methods presented in this paper.

∗ Corresponding author. Tel.: (+49) 931-8886644, fax: (+49) 931-8886632. E-mail address: menth@informatik.uni-tuebingen.de.

Published by World Academic Press, World Academic Union

4 M. Menth: Description and analysis of Markov chains

Our proposal has multiple benefits. The functional description simplifies the modeling of a technical sys-
tem by separating the description of its behavior from influencing probabilistic factors. The forward algorithm
can be significantly faster and require drastically less memory for MCs with large state spaces than the con-
ventional vector-matrix multiplication. Apart from that, some of the proposed optimization methods can be
applied only to the forward algorithm. The simplicity and efficiency of the new method allow the treatment of
highly complex systems with multi-dimensional state spaces that otherwise cannot be solved.

1.2 Related work

Most research regarding MCs has concentrated on analytical solutions of special queuing systems[17].
Matrix-analytical methods take advantage of specially structured transition matrices to achieve a fast compu-
tation of stationary state distribution x[11, 19]. Most analytical approaches make extensive use of the state tran-
sition matrix P , but they cannot solve large Markov models with 106 or more states since then even a sparse
matrix representation of P consumes a lot of memory. The proposed functional description can be viewed as
a further development, generalization, and formalization of the discrete-time analysis used in [1, 20, 21].

In [18] a framework for solving continuous-time Markov chains (CTMCs) is presented. In [3] an efficient
strategy is proposed to generate the state space for multi-valued state decision diagrams. The authors of [5]
present methods for CTMCs to accelerate the computation of their stationary state distribution and discuss
options to avoid the explicit representation of the state transition matrix.

In the next section, an introduction to the conventional description of MCs is given to make this paper
self-contained for novices in the field. We explain the new functional description and the forward algorithm
to compute consecutive state distributions in Section 3. Section 4 compares the operation and the efficiency
of the power method and MC simulation. Section 5 describes several optimization methods to speed up the
convergence of the power method, to accelerate the computation of the forward algorithm, and to minimize
its memory requirements. Section 6 summarizes this work.

2 Introduction to Markov chains

In this section we clarify our notation and give a short introduction to Markov chains (MCs). General
MCs are usually described by a state transition matrix P which may have different properties. We introduce
the stationary state distribution of a MC which is often needed for performance evaluation purposes. A simple
example illustrates this concept.

2.1 Notations

For the sake of clarity, we introduce our notation regarding a random variable X:
X : range of X (contains discrete values);
|X| : cardinality of X;
Xmin, Xmax : minimum and maximum value of X;
x[i] : probability P (X = i) with i ∈ X;
x = (x[Xmin], · · · , x[Xmax]) : distribution of X given as a vector of probabilities;
X =

∑
Xmin≤i≤Xmax

x[i] · i : mean of X .

A random variable X is conditioned on another random variable Y if its distribution x(Y) depends on Y .
X(Y = j) : random variable X conditioned on Y = j;
x(Y = j), x[i](Y = j) : distribution and probability of X conditioned on Y = j;
p(Y = j) : probability p conditioned on Y = j;
p =

∑
Ymin≤i≤Ymax

p(Y = j) · y[j] : unconditioning of the conditional probability p(Y = j) by y.

WJMS email for contribution: submit@wjms.org.uk

World Journal of Modelling and Simulation, Vol. 7 (2011) No. 1, pp. 3-15 5

2.2 Markov processes and embedded Markov chains

A stochastic process is characterized by the time-dependent random variableX(t).X(t) can have a finite
or infinite state space X. The time parameter is taken from the range of potential state transitions t ∈ T. This
range may be continuous or discrete. If the time indices t ∈ T can be numbered by tn, n ∈ N0, consecutive
states X(tn) form a sequence which can be denoted by (Xn)0≤n<∞. A set of random variables {Xn} forms
a Markov chain (MC) if the probability that the next value (state) is Xn+1 = j depends only upon the current
value (state) Xn = i and not upon previous values[9].

A discrete-time Markov chain (DTMC) is a stochastic process with a finite state space and potential
transition points only at integer values, i.e. ti = i, and its sequence Xn forms a Markov chain. The Markov
property denotes that the evolution of the process depends only on its current state but not on past states, which
is also called the memoryless property. This leads to a geometrically distributed sojourn time for every state. In
case of continuous-time Markov chains (CTMCs), the sojourn time for all states is exponentially distributed,
but we do not consider this other class of Markov chains in this paper.

Apart from DTMCs and CTMCs, there are other processes where the sojourn time in the states is neither
geometrically nor exponentially distributed, but the sequence of consecutive states forms a Markov chain.
These processes are called semi-Markov processes with embedded Markov chains at the transition points
whereby transitions to the same state are possible. It has the memoryless property only at the embedded
points.

This work provides an alternative description and analysis for general MCs, DTMCs, and embedded
MCs, but not for CTMCs.

2.3 State transition matrix

In the following, we consider only homogeneous MCs that have the same state transition probabilities
for all transition points. The state transition probability from state i ∈ X to state j ∈ X is then denoted by
pi,j (see Eq. (1)). All state transition probabilities can be grouped in a state transition matrix P (see Eq. (2))
which is stochastic since the entries of each column amount to 1 (see Eq. (3)).

pi,j =P (Xn+1 = j |Xn = i), i, j ∈ X, n ∈ N0. (1)

P =(pi,j), i, j ∈ X, (2)∑
j∈X

pi,j =1, i ∈ X. (3)

The observation of a MC starts at transition point t0. The probability that the system is in state i at this time is

closures

connection

classes

closures

connection

classes

Fig. 1. Classification of states in the state transition
graph of a DTMC

30

1 2

Fig. 2. Transition graph of a small MC example

given by P (X0 = i) = x0[i] which yields the state distribution x0 at time t0. The initial distribution may be
deterministic if the system starts only in a special state. Given the state distribution xn, the state distribution
xn+1 at the next transition point can be computed by a simple matrix multiplication:

WJMS email for subscription: info@wjms.org.uk

6 M. Menth: Description and analysis of Markov chains

xn+1 = xn · P . (4)

The n-step transition probability p(n)
i,j is given by the n-step transition matrix P (n) =P n.

2.4 Markov chain classification

Markov chains can be classified according to the structure of their state transition matrix. We take the
nomenclature regarding DTMCs from [6, 7] and refer to the graph theoretical concepts in [4].

The state transition graph G = (V, E) is defined by the set of vertices V which comprises the states X,
and the set of edges E which represents potential state transitions. A potential state transition from state i to
state j exists if pi,j > 0 holds. A state j can be reached by or is accessible from state i if pi,j > 0 holds. This
is denoted by i→ j. State k is also accessible by state i if there is a state j so that i→ j and j → k are true.
Hence, i→ j holds if there is a path from i to j in G. Two states i and j communicate—denoted by i↔ j—if
both i→ j and j → i hold.

The relation “↔” is symmetric and transitive but not reflexive, hence, it is not an equivalence relation.
But still Connection classes can be built with respect to this relation. In graph theory, a connection class is a
strongly connected component. A subset of states C ⊆ X of a MC is closed if no other state j < C can be
reached from any state i ∈ C. A minimum closed set of states C is called a closure. A closure C absorbs state
i < C if there is a state j ∈ C so that i→ j is true. Note that a connection class is either a closure or completely
absorbed. Fig. 1 illustrates the relationship between closures and connection classes.

A MC is irreducible if there is no closed set other than the entirety of all states. Then, all states belong
to the same connection class and communicate with each other, and the state transition graph of the MC is
strongly connected. A MC which is not irreducible is called reducible. A state i has period p if it can be
reached again only after a multiple of p transition steps, i.e.

p = min(m : ∀k, n ∈ N0 : (n , k ·m) ∧ (p(n)
i,i = 0)).

All states of a closure C have the same period. It can be computed as the greatest common denominator of all
circle lengths in the subgraph of G which is induced by the closure C. An algorithm to find the period of an
irreducible MC is given in [19]. A closure with period 1 is called aperiodic and a closure with period p > 1
is called p-cyclic. If all closures of a MC are aperiodic, the MC is also called aperiodic, otherwise it is called
periodic.

2.5 Markov chain analysis

For performance evaluation purposes, the long-term behavior of a MC is of interest, i.e., the average of
the state distributions at all transition points:

x = lim
n→∞

1
n

∑
0≤i<n

xi. (5)

Since P is a stochastic matrix, the limit x does always exist[8]. The average state distribution depends
in general on the start distribution x0 unless the MC is irreducible. The expression in Eq. (5) converges only
very slowly with increasing n. For aperiodic MCs, the series (xn), 0 ≤ n <∞ also converges. Therefore, the
average state distribution in Eq. (5) can be computed more quickly by the iterative application of Eq. (4) which
is called the power method. In Section 5.1 we show how this principle can also be adapted to periodic MCs.
The stationary state distribution xs of the MC is defined as the left-hand eigenvector of P with eigenvalue 1:

xs = xs · P . (6)

The stationary distribution Eq. (6) is unique for irreducible MCs but not for reducible MCs. For exam-
ple, the identity matrix is reducible and any vector is a left-hand eigenvector. In any case, the average state
distribution x is a stationary state distribution and depends on the start vector x0.

WJMS email for contribution: submit@wjms.org.uk

World Journal of Modelling and Simulation, Vol. 7 (2011) No. 1, pp. 3-15 7

2.6 Example

The description in [19] of the daily weather changes in Belfast (Northern Ireland) illustrates nicely the
concept of a MC. The state is given by the weather: rainy (1), cloudy (2), and sunny (3). The state transition
probabilities can be retrieved from empirical data and are given by the following state transition matrix:

P =

0.8 0.15 0.05
0.7 0.2 0.1
0.5 0.3 0.2

 (7)

On a rainy day, the probability that tomorrow is rainy again is 80%. The average state distribution can be
computed and reveals that the probability for a rainy day in Belfast is 76.25%, for a cloudy day it is 16.88%,
and the sun shines with a probability of 6.88%.

3 Specification and analysis of embedded Markov chains using recursive stochastic
equations

In this section, we specify embedded MCs using recursive stochastic equations[2] and factor distributions
instead of the state transition matrices. We take theGI [GI]/D/1−Qmax queue to illustrate the concept. Then,
we generalize and formalize the approach and present an algorithm to calculate consecutive state distributions
xn based on our new description. Finally, we show that our new description has the same expressiveness as a
state transition matrix.

3.1 Example: gi[gi]/d/1 − qmax queue

We consider the GI [GI]/D/1 − Qmax queuing system that has been investigated in [20]. Customer
batches of size B arrive with an inter-arrival time A, where both A and B are identically and independently
distributed (i. i. d.) random variables. The time to serve a customer is deterministic and the queue has a
capacity of Qmax clients. To keep things simple, we restrict A to multiples of the service time for a single
customer. The objective of the analysis is to compute the average queue occupancy at the arrival instants to
derive blocking probabilities and waiting time distributions for customer requests.

We model the system state by the queue occupancy Q. Hence, we have Q = [0;Qmax]. We embed a MC(
Qn
)
, 0 ≤ n <∞ with embedded points shortly before new customers arrive. The system starts with Q0 cus-

tomers in the queue. When a batch of customers arrives, clients that still fit into the queue are accepted, others
are rejected. Thus, the new queue occupancy is Q′ = min(Qn + B,Qmax). During the inter-arrival time A,
the queue occupancy is reduced byA customers, but it cannot fall below zero. Therefore, the queue occupancy
at the next embedded point is determined by Qn+1 = max(Q′ −A, 0) = max(min(Qn +B,Qmax)−A, 0).
To fully specify the model, we set Qmax = 5 and assume distributions for A and B that are given in Tab. 1.

3.2 Formalization of the functional description

The model specification presented above is based on recursive stochastic equations and factor distribu-
tions. It describes the system behavior at embedded points in a very natural way. We generalize and formalize
this approach and call it functional description.

The choice of the embedded points T determines the description of the model. The state X = (Q) is
given by the queue occupancy and the state space is X = [0;Qmax]. The initial state distribution is given by
x0[0] = 1. The size of the arriving batches B and their inter-arrival times A influence the system behavior and
we call them factors Y = (B,A). Since A and B are both i.i.d. variables, the joint distribution of Y is given
by P (Y = (i, j)) = b[i] · a[j]. The system behavior is described by a recursive stochastic equation. In this
context, we call it state transition function that can be generally defined as f : (X × Y) → X. In the above
example, f is

Qn+1 = f(Qn, (A,B)) = max(min(Qn +B,Qmax)−A, 0).

Hence, the specification of the MC is given by D = (T,X, x0,Y, y, f). In general, both the state space X

and the input space Y may be multi-dimensional.

WJMS email for subscription: info@wjms.org.uk

8 M. Menth: Description and analysis of Markov chains

3.3 Algorithmic calculation of consecutive state distributions

The recursive stochastic equation and the distribution of the factors allow to calculate the state probability
at consecutive embedded points by applying the law of total probability:

xn+1[k] =
∑

i∈X,j∈Y

P (Xn+1 = k|Xn = i ∧ Y = j) · xn[i] · y[j]. (8)

The conditional probability can be computed by means of the state transition function:

P (Xn+1 = k|Xn = i ∧ Y = j) =
{

0, if f(i, j) , k
1, if f(i, j) = k

which simplifies Eq. (8) to

xn+1[k] =
∑

{(i,j):f(i,j)=k,i∈X,j∈Y}

xn[i] · y[j]. (9)

Thus, we calculate the consecutive state probability xn+1[k] =
∑

(i,j)∈Zk
xn[i] · y[i] by the sum of the com-

pound probabilities of the tuples in the preimage Zk = {(i, j) : f(i, j) = k, i ∈ X, j ∈ Y} of state k with
respect to f . We call Eq. (9) the backward algorithm because it requires the preimage of f . The preimage
computation is a difficult task and limits the tractability of complex models. A simple rearrangement of the
computation steps for all consecutive states xn+1[k] in Eq. (9) leads to the forward algorithm which is given in
Fig. 3. It is numerically equivalent to Eq. (9). The forward algorithm is simpler than the backward algorithm
since it does not require the computation of the preimage because it uses the state transition function directly.
Moreover, a program for the numerical computation of the stationary state distribution can be syntactically
derived from the functional description D. This is not feasible in an efficient way for the backward algorithm.

8 Michael Menth

Input: state distribution xn and factor distribution y
initialize xn+1 with zeros
for all i ∈ X do

for all j ∈ Y do
xn+1[f(i, j)] := xn+1[f(i, j)] + xn[i] · y[j]

end for
end for

Output: xn+1

Algorithm 1: Forward algorithm: calculation of the consecutive state distribution based
on the state transition function.

3.4 Derivation of the State Transition Matrix P

The equivalent state transition matrix P for a Markov model can be computed by

pi,k =
∑

{j∈Y:f(i,j)=k}

y[j]. (13)

This equation corresponds to the backward algorithm. Rearranging the computation
according to the forward algorithm simplifies Equation (13) to Algorithm 2 which does
not require the calculation of the preimage of f . The state transition matrix of our
example in Section 3.1 is

P =


0.98 0.02 0 0 0 0
0.86 0.12 0.02 0 0 0
0.54 0.32 0.12 0.02 0 0
0.12 0.42 0.32 0.12 0.02 0
0 0.12 0.42 0.32 0.12 0.02
0 0 0.12 0.42 0.32 0.14

 . (14)

As the state transition matrix P can be derived from the functional description D, D
contains at least as much information as P . The functional description separates clearly
factors Y from the model behavior f . If the factor distribution y changes in a techni-
cal model, it is just substituted by another distribution in D while the state transition
function f remains unchanged. In contrast, the state transition matrix can change com-
pletely.

We have presented three different options for the calculation of a consecutive state
distribution. The state transition matrix P may be used (Equation (4)), the backward
algorithm (Equation (12)), or the forward algorithm (Algorithm 1). They are numeri-
cally identical. The state transition matrix for a system with 106 states has 1012 possible
transitions which require a memory of 8 Terabytes when a single transition is described
by an 8 bytes double precision floating point number. In this case, even a sparse matrix
representation cannot be stored. Thus, the calculation of the consecutive state distri-
bution using the transition matrix becomes infeasible. The forward algorithm requires
memory only for xn, xn+1, and y, but not for the state transition matrix. Therefore, it
does not run into this memory problem. In [16], we have calculated the stationary state
distribution for a MC with about 106 states.

c©World Academic Press 2010, accepted for World Journal of Modelling and Simulation (WJMS)

Fig. 3. Forward algorithm: calculation of the consecutive
state distribution based on the state transition function

Description and Analysis of Markov Chains 9

Input: factor distribution y
initialize P with zeros
for all i ∈ X do

for all j ∈ Y do
pi,f(i,j) := pi,f(i,j) + y(j)

end for
end for

Output: P

Algorithm 2: Calculation of the state transition matrix based on the state transition
function according to the forward algorithm.

3.5 Comparison of Expressiveness

We show that both the functional descriptionD and the state transition P have the same
expressiveness. In the previous section we have shown that the state transition matrix
can be derived from a functional description. Now, we construct a functional description
D = (T ,X , x0,Y, y, f) based on a state transition matrix P .

– The embedded points T = {tn = n ·∆ : n ∈ N0} of D are arbitrary.
– Without loss of generality we assume the state space X = [0; Xmax] for the sake of

a simple notation in the following. Then, the state transition matrix P has Xmax+1
columns and rows. The state space for the equivalent functional description is the
same.

– The start state distribution x0 is arbitrary.
– We define auxiliary variables si,j =

∑
0≤k≤j

pi,k to construct the factor space Y and

the factor distribution y. We further define the vector s∗ that contains {si,j : i, j ∈
X} in an ascending order by value, double elements are suppressed. The length
of s∗ is denoted by len(s∗). Since P is a stochastic matrix, we have si,Xmax

= 1
and according to the construction, the last entry of s∗ is 1. We define the factor
distribution by y[0] = s∗[0], y[i] = s∗[i]− s∗[i− 1], and Y = [0; len(s∗)− 1].

– We define the state transition function f(i, k) = j by its preimage Zi,j = {k : k ∈
Y, f(i, k) = j}. This is done as follows. Since pi,0 corresponds to si,0, there is
a ki,0 such that

∑
0≤h≤ki,0

y[h] = pi,0. Thus, we assign the factor values [0; ki,0] to

Zi,0. Similarly, there is a ki,j for every pi,j with j > 0 and
∑

ki,j−1≤h≤ki,j

y[h] = pi,j ;

thus, we assign the factors [ki,j−1, ki,j] to Zi,j .

To illustrate this small but rather complex construction, we apply it to the state transition
matrix Equation (8) for our example in Section 2.6. The most complex parts of the
functional description are the factor distribution y, which is given explicitly in Table 2,
and the state transition function f which is given by its preimage Z in Equation (15).
The other parts of D = (T ,X , x0,Y, f) are trivial.

c©World Academic Press 2010, accepted for World Journal of Modelling and Simulation (WJMS)

Fig. 4. Calculation of the state transition matrix based on the
state transition function according to the forward algorithm

3.4 Derivation of the state transition matrix P

The equivalent state transition matrix P for a Markov model can be computed by

pi,k =
∑

{j∈Y:f(i,j)=k}

y[j]. (10)

This equation corresponds to the backward algorithm. Rearranging the computation according to the forward
algorithm simplifies Eq. (10) which does not require the calculation of the preimage of f .

The state transition matrix of our example in Section 3.1 is

P =



0.98 0.02 0 0 0 0
0.86 0.12 0.02 0 0 0
0.54 0.32 0.12 0.02 0 0
0.12 0.42 0.32 0.12 0.02 0
0 0.12 0.42 0.32 0.12 0.02
0 0 0.12 0.42 0.32 0.14


WJMS email for contribution: submit@wjms.org.uk

World Journal of Modelling and Simulation, Vol. 7 (2011) No. 1, pp. 3-15 9

As the state transition matrix P can be derived from the functional description D, D contains at least
as much information as P . The functional description separates clearly factors Y from the model behavior
f . If the factor distribution y changes in a technical model, it is just substituted by another distribution in D

while the state transition function f remains unchanged. In contrast, the state transition matrix can change
completely.

Table 1. Batch size and inter-arrival time distributions for
GI [GI]/D/1−Qmax

A = i 2 3 4 B = i 1 2 3
a[i] 0.2 0.6 0.2 b[i] 0.6 0.3 0.1

Table 2. Factor distribution y for the functional de-
scriptions of the state transition matrix in Eq. (7)

Y=i 0 1 2 3 4 5
y[i] 0.5 0.2 0.1 0.1 0.05 0.05

We have presented three different options for the calculation of a consecutive state distribution. The state
transition matrix P may be used Eq. (4), the backward algorithm Eq. (9), or the forward algorithm (Fig. 3).
They are numerically identical. The state transition matrix for a system with 106 states has 1012 possible
transitions which require a memory of 8 Tera bytes when a single transition is described by an 8 bytes double
precision floating point number. In this case, even a sparse matrix representation cannot be stored. Thus, the
calculation of the consecutive state distribution using the transition matrix becomes infeasible (see Fig. 4). The
forward algorithm requires memory only for xn, xn+1, and y, but not for the state transition matrix. Therefore,
it does not run into this memory problem. In [22], we have calculated the stationary state distribution for a
MC with about 106 states.

3.5 Comparison of expressiveness

We show that both the functional description D and the state transition P have the same expressiveness.
In the previous section we have shown that the state transition matrix can be derived from a functional de-
scription. Now, we construct a functional description D = (T,X, x0,Y, y, f) based on a state transition matrix
P .
(1) The embedded points T = {tn = n ·∆ : n ∈ N0} of D are arbitrary.
(2) Without loss of generality we assume the state space X = [0;Xmax] for the sake of a simple notation in
the following. Then, the state transition matrix P has Xmax + 1 columns and rows. The state space for the
equivalent functional description is the same.
(3) The start state distribution x0 is arbitrary.
(4) We define auxiliary variables si,j =

∑
0≤k≤j

pi,k to construct the factor space Y and the factor distribution y.

We further define the vector s∗ that contains {si,j : i, j ∈ X} in an ascending order by value, double elements
are suppressed. The length of s∗ is denoted by len(s∗). Since P is a stochastic matrix, we have si,Xmax = 1
and according to the construction, the last entry of s∗ is 1. We define the factor distribution by y[0] = s∗[0],
y[i] = s∗[i]− s∗[i− 1] and Y = [0; len(s∗)− 1].
(5) We define the state transition function f(i, k) = j by its preimage Zi,j = {k : k ∈ Y, f(i, k) = j}. This is
done as follows. Since pi,0 corresponds to si,0, there is a ki,0 such that

∑
0≤h≤ki,0

y[h] = pi,0. Thus, we assign

the factor values [0; ki,0] to Zi,0. Similarly, there is a ki,j for every pi,j with j > 0 and
∑

ki,j−1≤h≤ki,j

y[h] = pi,j ;

thus, we assign the factors [ki,j−1, ki,j] to Zi,j .
To illustrate this small but rather complex construction, we apply it to the state transition matrix Eq. (7)

for our example in Section 2.6. The most complex parts of the functional description are the factor distribution
y, which is given explicitly in Tab. 3.4, and the state transition function f which is given by its preimage Z in
Eq. (11). The other parts of D = (T,X, x0,Y, f) are trivial.

Z =

{1, 2, 3} {4, 5} {6}
{1, 2} {3, 4} {5, 6}
{1} {2, 3} {4, 5, 6}

 (11)

WJMS email for subscription: info@wjms.org.uk

10 M. Menth: Description and analysis of Markov chains

After all, we have shown that the functional description and the state transition matrix are equivalent
approaches for the specification of discrete and finite MCs. The state transition matrix is the traditionally used
description. If the state transition probabilities can be taken directly from empirical data like in the example
regarding the weather in Belfast, then the transition matrix is a simple approach to model the system. However,
in technical systems the system behavior is known and provides the state transition function f and the factor
distribution is also available. Therefore, the functional description seem to be the natural way of modeling.

4 Markov chain simulation

MCs can be simulated to evaluate their average state distribution x. We briefly explain MC simulation
based on the state transition matrix P and on the new functional description D. Then, we compare the effi-
ciency of MC simulation and the power method for MC analysis.

4.1 Markov chain simulation based on the state transition matrix and the functional description

For the calculation of the successor state in a MC simulation, the current state Xn = i and an equally
distributed pseudo random number U ∈ (0; 1) are required. If the state transition matrix P = (pi,j)i,j∈X is
given, the successor state can be calculated by Xn+1 = max(j :

∑
0≤k<j

pi,k < U).

If a functional description D is given, the pseudo random number is used to realize a random variable
for the factor Y and the successor state is then calculated by the state transition function Xn+1 = f(Xn, Y).
Both alternatives lead one item of the series (Xn)0≤n<∞.

X0:

X1:

X2:

X3:

X4:

X5:

0 1 2 3

Fig. 5. The first 5 transition steps for MC simulation

x0:

x1:

x2:

x3:

x4:

x5:

0 1 2 3

Fig. 6. The first 5 transition steps for the power
method

The simulation records the relative frequencies of the simulated states and uses them as estimates of state
probabilities. Appropriate statistical methods provide confidence intervals for these values[12]. In general,
these probabilities depend on the start stateX0. If the underlying MC is irreducible, the simulation is expected
to yield the same state probabilities for all start vectors.

4.2 Comparison of simulation and the power method for MC analysis

We compare the operation and efficiency of MC simulation and the power method for the calculation of
the average state distribution x.

4.2.1 Comparison of operation

To illustrate the operation of the power method and the simulative MC analysis, we consider the transition
graph of a MC in Fig. 2.

MC simulation takes a random walk through the transition graph according to the state transition prob-
abilities pi,j and constructs a series (Xn)0≤n≤nmax . Thereby, the state space is explored and the relative fre-
quency of the state visitations provides an estimate of the state probabilities. This is visualized in Fig. 5. A

WJMS email for contribution: submit@wjms.org.uk

World Journal of Modelling and Simulation, Vol. 7 (2011) No. 1, pp. 3-15 11

single iteration step is quite cheap, but it reflects only a single transition. Millions or billions of such simulation
steps are usually needed to calculate sufficiently accurate state probabilities.

The power method takes into account all possible transition steps in a single vector-matrix multiplication
in the sense that probability mass of state distribution xn is propagated from all states over all possible tran-
sitions to potential successor states which leads the new state distribution xn+1. This is illustrated in Fig. 6.
Here, a single iteration step requires a lot of computation effort, but usually a few tens or hundreds iteration
steps are sufficient for accurate results.

4.2.2 Comparison of efficiency

We study the convergence speed of the power method. For aperiodic MCs, the series (xn)0≤n<∞ con-
verges to the average state distribution x. The convergence speed of the matrix multiplication method is
exponential, i.e., ‖ x − xn ‖≤ |λ|n. The parameter λ is the eigenvalue of the state transition matrix P with
the largest absolute value smaller than 1, which is also called the subdominant eigenvalue. For an accuracy of
‖ x − xn ‖≤ ε, n ≥ ln ε

lnλ iteration steps are required. Thus, the computation effort increases linearly with an
exponentially decreasing accuracy ε.

In contrast, the simulative approach needs more than n > 1
ε samples for an accuracy of ε; otherwise, a

probability of ε cannot be simulated. Thus, simulations require an exponentially increasing number of samples
if the accuracy ε decreases exponentially.

Hence, the power method yields results for the average state distribution faster than MC simulation when
high accuracy is required. However, MC simulations may be useful to quickly find a suitable start vector x0

for the power method. The optimization method in Section 5.9 takes advantage of this idea.

5 Optimization methods

The following optimizations aim at accelerating the convergence of the consecutive state distribution and
some others make the computation of a single iteration step faster or less memory-consuming. Some of them
are well-known and some others are new, in particular those that rely on the functional description of MCs.

5.1 Convergence speedup by the use of the limiting distribution for periodic MCs

If a MC is aperiodic, the limiting distribution x = lim
n→∞

xn exists[8], which is also called the Cesaro limit.

If
(
xn
)
0≤n<∞ converges, it is obvious that it converges faster than the series of the averaged distributions (Eq.

(5)). The inequality

‖ xn − xn−1 ‖∞< ε (12)

may be used as a convergence criterion where ‖‖∞ denotes the maximum norm. This criterion works well in
practice, but it does not assure the accuracy ‖ xn − x ‖∞< ε of the result.

In case of a periodic MC, the limiting distribution of xn does not exist. The state space X of a p-cyclic
MC is partitioned into p periodic classes Xi, 0 ≤ i < p− 1 and a single-step transition is only possible from a
state of class j to a state of class X((j+1) mod p). However, p transition steps lead to a state of the same class.
Hence, the p-step transition matrix P p is reducible and every subset Xi forms a potentially aperiodic subchain.
In this case, p cyclo-stationary distributions x(i) = lim

n→∞
xn·p+i exist. Finally, the average state distribution of

a periodic chain can be computed by

x = lim
n→∞

1
n

∑
0≤k<n

xk =
1
p

∑
0≤i<p

x(i) = lim
n→∞

1
p

∑
n≤k<n+p

xk.

The righthand expression converges faster than the definition in Eq. (5). The convergence criterion in Eq. (12)
can be adapted to cyclo-stationarity by

‖ x(i)
n − x

(i)
n−1 ‖∞< ε, i. e., ‖ xn+i − xn−p+i ‖∞< ε, for 0 ≤ i < p.

WJMS email for subscription: info@wjms.org.uk

12 M. Menth: Description and analysis of Markov chains

5.2 Convergence speedup by the use of relaxation

Relaxation is a means to modify the eigenvalues of a matrix to make its convergence radius smaller and
to achieve thereby faster convergence. Usually, relaxation is done with Gauss-Seidel or Jacobi methods[10, 19].
Our new approach uses a modification of P to P (α) by P (α) = α ·P + (1− α) ·P with 0 ≤ α ≤ 1 where
P is the identity matrix. This is also called preconditioning. P (α) remains stochastic if α ∈ (0; 1) holds and
its eigenvector x to the eigenvalue 1 is the same as the one for P :

x · P (α) = α · x · P +(1−α) · x · P =α · x+(1−α) · x=x.

The α-relaxation essentially corresponds to the computation of the consecutive state distribution by a
moving average: xn+1 = xn · P (α) = α · xn · P + (1 − α) · xn. We use this observation to implement this
optimization method in our software tool.

The effect of the α-relaxation on the state transition matrix is twofold: it turns periodic MCs into ape-
riodic MCs and it increases the convergence speed. Fig. 7 shows that α-relaxation introduces an additional
transition in the state transition graph and destroys thereby periodicity. As the α-relaxation does not change
the stationary state distribution, the calculation of the Cesaro limit of P (α) is an elegant means to find the
stationary distribution of a periodic MC. Periodic MCs have several complex eigenvalues of size 1. The α-
relaxation removes the periods and changes the complex eigenvalues to 1 or to other values smaller than 1.
Thus, both the size and the phase of the eigenvalues are changed by this kind of preconditioning. As P (α) is
stochastic, all eigenvalues remain smaller than or are equal to 1. The largest eigenvector smaller than 1 deter-
mines the convergence radius and thereby the convergence speed of the series. Thus, α is required to minimize
the resulting subdominant eigenvector. It should not be chosen too small as this also limits the convergence
speed:

‖ xn · P (α)− xn ‖∞=‖ α · xn · (P − I) ‖∞= α· ‖ xn · P − xn ‖∞ .

For many applications α = 0.8 is a good value. Nearly decomposable MCs are almost periodic, i.e., the
state transitions avoiding the periodicity have very little probability. Their series of

(
xn
)
0≤n<∞ converges only

very slowly. In this case, α-relaxation achieves usually a substantial calculation speedup. The multiplexing of

Fig. 7. α-Relaxation induces loops at every node in the
state transition graph of the MC and destroys thereby
periodicity

0

100

200

300

400

500

600

700

800

0,2 0,4 0,6 0,8 1

Relaxation Parameter �

R
e

q
u

ir
e

d
It

e
ra

ti
o

n
s

Fig. 8. Convergence speedup by α-relaxation for the
AAL2/ATM multiplexing model with subsequent cell
spacing

compressed voice into AAL2/ATM with subsequent cell spacing has been modelled in [13, 16] by a three-
dimensional state space. For some system setting, the resulting MC turned out to be almost periodic. Fig. 8
shows the number of required iterations until the convergence criterion is met depending on the α-value for
the α-relaxation. With α = 0.9 the number of required iteration steps can be reduced from 800 to 100.

5.3 Computation speedup by zero-state omission

Zero-state omission excludes states i with probability zero (xn[i] = 0) from multiplication when the
consecutive state distribution is calculated. This can be easily done in Fig. 3 by checking xn[i] > 0 before

WJMS email for contribution: submit@wjms.org.uk

World Journal of Modelling and Simulation, Vol. 7 (2011) No. 1, pp. 3-15 13

entering the second for-loop. Though this optimization looks quite simple, it is very effective. In addition,
connection classes that are never entered due to a specific x0 do not consume any computation time.

5.4 Computation speedup and memory savings by the use of a sparse matrix

A sparse matrix is a smart data structure storing only its non-zero entries. As most state transitions in
many Markov models have probability zero, a sparse matrix representation of the state transition matrix leads
to considerable memory savings. In addition, the missing entries save CPU cycles for the matrix multiplication
when the consecutive state distribution is calculated by Eq. (4). As our new approach does not use the state
transition matrix, it cannot take advantage of this optimization method.

5.5 Computation speedup by matrix powering

The state distribution xn+1 can be computed either iteratively by Eq. (4) or by xn+1 = x0 · P n+1

which requires P n+1. The series of
(
P 2n)

0≤n<∞ can be quickly calculated by matrix powering P 2n
=

P 2n−1 ·P 2n−1
. It presents a subseries of the series

(
P n
)
0≤n<∞ and accelerates the calculation of the limiting

distribution in Section 5.1 significantly.
At first glance, this method is quite appealing, but at second glance, it is often not beneficial. Matrix-

matrix multiplication requires |X|3 scalar multiplications while vector-matrix multiplication requires only |X|2
scalar multiplications. Hence, the power method based on vector-matrix multiplication is computationally
cheaper as long as the number of required iterations n∗ is smaller than |X| · log(n∗)

log(2) . The state space can
become very large, e.g., 106 states[22] while the number of iteration steps is mostly in the order of 103 or
smaller. In addition, the vector-matrix multiplication can be accelerated by zero-state omission and sparse
matrix representation. Both do not work for matrix-matrix multiplication because there is no vector where
zero-states can be omitted and the matrix P n is usually fully occupied even if matrix P is sparsely occupied
so that a sparse matrix representation does not work.

5.6 Memory savings and computation speedup by the functional description and the forward
algorithm

A matrix with 106 states has 1012 possible transitions which require a memory of 8 Terabytes if each
probability is described by a double precision floating point number. This state transition matrix is too large
to be constructed explicitly, even as a sparse matrix. The forward algorithm in Section 3.3 relies on the new
functional description of the MC and does not need the state transition matrix to calculate the consecutive state
distributions. As a consequence, large MCs can be solved without extensive memory[22]. In addition, a vector
matrix multiplication like in Eq. (4) requires |X|2 multiplication and addition steps whereas Fig. 3 requires
|X| · |Y| multiplication and addition steps. This is faster if |X| > |Y| holds.

5.7 Computation speedup by decomposition of the state transition function

The factor space can often be written in product form Y =
∏

0≤i<k Yi. Then, the state transition function
f may be decomposed into f = f0 ◦ · · · ◦ fk−1. The forward algorithm in Section 3.3 is then applied k times,
namely for each state transition function separately. This requires the k-fold replication of the state space (Xi,
0 ≤ i < k, X = X0) to record the intermediate distributions. We apply this to the example in Section 3.1 by

Q1
n = f0(Q0

n, B) = min(Q0
n +B,Qmax), Q0

n+1 = f1(Q1
n, A) = max(Q1

n −A, 0).

With this decomposition method, the state transition function is now calculated once for each realization of
the factor Y0∪ · · · ∪Yk−1 and leads to a computation complexity of O(|X| ·

∑
0≤i<k

|Yi|). With the conventional

approach, the state transition function is calculated for each combination of the different factor realizations
Y0 × · · · × Yk−1 and leads to a computation complexity of O(|X| ·

∏
0≤i<k

|Yi|). Thus, decomposition yields

considerable time savings for large multi-dimensional factor distributions. A practical application example of
this optimization technique can be found in [14, 15].

WJMS email for subscription: info@wjms.org.uk

14 M. Menth: Description and analysis of Markov chains

5.8 Computation speedup by conditional factors

We consider again the GIGI/D/1 − Qmax queue in Section 3.1. We modify it by a conditional ar-
rival process, i.e., the arrival rate depends on the present queue occupancy Q and we denote that system by
GIGI(Q)/D/1 − Qmax. This dependency can be modeled by different random variables Ai for the inter
arrival process and an if-clause in the state transition function:

f1(Q1
n, A

0, · · · , AQmax) =


max(Q1

n −A0, 0), if Q = 0
· · ·
max(Q1

n −AQmax , 0), if Q = Qmax

(13)

However, this is very time-consuming since Fig. 3 needs to step through a loop for the distribution of each Ai,
thus Qmax loops are stepped through in vain. A conditional factor A(Q1) solves that problem and Eq. (13)
can be rewritten as

f1(Q1, A(Q1)) = max(Q1 −A(Q1), 0).

Depending on the value of state Q1, the corresponding distribution for A(Q1) is chosen before entering the
(next) factor loop in Fig. 3. Conditional factors both accelerate the computation tremendously and allow to
model problems in more detail. This method has been applied in [15].

5.9 Convergence speedup with start vector initialization by simulation

In section 4 we have shown that the power method leads faster to accurate estimates of the average
state distribution than MC simulation. While MC simulation computes an average state distribution with an
accuracy of 10−5 quite quickly, it takes much longer to achieve an accuracy of 10−10. In contrast, the power
method takes only twice the time to achieve an accuracy of 10−10 as compared to an accuracy of 10−5.

Therefore, MC simulation can be used to quickly get a rough estimate of the average state distribution.
The resulting state distribution may be used as start vector x0 for the power method because it is more efficient
in ranges of high accuracy. Experience has shown that 107 steps can be simulated quite quickly and provide
an accuracy of already about ‖ x1 − x0 ‖∞= 10−5.

5.10 Memory savings, convergence and computation speedup by intelligent modeling

The major optimization potential at all is intelligent modeling. The choice of the embedded points is
especially important as it influences the state space, the factor space, and the convergence speed of the power
method. Two consecutive embedded points of the same embedded MC should cover a sufficiently large time
interval so that sufficiently many changes happen in the real-world system in the corresponding time. This
assures a fast convergence speed. Furthermore, the state space and the factor space must be kept small. In
particular, multi-dimensional state spaces should be avoided.

6 Conclusions

In this paper, we gave a short tutorial of Markov chains (MCs) which are usually described by a state
transition matrix P . We proposed a new functional description D to model general MCs or also embedded
MCs using recursive stochastic equations and factor distributions. It is easy to apply because it captures the
behavior of the system under study in a very intuitive way.

We proposed the “forward algorithm” to calculate consecutive state distributions xn. It is usually faster
and requires less memory than the equivalent vector-matrix multiplication xn+1 = xn · P . This is part of
the power method to compute the average or stationary state distribution. We compared the operation and
efficiency of MC simulation and the power method for that purpose and showed that the power method is
more efficient in ranges of high accuracy. Then, we presented various methods to speed up the convergence

WJMS email for contribution: submit@wjms.org.uk

World Journal of Modelling and Simulation, Vol. 7 (2011) No. 1, pp. 3-15 15

of the power method, to accelerate the computation of the forward algorithm, and to reduce its memory
requirements.

We have built a converter that takes the functional description D and composes a numerical program
implementing the forward algorithm so that the average state distribution of a MC can be easily and quickly
computed. Moreover, we have implemented all presented optimization methods in the tool unless they are
applicable only to the state transition matrix. The study in [22] was performed with that tool and a MC with
more than 106 states was analyzed.

References

[1] M. Ackroyd. Computing the waiting time distribution for the g/g/1 queue by signal processing methods. IEEE
Transactions on Communications, 1980, 28: 52–58.

[2] A. Brandt, P. Franken, L. Bernd. Stationary stochastic models. in: Wiley Series in Probability and Mathematical
Statistics, John Wiley & Sons, 1990.

[3] G. Ciardo, G. Lŭttgen, R. Siminiceanu. Saturation: An efficient iteration strategy for symbolic state-space genera-
tion. in: Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Genova, Italy, 2001.

[4] T. Cormen, C. Leiserson, R. Rivest. Introduction to Algorithms. The MIT Press, Cambridge, 1991.
[5] D. Deavours, W. Sanders. “On-the-fly” solution techniques for stochastic petri netws and extensions. IEEE Trans-

actions on Software Engineering, 1998, 24: 889–902.
[6] W. Feller. An Introduction to Probability Theory and its Applications. Wiley, 1957.
[7] D. Gross, C. Harris. Fundamentals of Queueing Theory. Wiley, New York, 1985.
[8] B. Huppert. Angewandte Lineare Algebra. de Gruyter, New York, 1990.
[9] L. Kleinrock. Queueing Systems Theory, 1, vol. 1. John Wiley & Sons, New York, 1975.

[10] U. Krieger, B. Mŭller-Clostermann, M. Sczittnick. Modeling and analysis of communication systems based on
computational methods for markov chains. IEEE Journal on Selected Areas in Communications, 1990, 8(9): 1630–
1648.

[11] G. Latouche, P. Taylor. Introduction to Matrix Geometric Methods in Stochastic Modeling, 1. SIAM, Philadelphia,
1999.

[12] A. M. Law, W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill, 2000.
[13] M. Menth. Carrying Wireless Mobile Traffic over ATM—A Performance Study. Master’s Thesis, University of

Würzburg, Faculty of Computer Science, 1998.
[14] M. Menth. The performance of multiplexing voice and circuit switched data in umts over ip networks. in: Protocols

for Multimedia Systems (PROMS), Cracow, Poland, 2000, 312–321.
[15] M. Menth. Analytical performance evaluation of low-bitrate real-time traffic multiplexing in umts over ip networks.

Journal of Interconnection Networks, 2001, 2: 147–174.
[16] M. Menth, N. Gerlich. A numerical framework for solving discrete finite markov models applied to the aal-2 pro-

tocol. in: the 10th GI/ITG Conference on Measuring, Modeling and Evaluation of Computer and Communication
Systems (MMB), Trier, 1999, 163–172.

[17] N. Prabhu, M. Miyazawa, H. Takagi. Queuing systems, theory and applicatioins-advances in discrete time queues.
Queueing Systems, 1994, 18: 1–3.

[18] H. Pranevicius, V. Germanavicius, G. Tumelis. Automatic creation of numerical models of systems specified by pla
method. in: 12th International Conference on Analytical and Stochastic Modeling Techniques and Applications
(ASMTA), Riga, Latvia, 2005.

[19] W. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton, 1994.
[20] P. Tran-Gia, H. Ahmadi. Analysis of a discrete-time gX/d/1 − s queueing system with applications in packet-

switching systems. in: Infocom, IEEE, New Orleans, 1988, 861–870.
[21] P. Tran-Gia, R. Dittmann. A discrete-time analysis of the cyclic reservation multiple access protocol. Performance

Evaluation, 1992, 16: 185–200.
[22] S. Uohler, M. Menth, N. Vicari. Analytic performance evaluation of the red algorithm for qos in tcp/ip networks.

in: the 9th IFIP Working Conference on Performance Modeling and Evaluation of ATM & IP Networks, Budapest,
Hungary, 2001, 178–190.

WJMS email for subscription: info@wjms.org.uk

